

Johns Hopkins University

The synthetic theory of ∞ -categories vs the synthetic theory of ∞ -categories

joint with Dominic Verity and Michael Shulman

Homotopy Type Theory Electronic Seminar Talks

Abstract

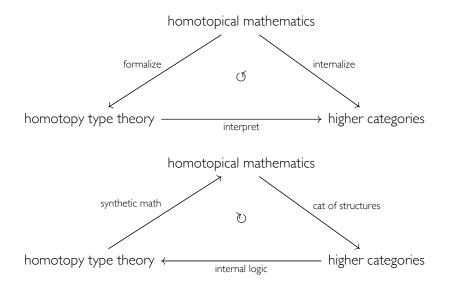
Homotopy type theory provides a "synthetic" framework that is suitable for developing the theory of mathematical objects with natively homotopical content. A famous example is given by $(\infty, 1)$ -categories — aka ∞ -categories — which are categories given by a collection of objects, a homotopy type of arrows between each pair, and a weak composition law.

This talk will compare two ''synthetic'' developments of the theory of $\infty\text{-}\mathsf{categories}$

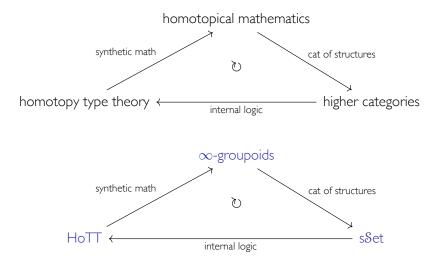
- the first (with Verity) using 2-category theory and
- the second (with Shulman) using a simplicial augmentation of homotopy type theory due to Shulman

by considering in parallel their treatment of the theory of adjunctions between ∞ -categories. The hope is to spark a discussion about the merits and drawbacks of various approaches to synthetic mathematics.

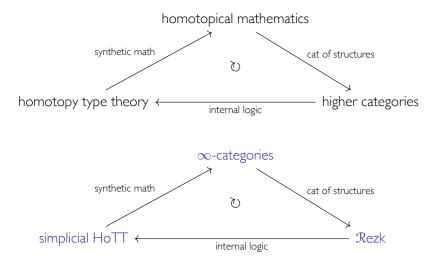
Homotopical trinitarianism?



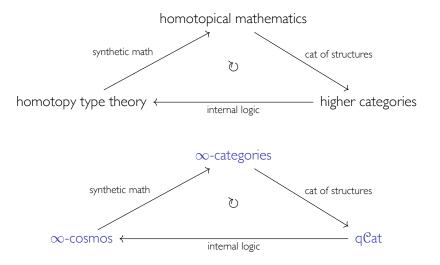
Synthetic homotopy theory



Synthetic ∞ -category theory



Synthetic ∞ -category theory



I. The synthetic theory of ∞ -categories

2. The synthetic theory of ∞ -categories

- I. The semantic theory of ∞ -categories
- 2. The synthetic theory of ∞ -categories in an ∞ -cosmos
- 3. The synthetic theory of ∞ -categories in homotopy type theory
- 4. Discussion

The semantic theory of ∞ -categories

The idea of an ∞ -category

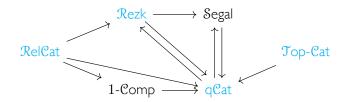
 $\infty\text{-}categories$ are the nickname that Jacob Lurie gave to $(\infty,1)\text{-}categories:$ categories weakly enriched over homotopy types.

The schematic idea is that an ∞ -category should have

- objects
- I-arrows between these objects
- with composites of these I-arrows witnessed by invertible 2-arrows
- with composition associative (and unital) up to invertible 3-arrows
- with these witnesses coherent up to invertible arrows all the way up

The problem is that this definition is not very precise.

Models of ∞ -categories



- topological categories and relative categories are strict objects but the correct maps between them are tricky to understand
- quasi-categories (originally weak Kan complexes) are the basis for the R-Verity synthetic theory of ∞-categories
- Rezk spaces (originally complete Segal spaces) are the basis for the R-Shulman synthetic theory of ∞ -categories

The synthetic theory of ∞ -categories in an ∞ -cosmos

An ∞ -cosmos is an axiomatization of the properties of qCat.

The category of quasi-categories has:

- objects the quasi-categories A, B
- functors between quasi-categories $f \colon A \to B$, which define the points of a quasi-category $Fun(A, B) = B^A$
- a class of isofibrations $E\twoheadrightarrow B$ with familiar closure properties
- so that (flexible weighted) limits of diagrams of quasi-categories and isofibrations are quasi-categories

An ∞ -cosmos is an axiomatization of the properties of qCat.

