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Exercise 1. Let 𝐺 be a group.
(i) Prove that if 𝑥, 𝑦 ∈ 𝐺 are conjugate, then 𝑥 and 𝑦 have the same order.
(ii) Prove that the order of any conjugacy class of elements in 𝐺 divides the order of the group 𝐺.
(iii) Let 𝑁 ◁ 𝐺 be a normal subgroup. Prove that 𝑁 is the union of the conjugacy classes of its elements.

Proof. (i) Suppose 𝑥 = 𝑔𝑦𝑔−1, which is to say that 𝑥 is the image of 𝑦 under the homomorphism 𝑔(−)𝑔−1 ∶ 𝐺 → 𝐺. Since
this homomorphism is a group isomorphism, it preserves the order of elements and the result follows.

(ii) A conjugacy class of elements is an orbit under the conjugacy action of 𝐺 on itself. Thus, by the orbit stabilizer
theorem, the order of the conjugacy class divides the order of the group.

(iii) Recall that 𝑁 ⊂ 𝐺 is normal if for all 𝑔 ∈ 𝐺,
𝑔𝑁𝑔−1 = {𝑔𝑛𝑔−1 ∣ 𝑛 ∈ 𝑁} ⊂ 𝑁.

This says directly that for each 𝑛 ∈ 𝑁, the conjugacy class of 𝑛 is a subset of 𝑁. So 𝑁 must be the union of the conjugacy
classes of its elements. �

Exercise 2. Let 𝐼 denote the icosahedral group, the group of symmetries of the icosahedron (or equally, by duality of the
platonic solids, of the dodecahedron). In problem set 5, you discovered that |𝐼 | = 60.
(i) Calculate the orders of the elements of 𝐼. In particular, determine how many elements have each order and describe

the resulting partition:
60 elements = 1 element of order one + …?

(ii) Calculate the conjugacy classes of elements of 𝐼 and describe the resulting partition of 60 = |𝐼| (the class equation).
Explain why this partition refines the partition you found in (i).¹

(iii) Prove that 𝐼 is a simple group: that is, show that 𝐼 has no non-trivial normal subgroups.
The result in (iii) is useful for identifying 𝐼. The group 𝐼 acts on the set of cubes inscribed inside the dodecahedron. Since
there are five such cubes, this action defines a homomorphism 𝐼 → 𝑆5. Since 𝐼 is a simple group, the kernel of this
homomorphism must either be 𝐼 or {𝑒}. Since the action is non-trivial it’s the latter, and consequently 𝐼 may be identified
with a subgroup of 𝑆5 of order 60. To find this subgroup, we consider the composite homomorphism 𝐼 → 𝑆5 → ℤ/2
where the second map is the sign homomorphism, sending even cycles to [0] and odd cycles to [1]. If this homomorphism
were surjective, the first isomorphism theorem would tell us thatℤ/2 is isomorphic to a quotient group 𝐼/𝑁, where𝑁 ◁ 𝐼
is a normal subgroup of order 30. But such a subgroup doesn’t exist, so 𝐼 → 𝑆5 → ℤ/2must be the zero homomorphism.
Thus 𝐼 is contained in the kernel of the sign homomorphism 𝑆5 → ℤ/2, which is the alternating group 𝐴5. Since 𝐼 ⊂ 𝐴5
and both groups have the same order, we conclude that 𝐼 ≅ 𝐴5.

Proof. (i) The icosahedral group contains 60 elements, each of which can be understood as some “rotation” of the icosahe-
dron. One of these is the identity element, of order 1. For each of the 6 opposing pairs of vertices, there are 4 rotations
about the axis between them of order 5, resulting in 24 elements of order 5. Similarly, for each of the 15=30/2 opposing
pairs of edges, there is one rotation of order 2 about the axis between their midpoints, for 15 elements of order 2. Finally,
for each of the 20/2 = 10 opposing pairs of faces, there are 2 rotations of order 3 about the axis between the centers of these
faces, for 20 elements of order 3. Since 1 + 24 + 15 + 20 = 60, we’ve accounted for all of the elements in the icosahedral
group.

