Math 616: Algebraic Topology Problem Set 3

due: March 22, 2016

Emily Riehl

Exercise 1.

- (i) What is a graded chain complex?
- (ii) What is a **filtered chain complex**?
- (iii) Given a filtered chain complex, define its associated graded, a graded chain complex.

Exercise 2. Given a filtration on a chain complex C_{\bullet} , define an induced filtration on:

- (i) The module C_n .
- (ii) The module $Z_n C$.
- (iii) The module $B_n C$.

Exercise 3. Demonstrate by means of an example that if you apply the functor

$$H_n \colon \mathsf{Ch}_R \to \mathsf{Mod}_R$$

to a filtration of a chain complex C_{\bullet} this does not necessarily directly define a filtration of $H_n C$.¹

Exercise 4. Prove that the spectral sequence associated to a finitely filtered chain complex collapses. At what stage?

Exercise 5. Let C_{\bullet} be a chain complex with $C_n = 0$ if n < 0. Define a filtration by

$$F_p C_d := \begin{cases} C_d & \text{if } p \ge d \\ 0 & \text{if } p < d. \end{cases}$$

Note that this filtration is not typically finite.

- (i) Compute the associated graded.
- (ii) Compute the E^0 , E^1 , and E^2 pages and prove that the spectral sequence collapses.

DEPT. OF MATHEMATICS, JOHNS HOPKINS UNIV., 3400 N CHARLES ST, BALTIMORE, MD 21218 *E-mail address*: eriehl@math.jhu.edu

¹Instead, there is a filtration on H_nC whose *p*th stage is defined to be the *image* of the homology of the *p*th stage of the filtered chain complex.