Math 601: Algebra

Problem Set 9¹ due: November 15, 2017

Emily Riehl

Exercise 1. A subset $S \subset R$ of a commutative ring is **multiplicatively closed** if $1 \in S$ and $s, t \in S$ implies $st \in S$. Define a relation on the set of pairs $(a, s) \in R \times S$ by

$$(a, s) \sim (a', s')$$
 iff $\exists t \in S.t(s'a - sa') = 0.$

- (i) Prove that this is an equivalence relation.
- (ii) Write $\frac{a}{s}$ for the equivalence class of (a, s). Define addition and multiplication of "fractions" and verify that these operations are well-defined.

Essentially you've verified that the set $S^{-1}R$ of fractions is a ring under these operations with a canonical ring homomorphism $\ell \colon R \to S^{-1}R$ defined by $a \mapsto \frac{a}{1}$. Note that $S^{-1}R = 0$ iff $0 \in S$.

- (iii) Prove that $\ell(s)$ is invertible for every $s \in S$.
- (iv) Prove that $R \to S^{-1}R$ is initial among ring homomorphisms $R \to T$ that send every element of S to a unit in T.
- (v) Prove that $S^{-1}R$ is an integral domain if R is an integral domain.

Exercise 2. Let $S \subset R$ as in Exercise 1. For every R-module M define a relation \sim on pairs $(m, s) \in M \times S$ by

$$(m,s) \sim (m',s')$$
 iff $\exists t \in S.t(s'm-sm') = 0.$

- (i) Prove that the set $S^{-1}M$ of equivalence classes is an $S^{-1}R$ module in a way compatible with the action of R on M: explicitly, the $S^{-1}R$ -action on $S^{-1}M$ restricts along $\ell\colon R\to S^{-1}R$ to define an R-module structure on $S^{-1}M$ and M should be a submodule of this represented by those fractions of the form $\frac{m}{l}$.
- (ii) Verify the following universal property of $S^{-1}M$: for any $S^{-1}R$ -module N there is a bijection

$$\hom_{\mathsf{Mod}_{S^{-1}R}}(S^{-1}M,N) \cong \hom_{\mathsf{Mod}_R}(M,N)$$

where the N on the right is the R-module obtained by restriction of scalars along $\ell\colon R\to S^{-1}R$.

Exercise 3. Let R be commutative and let $\mathfrak{p} \subset R$ be a prime ideal.

- (i) Prove that $S = R \setminus \mathfrak{p}$ is multiplicatively closed. The localizations $S^{-1}R$ and $S^{-1}M$, for M an R-module, are then denoted by $R_{\mathfrak{p}}$ and $M_{\mathfrak{p}}$.
- (ii) Prove that there is an inclusion preserving bijection between prime ideals of $R_{\mathfrak{p}}$ and prime ideas of R contained in \mathfrak{p} . Deduce that $R_{\mathfrak{p}}$ is a **local ring**, i.e., has a single maximal ideal.

Exercise 4. Let R be a commutative ring and let M be an R-module. Prove the following are equivalent:

(i)
$$M = 0$$

¹Problems labelled n^* are optional (fun!) challenge exercises that will not be graded.

²This $S^{-1}R$ module was denoted by $S^{-1}R \otimes_R M$ in class.

- (ii) $M_{\mathfrak{p}} = 0$ for every prime ideal \mathfrak{p}
- (iii) $M_{\mathfrak{m}} = 0$ for every maximal ideal \mathfrak{m}

[Hint: the annihilator of a non-zero element m defines a proper ideal $\{r \mid rm=0\}$, which is therefore contained in some maximal ideal.]

Exercise 5. Let $n \in \mathbb{Z}$ be a positive integer with prime factorization $n = p_1^{a_1} \cdots p_r^{a_r}$.

(i) Define a canonical isomorphism of abelian groups

$$\mathbb{Z}/n \cong \mathbb{Z}/p_1^{a_1} \times \cdots \times \mathbb{Z}/p_r^{a_r}$$
.

- (ii) Use Sunzi's remainder theorem to prove that in fact this is a ring isomorphism.
- (iii) Prove that

$$(\mathbb{Z}/n)^{\times} \cong (\mathbb{Z}/p_1^{a_1})^{\times} \times \cdots \times (\mathbb{Z}/p_r^{a_r})^{\times}.$$

(iv) **Euler's** ϕ -function $\phi(n)$ counts the number of positive integers less than or equal to n that are relatively prime to n. Prove that

$$\phi(n) = p_1^{a_1 - 1}(p_1 - 1) \cdots p_r^{a_r - 1}(p_r - 1).$$

Exercise 6*. Prove Fermat's last theorem for polynomials: the equation

$$f^n + g^n = h^n$$

has no solutions in $\mathbb{C}[t]$ for n > 2 and f, g, h not all constant.³

Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218 $E\text{-}mail\ address:}$ eriehl@math.jhu.edu

³Hints can be found in Aluffi V.4.25, who also notes that similar arguments work in any UFD. In particular, if $\mathbb{Z}[\zeta_n]$, where ζ_n is an *n*th root of unity were a UFD, then the full-fledged Fermat's last theorem could be proven along these lines, as mistakenly claimed by G. Lamé.