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Exercise 1. Find the center of D2n. [Hint: the answer depends on whether n is
even or odd.]

Exercise 2. Prove that the center of Sn is trivial for n ≥ 3.

Exercise 3. If H ⊂ G is a subgroup its conjugate subgroups are the subgroups of
the form

gHg−1 = {ghg−1 | h ∈ H}
for some g ∈ G.

(i) Prove that gHg−1 is a subgroup of G.
(ii) Define a bijective group homomorphism H → gHg−1.
(iii) The group G acts on the set of subgroups of G by conjugation: the action of

a group element g ∈ G on a subgroup H ⊂ G is defined by H 7→ gHg−1 ⊂ H.
Rephrase the condition of H being a normal subgroup in terms of the orbits
of this action.

Exercise 4. Prove that S2n is generated by just two permutations: the transposi-
tion (12) and (12 · · ·n).

Exercise 5. Find the formula for the size of the conjugacy class of a permutation
of any given cycle shape in Sn.

Exercise 6. Prove that any normal subgroup of S4 must have order 1, 4, 12, or
24.
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