Math 616: Algebraic Topology Problem Set 4 due: April 19, 2016

Emily Riehl

Exercise 1. For any topological space X, there is a space X^I whose points are continuous functions $I \to X$ (i.e., **paths in** X) topologized using the compact open topology.¹

- (i) Show that the "constant path function" $X \to X^I$ is a homotopy equivalence.²
- (ii) Show that the "endpoint evaluation function" $X^I \to X \times X$ is a fibration.³
- (iii) Show that each "single endpoint evaluation function" $X^I \to X$ is both a fibration and a homotopy equivalence.⁴

Exercise 2. For any continuous function $f: X \to Y$ the mapping path space Nf is defined by the following pullback:

$$Nf \xrightarrow{} Y^{I} \downarrow \chi \times Y \xrightarrow{f \times 1} Y \times Y$$

Use Nf to factor $f: X \to Y$ as a homotopy equivalence followed by a fibration.

Exercise 3. Let $\mathcal{L} = \mathbb{Z}\mathcal{R}$ be the class of maps that have the left lifting property against some class of maps \mathcal{R} .

- (i) Prove that every isomorphism is in \mathcal{L} .
- (ii) If $f: X \to Y$ and $g: Z \to W$ are in \mathcal{L} , show that the coproduct (disjoint union) $f \sqcup g: X \sqcup Y \to Z \sqcup W$ is in \mathcal{L} .

Exercise 4. Prove that there are weak factorization systems on the category of sets:

- (i) whose left class is the monomorphisms and whose right class is the epimorphisms.
- (ii) whose left class is the epimorphisms and whose right class is the monomorphisms.

Exercise 5. In fact, the category of sets admits exactly six weak factorization systems:

- (i) (monomorphisms, epimorphisms)
- (ii) (epimorphisms, monomorphisms)
- (iii) (isomorphisms, all maps)
- (iv) (all maps, isomorphisms)
- (v) (all maps with non-empty domain, isos plus maps with empty domain)

 $^{^1\}mathrm{Feel}$ to assume that you are working with a cartesian closed category of spaces, if you know what this means.

 $^{^2\}mathrm{It}\sp{is}$ okay to define the homotopy inverse and witnessing homotopies set-theoretically, without proving these functions are continuous.

 $^{^3 \}rm Similarly,$ it's okay to define lifts set-theoretically, without verifying that these functions are continuous.

 $^{^{4}}$ Hint: the homotopy equivalences satisfy the 2-of-3 property.

(vi) (all monos with non-empty domain, epis plus maps with empty domain) Which pairs of these define model category structures on the category of sets?

Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218E-mail address: eriehl@math.jhu.edu

 $\mathbf{2}$