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Exercise 1. Let 𝐺 be a group.
(i) Prove that if 𝑥, 𝑦 ∈ 𝐺 are conjugate, then 𝑥 and 𝑦 have the same order.
(ii) Prove that the order of any conjugacy class of elements in 𝐺 divides the order of the group 𝐺.
(iii) Let 𝑁 ◁ 𝐺 be a normal subgroup. Prove that 𝑁 is the union of the conjugacy classes of its elements.

Exercise 2. Let 𝐼 denote the icosahedral group, the group of symmetries of the icosahedron (or equally, by duality of the
platonic solids, of the dodecahedron). In problem set 5, you discovered that |𝐼 | = 60.
(i) Calculate the orders of the elements of 𝐼. In particular, determine how many elements have each order and describe

the resulting partition:
60 elements = 1 element of order one + …?

(ii) Calculate the conjugacy classes of elements of 𝐼 and describe the resulting partition of 60 = |𝐼| (the class equation).
Explain why this partition refines the partition you found in (i).¹

(iii) Prove that 𝐼 is a simple group: that is, show that 𝐼 has no non-trivial normal subgroups.
The result in (iii) is useful for identifying 𝐼. The group 𝐼 acts on the set of cubes inscribed inside the dodecahedron. Since
there are five such cubes, this action defines a homomorphism 𝐼 → 𝑆5. Since 𝐼 is a simple group, the kernel of this
homomorphism must either be 𝐼 or {𝑒}. Since the action is non-trivial it’s the latter, and consequently 𝐼 may be identified
with a subgroup of 𝑆5 of order 60. To find this subgroup, we consider the composite homomorphism 𝐼 → 𝑆5 → ℤ/2
where the second map is the sign homomorphism, sending even cycles to [0] and odd cycles to [1]. If this homomorphism
were surjective, the first isomorphism theorem would tell us thatℤ/2 is isomorphic to a quotient group 𝐼/𝑁, where𝑁 ◁ 𝐼
is a normal subgroup of order 30. But such a subgroup doesn’t exist, so 𝐼 → 𝑆5 → ℤ/2must be the zero homomorphism.
Thus 𝐼 is contained in the kernel of the sign homomorphism 𝑆5 → ℤ/2, which is the alternating group 𝐴5. Since 𝐼 ⊂ 𝐴5
and both groups have the same order, we conclude that 𝐼 ≅ 𝐴5.

Exercise 3. Find the center of 𝐷2𝑛. [Hint: the answer depends on whether 𝑛 is even or odd.]

Exercise 4. Prove that the center of 𝑆𝑛 is trivial for 𝑛 ≥ 3.

Exercise 5. If 𝐻 ⊂ 𝐺 is a subgroup its conjugate subgroups are the subgroups of the form

𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1 ∣ ℎ ∈ 𝐻}
for some 𝑔 ∈ 𝐺.
(i) Prove that 𝑔𝐻𝑔−1 is a subgroup of 𝐺.
(ii) Define a bijective group homomorphism 𝐻 → 𝑔𝐻𝑔−1.
(iii) The group 𝐺 acts on the set of subgroups of 𝐺 by conjugation: the action of a group element 𝑔 ∈ 𝐺 on a subgroup

𝐻 ⊂ 𝐺 is defined by 𝐻 ↦ 𝑔𝐻𝑔−1 ⊂ 𝐺. Rephrase the condition of 𝐻 being a normal subgroup in terms of the
orbits of this action.

Exercise 6. Prove that 𝑆𝑝, where 𝑝 is prime, is generated by just two permutations: the transposition (12) and (12⋯𝑝).

Exercise 7. Find the formula for the size of the conjugacy class of a permutation of any given cycle shape in 𝑆𝑛.

Exercise 8. Prove that any normal subgroup of 𝑆4 must have order 1, 4, 12, or 24.
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¹Hint: Exercise 1 will help you identify which elements are likely to be conjugate and which are likely not to be conjugate. It’s okay to wave your
hands a bit in the proofs as long as you state clearly what you are guessing is true.
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