Math 411: Honors Algebra I Problem Set 6 due: October 25, 2017

Emily Riehl

Exercise 1 (Troy's exercise). Let $P = \{2, 3, 5, 7, 11, 13, \ldots, p\}$ be the (countably infinite) set of prime integers. Use the unique factorization into primes to define an isomorphism between the group $\mathbb{Q}_{>0}^{\times} = (\mathbb{Q}_{>0}, \times, 1)$ of positive rationals under multiplication and the **free abelian group** $\oplus_P \mathbb{Z}$ on the set P.¹

Exercise 2.

- List all of the subgroups of D_8 , the group of symmetries of the square.²
- Indicate which of these subgroups are normal.³

Exercise 3. Prove⁴ that the set of "upper triangular" matrices $-n \times n$ matrices $A = (a_{ij})_{1 \leq i,j \leq n}$ with $a_{ij} = 0$ if i < j and with $a_{ii} \neq 0$ d — defines a subgroup of $GL_n(\mathbb{R})$.

Exercise 4. Find an example that shows that the union of two subgroups $H, K \subset G$ of a common group G is not necessarily a subgroup of G.

Exercise 5. A group G is **finitely generated** if there exists finitely many elements $g_1, \ldots, g_n \in G$ so that the subgroup generated by these elements is all of G. Prove that the group $\mathbb{Q} = (\mathbb{Q}, +, 0)$ is *not* finitely generated by showing that any subgroup generated by only finitely many rational numbers q_1, \ldots, q_n does not contain some rational number $q \in \mathbb{Q}$.

Exercise 6. For any subset $N \subset G$ of a group G define

$$gN = \{gn \mid n \in N\}$$
 and $Ng = \{ng \mid n \in N\}.$

Let N be a subgroup of G. Prove that the following are equivalent.

- (i) N is a *normal* subgroup of G.
- (ii) For all $g \in G$, $gNg^{-1} \subset N$.
- (iii) For all $q \in G$, $qNq^{-1} = N$.
- (iv) For all $g \in G$, $gN \subset Ng$.
- (v) For all $g \in G$, $Ng \subset gN$.
- (vi) For all $g \in G$, gN = Ng.

In terminology we will introduce the equivalence (i) \Leftrightarrow (vi) says that N is normal in G if and only if each **left coset** gN equals the **right coset** Ng.

Exercise 7. The index [G, H] of a subgroup $H \subset G$ is the number of left cosets gH for that subgroup.⁵ Suppose $H \subset G$ is a subgroup of index 2. Prove that H is normal in G. (Hint: use Exercise 6(vi) and the fact that the cosets partition G.)

¹Note that free *abelian* groups are different from (smaller than) free groups. You can read more about them in your book.

 $^{^{2}}$ Hint: we'll prove soon that the order of a subgroup must divide the order of the group.

³Hint: Exercise 7 will help identify one normal subgroup.

 $^{^4{\}rm You}$ don't need to write up a bunch of messy algebra. Just list the things you would have to check to prove this and then wave your hands.

⁵Two left cosets are the same, in symbols gH = g'H, if these sets have the same elements, which is the case iff $g^{-1}g' \in H$.

Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218 $\it E{-mail}~address:$ eriehl@math.jhu.edu

 $\mathbf{2}$