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Exercise 1. Fix a set 𝐴. The aim of this exercise is establish a bijection between
• the set of equivalence relations on 𝐴,
• the set of partitions on 𝐴, and
• the set of surjective functions with domain 𝐴 up to an isomorphism between the codomains of two such surjective

functions.¹
To that end:
(i) Consider an equivalence relation ∼ on 𝐴 and prove that the set of equivalence classes define a partition of 𝐴. For

𝑥, 𝑦 ∈ 𝐴, we write [𝑥] = [𝑦] and say that 𝑥 and 𝑦 belong to the same equivalence class iff 𝑥 ∼ 𝑦.
(ii) Consider a partition 𝐴 = ∐

𝑖∈𝐼𝐴𝑖 of 𝐴 into a disjoint union of non-empty subsets and define a surjective function
𝜋∶ 𝐴 → 𝐼 in such a way that 𝐴𝑖 is recovered as the fiber of 𝜋 over 𝑖 ∈ 𝐼.

(iii) Consider a surjective function 𝑓∶ 𝐴 → 𝐵 and show that the relation∼ on𝐴 defined by the rule 𝑥 ∼ 𝑦 iff 𝑓(𝑥) = 𝑓(𝑦)
is an equivalence relation.

(iv) Briefly observe that if you start with an equivalence relation ∼ and go through the constructions of (i), (ii), and (iii)
in sequence you recover the equivalence relation you started with.

Proof. (i) Every 𝑥 is a member of its own equivalence class [𝑥] so∪𝑥∈𝐴[𝑥] = 𝐴. To see that the equivalence classes partition
𝐴 we must show that if 𝑧 ∈ [𝑥] ∩ [𝑦] then [𝑥] = [𝑦]. But if 𝑧 ∈ [𝑥] ∩ [𝑦] then by symmetry 𝑥 ∼ 𝑧 and 𝑧 ∼ 𝑦 so by
transitivity 𝑥 ∼ 𝑦. Thus 𝑥 ∈ [𝑦] and 𝑦 ∈ [𝑥]. By transitivity any 𝑤 ∈ [𝑥] has 𝑤 ∼ 𝑥 and 𝑥 ∼ 𝑦 so 𝑤 ∈ [𝑦]. Thus [𝑥] ⊂ [𝑦]
and exchanging 𝑥 and 𝑦 we conclude that [𝑥] = [𝑦].

(ii) Define 𝜋∶ ∐𝑖∈𝐼𝐴𝑖 → 𝐴 by the rule that 𝜋(𝑥) = 𝑖 for all 𝑥 ∈ 𝐴𝑖. Note the fiber 𝜋−1(𝑖) = 𝐴𝑖. Since each 𝐴𝑖 ≠ ∅,
this proves that 𝜋 is surjective.

(iii) We must show that the relation defined by 𝑥 ∼ 𝑦 iff 𝑓(𝑥) = 𝑓(𝑦) is reflexive, surjective, and transitive. This follows
from the fact that equality has these properties and 𝑓 is a well-defined function.

(iv) Starting with an equivalence relation ∼ on 𝐴, the equivalence classes partition 𝐴. Thus, the function constructed
in (ii) has the equivalence classes as fibers. Thus 𝑦 and 𝑧 are related by the relation encoded by this function iff they are in
the same fiber which is the case iff 𝑦 ∼ 𝑧 in the original equivalence relation. �

Exercise 2. Describe as explicitly as you can all of the terms in the canonical decomposition of the function ℝ → ℂ
defined by 𝑥 ↦ 𝑒2𝜋𝑖𝑥.

Proof. The image is the unit circle 𝑆1 in ℂ: the set of complex numbers of norm 1. The quotient isℝ/∼ where 𝑥 ∼ 𝑦 if and
only if 𝑥 − 𝑦 is an integer. These equivalence classes can be represented by elements in the half-open interval [0, 1). The
bijection [0, 1) ≅ 𝑆1 sends 0 ≤ 𝑡 < 1 to the complex number 𝑒2𝜋𝑖𝑡. This defines a parametrization of the unit circle.

ℝ ℂ

ℝ/ℤ = [0, 1) 𝑆1

𝑥↦𝑒2𝜋𝑖𝑥

𝜋
𝑡↦𝑒2𝜋𝑖𝑡

≅

�

Exercise 3. Let C be a category. Define a category Cop, called the opposite category of C as follows:
• the objects of Cop are the same as the objects of C
• For each morphism 𝑓∶ 𝑥 → 𝑦 in C there is a corresponding morphism 𝑓op ∶ 𝑦 → 𝑥 in Cop.
Complete this definition by solving the following:
(i) Define identity morphisms and the composition of morphisms in Cop.

¹The intention of the phrase “up to an isomorphism between the codomains of two such surjective functions” is that the names of the elements in
the codomain set should not matter. If you’re not sure what this means, feel free to ignore it, and you’ll probably be fine.
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(ii) Prove that composition is associative and unital.

Proof. The identity morphism at 𝑥 in Cop is 1op𝑥 , the formal opposite of the specified identity morphism at 𝑥 in C. Com-
position of 𝑓op ∶ 𝑦 → 𝑥 with 𝑔op ∶ 𝑧 → 𝑦 in Cop is defined by the rule

𝑓op ∘ 𝑔op ∶= (𝑔 ∘ 𝑓)op,
the opposite of the composite 𝑔 ∘ 𝑓 of the morphisms 𝑓∶ 𝑥 → 𝑦 and 𝑔∶ 𝑦 → 𝑧 in C.