(ii) By Exercise 1 conjugate elements must have the same order, so the partition into conjugacy classes must refine the
partition 60 = 1+15+20+24 found above. Moreover, since the orders of conjugacy classes divide the order of the group,
we see immediately that the rotations of order 5 cannot all be conjugate. We first argue that the 20 elements of order 3,
which we call “face rotations,” are all conjugate. Note that a “face rotation,” viewed from outside the icosahedron, always

¹Hint: Exercise 1 will help you identify which elements are likely to be conjugate and which are likely not to be conjugate. It’s okay to wave your
hands a bit in the proofs as long as you state clearly what you are guessing is true.
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entails a counter-clockwise rotation of 2𝜋/3 about one of the faces and a clockwise rotation of 2𝜋/3 about the other face.
The element 𝑔 ∈ 𝐼 that conjugates one face rotation to any other face rotation is any symmetry that moves the clockwise
rotating face for one rotation to the clockwise rotating face for the other rotation: apply 𝑔, then apply the second rotation,
then apply 𝑔−1, and this will recover the first face rotation. A similar (but easier) argument shows that any of the edge
rotations are conjugate, where the conjugating element is any one that sends the fixed edge to the fixed edge.

We call the remaining 24 rotations of order 5 “vertex rotations.” These split up into two classes. One class entails
a counter-clockwise rotation of 2𝜋/5 around one of the vertices together with a clockwise rotation of 2𝜋/5 about its
antipode. The other class entails a counter-clockwise rotation of 4𝜋/5 about one of the vertices paired with a clockwise
rotation of 4𝜋/5 about its antipode. By the same argument, all members of the former class are conjugate, as are all
members of the latter class. Thus the class equation has the form

60 = 1 + 15 + 20 + 12 + 12.
(iii) By Exercise 1, normal subgroups are unions of conjugacy classes. Subgroups of course also contain the identity.

But there is no way to add 1 to some non-empty subset of the numbers 15, 20, 12, and 12 to get a divisor of 60 unless you
include them all. This proves that 𝐼 has no non-trivial normal subgroups. �

Exercise 3. Find the center of 𝐷2𝑛. [Hint: the answer depends on whether 𝑛 is even or odd.]

Proof. Recall
𝐷2𝑛 = ⟨𝑥, 𝑦 ∣ 𝑥2 = 𝑒 = 𝑦𝑛, 𝑥𝑦𝑥 = 𝑦𝑛−1.

In particular 𝑥 and 𝑦 do not commute and when 𝑛 is odd any of the other rotations 𝑦𝑗 do not commute with 𝑥 since
𝑥𝑦𝑗𝑥 = 𝑦𝑛−𝑗. Since 𝑥 can be any reflection this proves that 𝐷2𝑛 has a trivial center when 𝑛 is odd.

When 𝑛 = 2𝑘 is even almost the same argument works with one exception: the 180 degree rotation 𝑦𝑘 has 𝑥𝑦𝑘𝑥 = 𝑦𝑘
so 𝑦 is in the center. In this case the center isℤ/2 generated by the 180 degree rotation. �

Exercise 4. Prove that the center of 𝑆𝑛 is trivial for 𝑛 ≥ 3.

