Math 411: Honors Algebra I Problem Set 6 due: October 23, 2019

Emily Riehl

Exercise 1. Let $P = \{2, 3, 5, 7, 11, 13, ...\}$ be the (countably infinite) set of prime integers. Use the unique factorization into primes to define an isomorphism between the group $\mathbb{Q}_{>0}^{\times} = (\mathbb{Q}_{>0}, \times, 1)$ of positive rationals under multiplication and the **free abelian group** $\oplus_P \mathbb{Z}$ on the set P.¹

Exercise 2.

- List all of the subgroups of D_8 , the group of symmetries of the square.²
- Indicate which of these subgroups are normal.³

Exercise 3. Prove⁴ that the set of "upper triangular" matrices $-n \times n$ matrices $A = (a_{ij})_{1 \le i,j \le n}$ with $a_{ij} = 0$ if i > j and with $a_{ii} \ne 0$ — defines a subgroup of $GL_n(\mathbb{R})$.

Exercise 4. Find an example that shows that the union of two subgroups $H, K \subset G$ of a common group G is not necessarily a subgroup of G.

Exercise 5. A group *G* is **finitely generated** if there exists finitely many elements $g_1, ..., g_n \in G$ so that the subgroup generated by these elements is all of *G*. Prove that the group $\mathbb{Q} = (\mathbb{Q}, +, 0)$ is *not* finitely generated by showing that any subgroup generated by only finitely many rational numbers $q_1, ..., q_n$ does not contain some rational number $q \in \mathbb{Q}$.

Exercise 6. For any subset $N \subset G$ of a group G define

 $gN = \{gn \mid n \in N\}$ and $Ng = \{ng \mid n \in N\}.$

Let *N* be a subgroup of *G*. Prove that the following are equivalent.

- (i) N is a *normal* subgroup of G.
- (ii) For all $g \in G$, $gNg^{-1} \subset N$.
- (iii) For all $g \in G$, $gNg^{-1} = N$.
- (iv) For all $g \in G$, $gN \subset Ng$.
- (v) For all $g \in G$, $Ng \subset gN$.
- (vi) For all $g \in G$, gN = Ng.

In terminology we will introduce the equivalence (i) \Leftrightarrow (vi) says that *N* is normal in *G* if and only if each left coset *gN* equals the right coset *Ng*.

Exercise 7. Find an example of a group G, a subgroup $H \subset G$, and an element $g \in G$ so that $gH \neq Hg$.

Exercise 8. The index [G, H] of a subgroup $H \subset G$ is the number of left cosets gH for that subgroup.⁵ Suppose $H \subset G$ is a subgroup of index 2. Prove that H is normal in G. (Hint: use Exercise 6(vi) and the fact that the cosets partition G.)

Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218 *Email address*: eriehl@math.jhu.edu

¹Note that free *abelian* groups are different from (smaller than) free groups. You can read more about them in your book.

²Hint: we'll prove soon that the order of a subgroup must divide the order of the group.

³Hint: Exercise 8 will help identify one normal subgroup.

⁴You don't need to write up a bunch of messy algebra. Just list the things you would have to check to prove this and then wave your hands.

⁵Two left cosets are the same, in symbols gH = g'H, if these sets have the same elements, which is the case iff $g^{-1}g' \in H$.