To prove composition is associative consider morphisms in Cop:

𝑤 𝑧 𝑦 𝑥ℎop 𝑔op 𝑓op

These correspond to morphisms

𝑤 𝑧 𝑦 𝑥ℎ 𝑔 𝑓

in C. Now by the definition of composition in Cop we have

𝑓op ∘ (𝑔op ∘ ℎop) = 𝑓op ∘ (ℎ ∘ 𝑔)op = ((ℎ ∘ 𝑔) ∘ 𝑓)op = (ℎ ∘ (𝑔 ∘ 𝑓))op = (𝑔 ∘ 𝑓)op ∘ ℎop = (𝑓op ∘ 𝑔op) ∘ ℎop

where the middle equality holds by associativity of composition in C.
Similarly by the definition of composition and the identity in Cop for any 𝑓op ∶ 𝑦 → 𝑥 we have

𝑓op ∘ 1op𝑦 = (1𝑦 ∘ 𝑓)op = 𝑓op = (𝑓 ∘ 1𝑥)op = 1op𝑥 ∘ 𝑓op,

where the middle two equalities use the unital property of composition with identities 1𝑥 and 1𝑦 in C. �

Exercise 4. Amorphism 𝑖 ∶ 𝐴 → 𝐵 in a category C admits a left inverse or a retraction if there exists a morphism 𝑟 ∶ 𝐵 → 𝐴
so that 𝑟 ∘ 𝑖 = 1𝐴. In this case, 𝑖 is called a split monomorphism.
(i) Prove that split monomorphisms are in fact monomorphisms.
(ii) State the dual definition of a split epimorphism in any category.
(iii) Prove that any morphism that is both a split monomorphism and an epimorphism is an isomorphism. Conclude by

duality that any morphisms that is both a split epimorphism and a monomorphism is an isomorphism.

Proof. For (i) consider a pair of morphisms 𝑓, 𝑔 ∶ 𝑋 → 𝐴 and suppose 𝑖 has a left inverse 𝑟. If 𝑖𝑓 = 𝑖𝑔 then 𝑟𝑖𝑓 = 𝑟𝑖𝑔 so
𝑓 = 𝑔 since 𝑟𝑖 = 1𝐴.

For (ii) a split epimorphism is a morphism 𝑟 ∶ 𝐵 → 𝐴 that admits a right inverse 𝑠, meaning so that there exists a
morphism 𝑠 ∶ 𝐴 → 𝐵 so that 𝑟𝑠 = 1𝐴.

For (iii) suppose 𝑖 is a split monomorphism and also an epimorphism. We know that 𝑟𝑖 = 1𝐴. We want to show that
𝑖𝑟 = 1𝐵 so that 𝑖 is an isomorphism. Since 𝑟𝑖 = 1𝐴 we know that 𝑖𝑟𝑖 = 𝑖. By the epimorphism property we may cancel 𝑖
from the right and conclude that 𝑖𝑟 = 1𝐵. �

Exercise 5. Consider a commutative triangle of morphisms in any category C

𝐴 𝐶

𝐵

ℎ

𝑓 𝑔

(i) Prove that if 𝑓 and 𝑔 are monomorphisms so is their composite ℎ.
(ii) Prove that if ℎ is a monomorphism then so is 𝑓.
(iii) Find an example to show that it is possible for ℎ to be a monomorphism while 𝑔 is not.

Proof. For (i), consider a pair of morphisms 𝑥, 𝑦 ∶ 𝑋 → 𝐴 and suppose ℎ𝑥 = ℎ𝑦. Then 𝑔𝑓𝑥 = 𝑔𝑓𝑦. Since 𝑔 is mono, then
𝑓𝑥 = 𝑓𝑦, but since 𝑓 is mono, then 𝑥 = 𝑦.

For (ii), consider a pair of morphisms 𝑥𝑦∶ 𝑋 → 𝐴 and suppose 𝑓𝑥 = 𝑓𝑦. Then 𝑔𝑓𝑥 = 𝑔𝑓𝑦 so ℎ𝑥 = ℎ𝑦. Since ℎ is
mono then 𝑥 = 𝑦.

For (iii) Let 𝐴 = 1 a singleton set, 𝐵 = 2 = {⊤,⊥}, and 𝐶 = ℤ. Define ℎ to be the function whose image is 0 ∈ ℤ.
Define 𝑓 to be the function whose image is ⊤ ∈ 2. Note that both of these are monomorphisms. Now define 𝑔 to be the
function that is constant at 0, i.e., so that 𝑔(⊤) = 𝑔(⊥) = 0. Then the triangle commutes but 𝑔 is not a monomorphism
since it’s not injective. �
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Exercise 6. Prove that the collection of isomorphisms in any category C define a subcategory of C, with the same objects
and with composition and identities defined by restricting these operations from C. This category is called the maximal
subgroupoid or sometimes the groupoid core of C.

Proof. Write G for the subcategory of C with the same objects but whose morphisms are only the isomorphisms in C. To
show that G is indeed a subcategory first observe that the identities in C are all isomorphisms: the inverse of 1𝐴 ∶ 𝐴 → 𝐴
is just 1𝐴 ∶ 𝐴 → 𝐴. We must also verify that if 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐶 are isomorphisms in C and so lie in G then their
composite 𝑔 ∘ 𝑓 in C is again an isomorphism, and so lies in G. But the inverse to 𝑔 ∘ 𝑓 is 𝑓−1 ∘ 𝑔−1, the composite of the
inverses of 𝑓 and 𝑔. Now associativity and unitality of composition in G are inherited from the analogous properties of G
so there is nothing more to check. �
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