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Abstract

We develop the theory of co-categories from first principles in a
“model-independent” fashion, that is, using a common axiomatic
framework that is satisfied by a variety of models. Our “synthetic”
definitions and proofs may be interpreted simultaneously in many
models of co-categories, in contrast with “analytic” results proven
using the combinatorics of a particular model. Nevertheless, we
prove that both “synthetic” and “analytic” theorems transfer across
specified “change of model” functors to establish the same results
for other equivalent models.



Plan q

Goal: develop model-independent foundations of co-category theory J

I. What are model-independent foundations?

2. oo-cosmoi of co-categories

3. A taste of the formal category theory of co-categories

4. The proof of model-independence of co-category theory
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What are model-independent
foundations?



The motivation for co-categories |

Mere |-categories are insufficient habitats for those mathematical objects
that have higher-dimensional transformations encoding the “higher
homotopical information” needed for a good theory of derived functors.

A better setting is given by oo-categories, which have spaces rather than
sets of morphisms, satisfying a weak composition law.

~» Thus, we want to extend |-category theory (e.g,, adjunctions, limits
and colimits, universal properties, Kan extensions) to oo-category theory.

First problem: it is hard to say exactly what an oo-category is.



The idea of an oco-category [

oo-categories are the nickname that Lurie gave to (oo, 1)-categories,
which are categories weakly enriched over homotopy types.

The schematic idea is that an co-category should have
® objects
® |-arrows between these objects
® with composites of these |-arrows witnessed by invertible 2-arrows

® with composition associative up to invertible 3-arrows (and unital)

with these witnesses coherent up to invertible arrows all the way up

But this definition is tricky to make precise.



Models of co-categories ’

Rezk —— Segal

\ Tl Jop-Cat
% qCat /

RelCat

® topological categories and relative categories are the simplest to
define but do not have enough maps between them

quasi-categories (nee. weak Kan complexes),
Rezk spaces (nee. complete Segal spaces),
Segal categories, and

(saturated |-trivial weak) |-complicial sets
each have enough maps and also an internal hom, and in fact any of
these categories can be enriched over any of the others

Summary: the meaning of the notion of co-category is made precise by
several models, connected by “‘change-of-model” functors. J




The analytic vs synthetic theory of co-categories '

Q: How might you develop the category theory of co-categories?

Two strategies:
e work analytically to give categorical definitions and prove theorems
using the combinatorics of one model

(eg. Joyal, Lurie, Gepner-Haugseng, Cisinski in gCat;
Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

® work synthetically to give categorical definitions and prove
theorems in all four models qCat, Rezk, Segal, 1-Comp at once

Our method: introduce an co-cosmos to axiomatize the common
features of the categories qCat, Rezk, Segal, 1-Comp of co-categories.

J
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00-cosmoi of co-categories



00-cosmoi of oo-categories
Idea: An oo-cosmos is an *“(00, 2)-category with (oo, 2)-categorical
limits” whose objects we call co-categories.
An 0o-cosmos is a category that

® is enriched over quasi-categories, i.e., functors f: A — B between
oo-categories define the points of a quasi-category Fun(A, B),

® has a class of isofibrations ' = B with familiar closure properties,

® and has flexibly-weighted limits of diagrams of co-categories and
isofibrations that satisfy strict simplicial universal properties.

Theorem. gCat, Rezk, Segal, and 1-Comp define co-cosmoi, and so do
certain models of (oo, n)-categories for 0 < n < oo, fibered versions of
all of the above, and many more things besides.

4

Henceforth co-category and oo-functor are technical terms that mean
the objects and morphisms of some oco-cosmos.




The homotopy 2-category ‘

The homotopy 2-category of an co-cosmos is a strict 2-category whose:
® objects are the co-categories A, B in the oo-cosmos
e |-cells are the oco-functors f: A — B in the co-cosmos
/
o 2-cells we call co-natural transformations A~ 4 B which are
~_ 7

g
defined to be homotopy classes of |-simplices in Fun(A, B)

Prop (R-Verity). Equivalences in the homotopy 2-category

f 1, 1,
~—
A~ 7B A 1= A B 1= B
Y~ — ~_ ~_
9 agf fa

coincide with equivalences in the co-cosmos.

