Emily Riehl

Johns Hopkins University

A model-independent theory of ∞ -categories

joint with Dominic Verity

Joint International Meeting of the AMS and the CMS

Dominic Verity

Centre of Australian Category Theory Macquarie University, Sydney

Abstract

We develop the theory of ∞ -categories from first principles in a "model-independent" fashion, that is, using a common axiomatic framework that is satisfied by a variety of models. Our "synthetic" definitions and proofs may be interpreted simultaneously in many models of ∞ -categories, in contrast with "analytic" results proven using the combinatorics of a particular model. Nevertheless, we prove that both "synthetic" and "analytic" theorems transfer across specified "change of model" functors to establish the same results for other equivalent models.

Goal: develop model-independent foundations of ∞ -category theory

- 1. What are model-independent foundations?
- 2. ∞ -cosmoi of ∞ -categories
- 3. A taste of the formal category theory of ∞ -categories
- 4. The proof of model-independence of ∞ -category theory

What are model-independent foundations?

The motivation for ∞ -categories

Mere I-categories are insufficient habitats for those mathematical objects that have higher-dimensional transformations encoding the "higher homotopical information" needed for a good theory of derived functors.

A better setting is given by ∞ -categories, which have spaces rather than sets of morphisms, satisfying a weak composition law.

 \rightsquigarrow Thus, we want to extend 1-category theory (e.g., adjunctions, limits and colimits, universal properties, Kan extensions) to ∞ -category theory.

First problem: it is hard to say exactly what an ∞ -category is.

The idea of an ∞-category

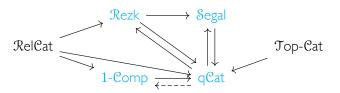
 ∞ -categories are the nickname that Lurie gave to $(\infty,1)$ -categories, which are categories weakly enriched over homotopy types.

The schematic idea is that an ∞ -category should have

- objects
- I-arrows between these objects
- with composites of these 1-arrows witnessed by invertible 2-arrows
- with composition associative up to invertible 3-arrows (and unital)
- with these witnesses coherent up to invertible arrows all the way up

But this definition is tricky to make precise.

Models of ∞ -categories



 topological categories and relative categories are the simplest to define but do not have enough maps between them

quasi-categories (nee. weak Kan complexes), Rezk spaces (nee. complete Segal spaces), Segal categories, and (saturated I-trivial weak) I-complicial sets

each have enough maps and also an internal hom, and in fact any of these categories can be enriched over any of the others

Summary: the meaning of the notion of ∞ -category is made precise by several models, connected by "change-of-model" functors.

The analytic vs synthetic theory of ∞ -categories

Q: How might you develop the category theory of ∞ -categories?

Two strategies:

 work analytically to give categorical definitions and prove theorems using the combinatorics of one model

> (eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat; Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

 work synthetically to give categorical definitions and prove theorems in all four models qCat, Rezk, Segal, 1-Comp at once

Our method: introduce an ∞ -cosmos to axiomatize the common features of the categories qCat, \Re Rezk, \Re Segal, 1-Comp of ∞ -categories.

2

 ∞ -cosmoi of ∞ -categories

∞ -cosmoi of ∞ -categories

Idea: An ∞ -cosmos is an " $(\infty,2)$ -category with $(\infty,2)$ -categorical limits" whose objects we call ∞ -categories.

An ∞ -cosmos is a category that

- is enriched over quasi-categories, i.e., functors $f \colon A \to B$ between ∞ -categories define the points of a quasi-category $\operatorname{Fun}(A,B)$,
- ullet has a class of isofibrations $E \twoheadrightarrow B$ with familiar closure properties,
- and has flexibly-weighted limits of diagrams of ∞ -categories and isofibrations that satisfy strict simplicial universal properties.

Theorem. qCat, Rezk, Segal, and 1-Comp define ∞ -cosmoi, and so do certain models of (∞, n) -categories for $0 \le n \le \infty$, fibered versions of all of the above, and many more things besides.

Henceforth ∞ -category and ∞ -functor are technical terms that mean the objects and morphisms of some ∞ -cosmos.

The homotopy 2-category

The homotopy 2-category of an ∞ -cosmos is a strict 2-category whose:

- objects are the ∞ -categories A, B in the ∞ -cosmos
- I-cells are the ∞ -functors $f: A \to B$ in the ∞ -cosmos
- 2-cells we call ∞ -natural transformations A \biguplus_g B which are defined to be homotopy classes of I-simplices in $\operatorname{Fun}(A,B)$

Prop (R-Verity). Equivalences in the homotopy 2-category

$$A \xrightarrow{f} B \qquad A \xrightarrow{1_A} A \qquad B \xrightarrow{1_B} B$$

coincide with equivalences in the ∞ -cosmos.

Thus, non-evil 2-categorical definitions are "homotopically correct."

A taste of the formal category theory of ∞ -categories

Adjunctions between ∞-categories

An adjunction between ∞ -categories is an adjunction in the homotopy 2-category, consisting of:

- ∞ -categories A and B
- ∞ -functors $u: A \to B$, $f: B \to A$
- ullet ∞ -natural transformations $\eta\colon \mathsf{id}_B\Rightarrow uf$ and $\epsilon\colon fu\Rightarrow \mathsf{id}_A$

satisfying the triangle equalities

Write $f \dashv u$ to indicate that f is the left adjoint and u is the right adjoint.