An ∞ -cosmos has:

- objects the ∞ -categories A, B
- functors between ∞ -categories $f \colon A \to B$, which define the points of a quasi-category Fun $(A, B) = B^A$
- a class of isofibrations $E \twoheadrightarrow B$ with familiar closure properties
- so that (flexible weighted) limits of diagrams of $\infty\text{-}categories$ and isofibrations are $\infty\text{-}categories$

Theorem (R-Verity). qCat, Rezk, Segal, and 1-Comp define ∞ -cosmoi.

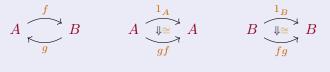
The homotopy 2-category

The homotopy 2-category of an ∞ -cosmos is a strict 2-category whose:

- objects are the ∞ -categories A, B in the ∞ -cosmos
- I-cells are the ∞ -functors $f \colon A \to B$ in the ∞ -cosmos
- 2-cells we call ∞ -natural transformations $A \underbrace{ \downarrow_{\gamma}}_{g} B$ which are

defined to be homotopy classes of I-simplices in $\operatorname{Fun}(A,B)$

Prop (R-Verity). Equivalences in the homotopy 2-category

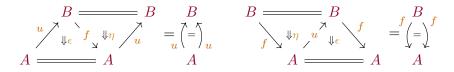


coincide with equivalences in the ∞ -cosmos.

Adjunctions between ∞ -categories

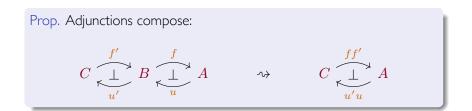
An adjunction consists of:

- ∞ -categories A and B
- ∞ -functors $u \colon A \to B$, $f \colon B \to A$
- ∞ -natural transformations η : $\mathrm{id}_B \Rightarrow uf$ and ϵ : $fu \Rightarrow \mathrm{id}_A$ satisfying the triangle equalities



Write $f \dashv u$ to indicate that f is the left adjoint and u is the right adjoint.

The 2-category theory of adjunctions



Prop. Adjoints to a given functor $u \colon A \to B$ are unique up to canonical isomorphism: if $f \dashv u$ and $f' \dashv u$ then $f \cong f'$.

Prop. Any equivalence can be promoted to an adjoint equivalence: if $u: A \xrightarrow{\sim} B$ then u is left and right adjoint to its equivalence inverse.

The universal property of adjunctions

Any ∞ -category A has an ∞ -category of arrows $\hom_A \twoheadrightarrow A \times A$ equipped with a generic arrow

Prop.
$$A \underbrace{\stackrel{f}{\underset{u}{\smile}}}_{u} B$$
 if and only if $\hom_A(f, A) \simeq_{A \times B} \hom_B(B, u)$.

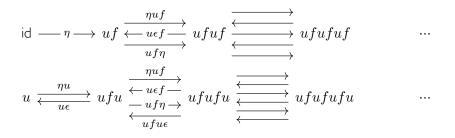
Prop. If $f \dashv u$ with unit η and counit ϵ then

- ηb is initial in $\hom_B(b, u)$ and
- ϵa is terminal in $\hom_A(f, a)$.

The free adjunction

Theorem (Schanuel-Street). Adjunctions in a 2-category \mathcal{K} correspond to 2-functors $\mathcal{A}dj \rightarrow \mathcal{K}$, where $\mathcal{A}dj$, the free adjunction, is a 2-category:

$$\Delta_{+} \overset{}{\overset{}{\underset{\scriptstyle\frown}}} + \overset{\Delta_{-\infty} \cong \Delta_{\infty}^{\text{op}}}{\overset{}{\underset{\scriptstyle\frown}}} - \underset{\leftarrow}{\underset{\scriptstyle\frown}} \Delta_{+}^{\text{op}}$$



A homotopy coherent adjunction in an ∞ -cosmos \mathcal{K} is a simplicial functor \mathcal{A} dj $\rightarrow \mathcal{K}$. Explicitly, it picks out:

