Math 616: Algebraic Topology Problem Set 5 due: May 3, 2016

Emily Riehl

Exercise 1. Let $F: A \to B$ be an additive functor between abelian categories. Its **prolongation** is the functor $F: ChA \to ChB$ that you get by just applying F degreewise.

- (i) Prove that the prolongation preserves chain homotopy equivalences.
- (ii) Suppose further that F is exact. Prove that its prolongation preserves quasiisomorphisms.

Exercise 2. Recall:

- $S^n \in \mathsf{Ch}_R$ is the chain complex with the *R*-module *R* in degree *n* and zeros elsewhere.
- $D^n \in \mathsf{Ch}_R$ is the chain complex with the *R*-module *R* in degrees *n* and *n* 1, with identity differential, and zeros elsewhere.

Let $A \in \mathsf{Ch}_R$ be a chain complex of *R*-modules.

- (i) Define an injective chain map $S^{n-1} \to D^n$.
- (ii) Explain precisely what data is needed to define a chain map $D^n \to A^{1}$
- (iii) Explain precisely what data is needed to define a chain map $S^n \to A$.

Exercise 3. Prove that a chain map $f: A \to B$ has the right lifting property against the map $0 \to D^n$

if and only if $f_n: A_n \to B_n$ is a surjection at the level of underlying sets (every element of B_n is in the image of f_n).

Exercise 4. Prove that if a chain map $f: A \to B$ has the right lifting property against the map $S^n \to D^{n+1}$

then

- (i) $H_n f: H_n A \to H_n B$ is a monomorphism and
- (ii) $H_{n+1}f: H_{n+1}A \to H_{n+1}B$ is an epimorphism.

Exercise 5. Consider a functor $F: \mathsf{M} \to \mathsf{N}$ whose domain is a model category and whose codomain is a category with a specified class of weak equivalences. Prove that if F carries trivial fibrations between fibrant objects to weak equivalences then F preserves all weak equivalences between fibrant objects.

¹That is, tell me that chain maps $D^n \to A$ are in (natural) bijection with elements of some set; your task is to identify this set.

Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218 $\it E\text{-mail}\ address: {\tt eriehl@math.jhu.edu}$

 $\mathbf{2}$