Math 411: Honors Algebra I Problem Set 5 due: October 9, 2019

Emily Riehl

Exercise 1. Recall the dihedral group D_{2n} was defined as the subgroup of S_n comprised of those permutations that define symmetries of a regular *n*-gon whose vertices are labeled 1, 2, ..., *n* in cyclic order. Prove that $|D_{2n}| = 2n$, justifying Aluffi's notation.¹

Exercise 2. The five platonic solids are the tetrahedron, cube, octahedron, dodecahedron, and icosahedron.

- (i) Draw a picture of each of these figures.
- (ii) Referring to your picture as appropriate determine the orders of each group of symmetries.²

Exercise 3. Prove that if $m, n \in \mathbb{N}$ are positive integers with gcd(m, n) = 1, then $\mathbb{Z}/mn \cong \mathbb{Z}/m \times \mathbb{Z}/n$. (Hint: to prove that these groups are isomorphic, it suffices to define *one* bijective homomorphism. Why?)

Exercise 4. Prove that if *A* and *B* are abelian groups, then $A \times B$ satisfies the universal property of the *coproduct* in the category **Ab** of abelian groups. Explain why the commutativity hypothesis is necessary.

Exercise 5.

- (i) Fix an element g in a group G. Prove that the conjugation function $x \mapsto gxg^{-1}$ defines a homomorphism $\gamma_g \colon G \to G$.
- (ii) Prove that the function $g \mapsto \gamma_g$ defines a homomorphism $\gamma: G \to Aut(G)$. The image of this function is the subgroup of *inner automorphisms* of *G*.
- (iii) Prove that γ is the zero homomorphism if and only if *G* is abelian.

DEPT. OF MATHEMATICS, JOHNS HOPKINS UNIV., 3400 N CHARLES ST, BALTIMORE, MD 21218 *E-mail address*: eriehl@math.jhu.edu

¹Hint: recall that elements of S^n are bijective functions from the set $\{1, ..., n\}$ to itself. This problem asks you to count the number of such bijections that define symmetries of the regular *n*-gon.

²Hint: the cube has eight vertices so its group of symmetries can be understood as a subgroup of S₈. The question asks how many elements are in this subgroup.