Proof. If 𝜎 ∈ 𝑆𝑛 is a non-identity permutation there must be some 𝑖 so that 𝜎(𝑖) = 𝑗 where 𝑖 ≠ 𝑗. Choose some 𝑘 ≠ 𝑖, 𝑗.
Then (𝑗𝑘)𝜎(𝑗𝑘) sends 𝑖 to 𝑘 while 𝜎 sends 𝑖 to 𝑗. Thus 𝜎 does not commute with (𝑗𝑘) which means that 𝜎 is not in the
center. �

Exercise 5. If 𝐻 ⊂ 𝐺 is a subgroup its conjugate subgroups are the subgroups of the form

𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1 ∣ ℎ ∈ 𝐻}
for some 𝑔 ∈ 𝐺.
(i) Prove that 𝑔𝐻𝑔−1 is a subgroup of 𝐺.
(ii) Define a bijective group homomorphism 𝐻 → 𝑔𝐻𝑔−1.
(iii) The group 𝐺 acts on the set of subgroups of 𝐺 by conjugation: the action of a group element 𝑔 ∈ 𝐺 on a subgroup

𝐻 ⊂ 𝐺 is defined by 𝐻 ↦ 𝑔𝐻𝑔−1 ⊂ 𝐻. Rephrase the condition of 𝐻 being a normal subgroup in terms of the
orbits of this action.

Proof. For (i) it suffices to show that for 𝑔ℎ𝑔−1 and 𝑔𝑘𝑔−1 in 𝑔𝐻𝑔−1 (i.e., for ℎ, 𝑘 ∈ 𝐻) we have 𝑔ℎ𝑔−1(𝑔𝑘𝑔−1)−1 ∈ 𝑔𝐻𝑔−1.
This works out to 𝑔ℎ𝑔−1𝑔𝑘−1𝑔 = 𝑔ℎ𝑘−1𝑔−1 which is in 𝑔𝐻𝑔−1 since ℎ𝑘−1 ∈ 𝐻.

For (ii) the bijection is given by the map ℎ ↦ 𝑔ℎ𝑔−1. Its inverse is given by (𝑔ℎ𝑔−1) ↦ 𝑔−1(𝑔ℎ𝑔−1)𝑔 = ℎ.
For (iii), 𝐻 is normal iff it is a fixed point for the conjugation action. �

Exercise 6. Prove that 𝑆𝑛 is generated by just two permutations: the transposition (12) and (12⋯𝑛).

Proof. Since 𝑆𝑛 is generated by the adjacent transpositions, it suffices to show that the cycles (𝑖𝑖 + 1) can be obtained as
products of (12⋯𝑛) and (12). But you can check that (12⋯𝑛)𝑛−𝑖+1(12)(12⋯𝑝)𝑖−1 = (𝑖𝑖 + 1). �

Exercise 7. Find the formula for the size of the conjugacy class of a permutation of any given cycle shape in 𝑆𝑛.

Proof. We proved in class that conjugacy classes correspond to cycle shapes. So suppose there are 𝑘1 1-cycles, 𝑘2 2-cycles,
…𝑘𝑛 𝑛-cycles. (Note most of these numbers are probably zero.)

There are 𝑛 total slots in this set of cycles that can be filled in 𝑛! possible ways. But several different ways of filling
the blanks correspond to the same element of 𝑆𝑛. For instance each of the 𝑘𝑗 𝑗-cycles can be written in 𝑗 different ways
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(cyclically permuting the entries) and each of the 𝑘𝑗 𝑗-cycles can be written in 𝑘𝑗! different orders. So the correct size of
the conjugacy class is

𝑛!
∏𝑛

𝑖=1 𝑖
𝑘𝑖 ⋅ 𝑘𝑖!

.

�

Exercise 8. Prove that any normal subgroup of 𝑆4 must have order 1, 4, 12, or 24.

Proof. A normal subgroup must be a union of conjugacy classes, including the identity conjugacy class. The conjugacy
classes have the following sizes:
• the class of 𝑒 has 1 element
• the class of (12) has 6 elements
• the class of (12)(34) has 3 elements
• the class of (123) has 8 elements
• the class of (1234) has 6 elements
Normal subgroupsmust also be subgroups so their order in particular must divide the order of 𝑆4, which is 24. The possible
sums that divide 24 and include 1 are

1, 1 + 3, 1 + 3 + 8, 1 + 3 + 6 + 6 + 8,
and that’s it. You can check that these do each correspond to subgroups. �
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