Thus, non-evil 2-categorical definitions are “homotopically correct.”
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A taste of the formal category theory
of oo-categories



Adjunctions between oco-categories ‘

An adjunction between oo-categories is an adjunction in the homotopy
2-category, consisting of:

® oo-categories A and B
® co-functorsu: A — B, [: B— A
® oo-natural transformations 7): id; = wfand ¢: fu = id,

satisfying the triangle equalities

B B B

y N B - ? B 7 ¥ _f B )
Vi e 5B, NN =)
A A

Write f - u to indicate that f is the left adjoint and u is the right adjoint.



The 2-category theory of adjunctions ‘

Since an adjunction between oo-categories is just an adjunction in the
homotopy 2-category, all 2-categorical theorems about adjunctions
become theorems about adjunctions between oo-categories.

Prop. Adjunctions compose:

I’ f Ir
c 1B 1 A4 " c 1 A
<~ — <~ — ' —

! u

Prop. Adjoints to a given functor u: A — B are unique up to canonical
isomorphism: if [ wuand f" - uthen f=f".

Prop. Any equivalence can be promoted to an adjoint equivalence: if
u: A = B then wis left and right adjoint to its equivalence inverse.

<




Limits and colimits in an co-category ‘
An oco-category A has

!
. . —
® 3terminal elementiff A | 1

® limits of shape Jiff A 3 1 A’ orequivalently iff the limit cone
o
fim | A is an absolute right lifting
a7 2

® alimit of a diagram d iff Iimdqff 1A isan absolute right lifting.

J
1714

Prop. Right adjoints preserve limits and left adjoints preserve colimits
— and the proof is the usual one ! J




Universal properties of adjunctions, limits, and colimits
Any oco-category A has an co-category of arrows A2, pulling back to
Hom s (f,g) —— A2
define the comma oo-category: (cod,dom)l N (cod,dom)

CXBTAXA
f

L~ . .
Prop. A N B ifand only if Hom 4 (f, A) >4, g Homg(B, u).

u

&

Prop. If f - w with unit 7) and counit ¢ then

® b is initial in Hom (b, w) and ca is terminal in Hom 4 (f, a).

Prop. d: 1 — A” has a limit £ iff Hom 4 (A, £) =~ 4 Hom 4s(A, d).

J

Prop. d: 1 — A” has a limit iff Hom 4, (A, d) has a terminal element

f.J
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The proof of model-independence of
oo-category theory



Cosmological biequivalences and change-of-model “

A cosmological biequivalence F: KX — £ between oo-cosmoi is

® a cosmological functor: a simplicial functor that preserves the
isofibrations and the simplicial limits

that is additionally

® surjective on objects up to equivalence: if C' € £ there exists
AeXwithFA~Cel

® alocal equivalence: Fun(A, B) — Fun(F'A, FB) € qCat

Prop. A cosmological biequivalence induces bijections on:
® equivalence classes of co-categories
® isomorphism classes of parallel co-functors
® )-cells with corresponding boundary

e fibered equivalence classes of modules such as Hom 4 (f, g)
respecting representability, e.g, Hom 4 (A, d) =~ 4 Hom 4 (A4, ¢)




Model-independence “

Rezk ——— Segal

o cosmological biequivalences between
Tl models of (0o, 1)-categories

1-Comp —— qCat

Model-Independence Theorem. Cosmological biequivalences preserve,
reflect, and create all co-categorical properties and structures. J

The existence of an adjoint to a given functor.

The existence of a limit for a given diagram.
® The property of a given functor defining a cartesian fibration.
® The existence of a pointwise Kan extension.

Analytically-proven theorems also transfer along biequivalences:

® Universal properties in an (oo, 1)-category are determined
objectwise.



Summary “

® |n the past, the theory of co-categories has been developed
analytically, in a particular model.

® A large part of that theory can be developed simultaneously in
many models by working synthetically with co-categories as objects
in an 0o-cosmos.

® The axioms of an co-cosmos are chosen to simplify proofs by
allowing us to work strictly up to isomorphism insofar as possible.

® Much of this development in fact takes place in a strict 2-category
of oo-categories, co-functors, and co-natural transformations using
the methods of formal category theory.

® Both analytically- and synthetically-proven results about
oo-categories transfer across '‘change-of-model” functors called
biequivalences.
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