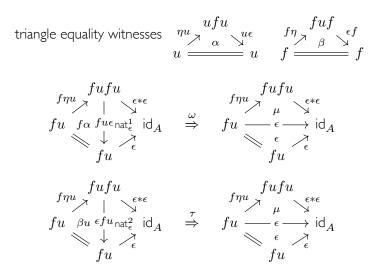
- a pair of objects $A, B \in \mathcal{K}$.
- homotopy coherent diagrams

$$\begin{array}{ll} \pmb{\Delta}_+ \to \operatorname{Fun}(B,B) & \quad \pmb{\Delta}_+^{\operatorname{op}} \to \operatorname{Fun}(A,A) \\ \pmb{\Delta}_\infty \to \operatorname{Fun}(A,B) & \quad \pmb{\Delta}_\infty^{\operatorname{op}} \to \operatorname{Fun}(B,A) \end{array}$$

that are functorial with respect to the composition action of \mathcal{A} dj.

Coherent adjunction data

A homotopy coherent adjunction is a simplicial functor $\mathcal{A}dj \rightarrow \mathcal{K}$.



Existence of homotopy coherent adjunctions

Theorem (R-Verity). Any adjunction in the homotopy 2-category of an ∞ -cosmos extends to a homotopy coherent adjunction.

Proof: Given adjunction data

- $u \colon A \to B$ and $f \colon B \to A$
- $\eta \colon \mathrm{id}_B \Rightarrow uf$ and $\epsilon \colon fu \Rightarrow \mathrm{id}_A$
- α witnessing $u\epsilon \circ \eta u = \mathrm{id}_u$ and β witnessing $\epsilon f \circ f\eta = \mathrm{id}_f$

forget to either

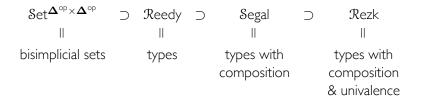
- (f, u, η) or
- $(f, u, \eta, \epsilon, \alpha)$

and use the universal property of the unit η to extend all the way up.

Theorem (R-Verity). Moreover, the spaces of extensions from the data (f, u, η) or $(f, u, \eta, \epsilon, \alpha)$ are contractible Kan complexes.

The synthetic theory of ∞ -categories in homotopy type theory

The intended model



Theorem (Shulman). Homotopy type theory is modeled by the category of Reedy fibrant bisimplicial sets.

Theorem (Rezk). $(\infty, 1)$ -categories are modeled by Rezk spaces aka complete Segal spaces.

The bisimplicial sets model of homotopy type theory has:

- an interval type I, parametrizing paths inside a general type
- a directed interval type 2, parametrizing arrows inside a general type

Paths and arrows

• The identity type for A depends on two terms in A:

 $x, y : A \vdash x =_A y$

and a term $p: x =_A y$ defines a path in A from x to y.

• The hom type for A depends on two terms in A:

 $x,y:A\vdash \hom_A(x,y)$

and a term $f: \hom_A(x, y)$ defines an arrow in A from x to y.

Hom types are defined as instances of extension types axiomatized in a three-layered type theory with (simplicial) shapes due to Shulman

$$\hom_A(x,y) \coloneqq \left\langle \begin{array}{c} 1+1 \xrightarrow{[x,y]} A \\ \downarrow \\ 2 \end{array} \right\rangle$$

Semantically, hom types $\sum_{x,y:A} \hom_A(x,y)$ recover the ∞ -category of arrows $\hom_A \twoheadrightarrow A \times A$ in the ∞ -cosmos \Re ezk.

Segal, Rezk, and discrete types

• A type A is Segal if every composable pair of arrows has a unique composite: if for every $f : \hom_A(x, y)$ and $g : \hom_A(y, z)$

• A Segal type A is Rezk if every isomorphism is an identity: if

id-to-iso: $(x =_A y) \rightarrow (x \cong_A y)$ is an equivalence. x.u:A

• A type A is discrete if every arrow is an identity: if

id-to-arr: $\prod (x =_A y) \rightarrow \hom_A(x, y)$ is an equivalence. x,y:A

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms — the discrete types are the ∞ -groupoids.

The 2-category of Segal types

Prop (R-Shulman).

- Any function $f: A \to B$ between Segal types preserves identities and composition. Morever, the type $A \to B$ of functors is again a Segal type.
- Given functors $f,g\colon A\to B$ between Segal types there is an equivalence

$$\displaystyle \underset{A \rightarrow B}{\hom}(f,g) \xrightarrow{\sim} \prod_{a:A} \displaystyle \underset{B}{\hom}_B(fa,ga)$$

• Terms $\gamma : \underset{A \to B}{\hom}(f, g)$, called natural transformations, are natural and can be composed vertically and horizontally up to typal equality.

