Math 411: Honors Algebra I Problem Set 9

due: November 15, 2017

Emily Riehl

Exercise 1. Prove that if 0 = 1 in a ring then the ring is the zero ring.

Exercise 2. A ring R is **Boolean** if $a^2 = a$ for every $a \in R$. For any set X prove that the set of subsets of X becomes a Boolean ring with

$A + B := A \cup B - A \cap B$	the symmetric difference
$A \cdot B := A \cap B$	the intersection

by verifying the ring axioms.

Exercise 3. Prove or find a counter-example. If R is a ring and $a, b \in R$ are zero divisors then a + b is a zero divisor.

Exercise 4. Construct a field with 4 elements. The underlying abelian group is $\mathbb{Z}/2 \times \mathbb{Z}/2$ with (0,0) as the zero element and (1,0) as the multiplicative identity. The question is to define the multiplication table so that you get a *field* and not just a ring.

Exercise 5. Let R be a commutative integral domain and consider the polynomial ring R[x]. Prove that the only units in R[x] are the constant polynomials $f(x) = a_0$ where a_0 is a unit in R and explain what goes wrong in your proof if R is not an integral domain.

Exercise 6. Let R be a commutative ring and consider the ring of power series R[x]. Prove that 1 - x is a unit in R[x] by computing its inverse.¹

DEPT. OF MATHEMATICS, JOHNS HOPKINS UNIV., 3400 N CHARLES ST, BALTIMORE, MD 21218 *E-mail address*: eriehl@math.jhu.edu

¹More generally, a power series $a_0 + a_1x + a_2x^2 + \cdots$ is a unit in R[[x]] if and only if a_0 is a unit in R.