The 2-category theory of adjunctions

Since an adjunction between ∞-categories is just an adjunction in the homotopy 2-category, all 2-categorical theorems about adjunctions become theorems about adjunctions between ∞-categories.

Prop. Adjunctions compose:

$$C \xrightarrow{f'} B \xrightarrow{f} A \qquad \Rightarrow \qquad C \xrightarrow{ff'} A$$

Prop. Adjoints to a given functor $u \colon A \to B$ are unique up to canonical isomorphism: if $f \dashv u$ and $f' \dashv u$ then $f \cong f'$.

Prop. Any equivalence can be promoted to an adjoint equivalence: if $u: A \xrightarrow{\sim} B$ then u is left and right adjoint to its equivalence inverse.

Limits and colimits in an ∞-category

An ∞ -category A has

- a terminal element iff $A \stackrel{!}{\swarrow} 1$
- limits of shape J iff $A \stackrel{\triangle}{\downarrow} A^J$ or equivalently iff the limit cone

• a limit of a diagram d iff $\lim_{t\to 0} \frac{A}{t}$ is an absolute right lifting. $1\xrightarrow{d} A^J$

Prop. Right adjoints preserve limits and left adjoints preserve colimits

— and the proof is the usual one!

Universal properties of adjunctions, limits, and colimits

•

Any ∞ -category A has an ∞ -category of arrows A^2 , pulling back to

define the comma
$$\infty$$
-category:
$$(\operatorname{cod,dom}) \downarrow \qquad \qquad \downarrow (\operatorname{cod,dom})$$

$$C \times B \xrightarrow{g \times f} A \times A$$

$$\text{Prop.} \quad A \underbrace{ \stackrel{\circ}{\bigsqcup}}_{u} B \quad \text{if and only if } \operatorname{Hom}_{A}(f,A) \simeq_{A \times B} \operatorname{Hom}_{B}(B,u).$$

Prop. If $f \dashv u$ with unit η and counit ϵ then

• ηb is initial in $\operatorname{Hom}_B(b,u)$ and ϵa is terminal in $\operatorname{Hom}_A(f,a)$.

Prop. $d: 1 \to A^J$ has a limit ℓ iff $\operatorname{Hom}_A(A, \ell) \simeq_A \operatorname{Hom}_{A^J}(\Delta, d)$.

Prop. $d: 1 \to A^J$ has a limit iff $\operatorname{Hom}_{A^J}(\Delta, d)$ has a terminal element ϵ .

The proof of model-independence of ∞-category theory

Cosmological biequivalences and change-of-model

A cosmological biequivalence $F \colon \mathcal{K} \to \mathcal{L}$ between ∞ -cosmoi is

• a cosmological functor: a simplicial functor that preserves the isofibrations and the simplicial limits

that is additionally

- surjective on objects up to equivalence: if $C \in \mathcal{L}$ there exists $A \in \mathcal{K}$ with $FA \simeq C \in \mathcal{L}$
- a local equivalence: $\operatorname{Fun}(A,B) \xrightarrow{\sim} \operatorname{Fun}(FA,FB) \in \operatorname{qCat}$

Prop. A cosmological biequivalence induces bijections on:

- ullet equivalence classes of ∞ -categories
- isomorphism classes of parallel ∞ -functors
- 2-cells with corresponding boundary
- fibered equivalence classes of modules such as $\operatorname{Hom}_A(f,g)$ respecting representability, e.g., $\operatorname{Hom}_{A^J}(\Delta,d) \simeq_A \operatorname{Hom}_A(A,\ell)$

Model-independence

Model-Independence Theorem. Cosmological biequivalences preserve, reflect, and create all ∞ -categorical properties and structures.

- The existence of an adjoint to a given functor.
- The existence of a limit for a given diagram.
- The property of a given functor defining a cartesian fibration.
- The existence of a pointwise Kan extension.

Analytically-proven theorems also transfer along biequivalences:

• Universal properties in an $(\infty, 1)$ -category are determined objectwise.

Summary

- In the past, the theory of ∞-categories has been developed analytically, in a particular model.
- A large part of that theory can be developed simultaneously in many models by working synthetically with ∞ -categories as objects in an ∞ -cosmos.
- The axioms of an ∞-cosmos are chosen to simplify proofs by allowing us to work strictly up to isomorphism insofar as possible.
- Much of this development in fact takes place in a strict 2-category of ∞ -categories, ∞ -functors, and ∞ -natural transformations using the methods of formal category theory.
- Both analytically- and synthetically-proven results about ∞-categories transfer across "change-of-model" functors called biequivalences.

References

For more on the model-independent theory of ∞ -categories see:

Emily Riehl and Dominic Verity

mini-course lecture notes:

∞-Category Theory from Scratch arXiv:1608.05314

draft book in progress:

∞-Categories for the Working Mathematician www.math.jhu.edu/~eriehl/ICWM.pdf