Incoherent adjunction data

A quasi-diagrammatic adjunction between types A and B consists of

- functors $u \colon A \to B$ and $f \colon B \to A$
- natural transformations $\eta \colon \hom_{B \to B}(\mathrm{id}_B, uf), \epsilon \colon \hom_{A \to A}(fu, \mathrm{id}_A)$
- witnesses $\alpha : u\epsilon \circ \eta u = id_u$ and $\beta : \epsilon f \circ f\eta = id_f$

A (quasi*-)transposing adjunction between types A and B consists of functors $u: A \to B$ and $f: B \to A$ and a family of equivalences

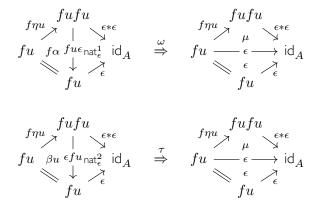
$$\prod_{:A,b:B} \hom_A(fb,a) \simeq \hom_B(b,ua)$$

(*together with their quasi-inverses and the witnessing homotopies).

Theorem(R-Shulman). Given functors $u: A \to B$ and $f: B \to A$ between Segal types the type of quasi-transposing adjunctions $f \dashv u$ is equivalent to the type of quasi-diagrammatic adjunctions $f \dashv u$.

Coherent adjunction data

A half-adjoint diagrammatic adjunction consists of:



Theorem (R-Shulman). Given functors $u: A \to B$ and $f: B \to A$ between Segal types the type of transposing adjunctions $f \dashv u$ is equivalent to the type of half-adjoint diagrammatic adjunctions $f \dashv u$.

Uniqueness of coherent adjunction data

If $\eta \colon \underset{B \to B}{\operatorname{hom}}(\operatorname{id}_B, uf)$ is a unit, then that adjunction is uniquely determined:

Theorem (R-Shulman). Given Segal types A and B, functors $u: A \to B$ and $f: B \to A$, and a natural transformation $\eta: \underset{B \to B}{\text{hom}}(\text{id}_B, uf)$ the following are equivalent propositions:

- The type of $(\epsilon, \alpha, \beta, \mu, \omega, \tau)$ extending (f, u, η) to a half-adjoint diagrammatic adjunction.
- The propositional truncation of the type of $(\epsilon, \alpha, \beta)$ extending (f, u, η) to a quasi-diagrammatic adjunction.

Theorem (R-Shulman). Given the data $(f, u, \eta, \epsilon, \alpha)$ as in a quasi-diagrammtic adjunction, the following are equivalent propositions:

- The type of $(\beta, \mu, \omega, \tau)$ extending this data to a half-adjoint diagrammatic adjunction.
- The propositional truncation of the type of β extending this data to a quasi-diagrammatic adjunction.

Where does Rezk-completeness come in?

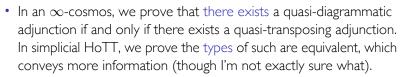
For Rezk types — the synthetic ∞ -categories — adjoints are literally unique, not just "unique up to isomorphism":

Theorem (R-Shulman). Given a Segal type B, a Rezk type A, and a functor $u: A \to B$, the following types are equivalent propositions:

- The type of transposing left adjoints of *u*.
- The type of half-adjoint diagrammatic left adjoints of u.
- The propositional truncation of the type of quasi-diagrammatic left adjoints of u.

Discussion

Closing thoughts



- The ∞-cosmos Rezk does not see Segal or ordinary types because we've axiomatized the fibrant objects, rather than the full model category.
- It seems to be much easier to produce an ∞ -cosmos than to define a model of simplicial HoTT.
- But overall the experiences of working with either approach to the synthetic theory of ∞ -categories are strikingly similar and I'm not sure I entirely understand why that is.

References

For more on homotopical trinitarianism, see:

Michael Shulman

• Homotopical trinitarianism: a perspective on homotopy type theory, home.sandiego.edu/~shulman/papers/trinity.pdf

For more on the synthetic theory of ∞ -categories, see:

Emily Riehl and Dominic Verity

- ∞ -category theory from scratch, arXiv:1608.05314
- ∞-Categories for the Working Mathematician, www.math.jhu.edu/~eriehl/ICWM.pdf

Emily Riehl and Michael Shulman

• A type theory for synthetic ∞-categories, Higher Structures 1(1):116–193, 2017; arXiv:1705.07442