Math 411: Honors Algebra I

Problem Set 10

due: November 29, 2017

Emily Riehl

Exercise 1. Let R be a commutative ring.

- (i) Prove that if $I \subset R$ is an ideal and $1 \in I$ then I = R.¹
- (ii) Prove that the only ideals in a field are the zero ideal $I = \{0\}$ or the ideal containing every element.
- (iii) Prove that every ring homomorphism $\Bbbk \to K$ between fields is an injection by arguing that the kernel must be zero.²

Exercise 2.

(i) The subset $\mathbb{Z} \subset \mathbb{Z}[x]$ of constant polynomials is a subgroup under addition but is not an ideal. Nonetheless we can form the quotient group $\mathbb{Z}[x]/\mathbb{Z}$. The cosets $f(x) + \mathbb{Z}$ are represented by polynomials $f(x) = a_1x + \cdots + a_nx^n$ with no constant term. Prove that the formula

$$(f(x) + \mathbb{Z}) \cdot (g(x) + \mathbb{Z}) := (f(x) \cdot g(x)) + \mathbb{Z}$$

is not well-defined by finding explicit polynomials in the same cosets that have products that do not belong to the same cosets.

(ii) Now let I be an ideal in a commutative ring R. Prove that the formula

$$(a+I) \cdot (b+I) := (a \cdot b) + I$$

defines a well-defined operation on the abelian group R/I of cosets of I. This proves that R/I inherits the structure of a ring in a unique way making the canonical projection $\pi: R \to R/I$ into a ring homomorphism.

Exercise 3.

- (i) Let $a \in R$ be any element in a commutative ring. Prove that $(a) = \{a \cdot r \mid r \in R\}$ is an ideal. This is called the **principal ideal** generated by a.
- (ii) If u is a unit prove that (u) = (1) = R.
- (iii) If a = ub and u is a unit prove that (a) = (b).
- (iv) If (a) = (b) and R is an integral domain prove that there exists a unit u so that a = ub.

Exercise 4. Consider the principal ideal $(x) \subset \mathbb{Z}[x]$. Compute the quotient ring $\mathbb{Z}[x]/(x)$.

Exercise 5. Consider the principal ideal $(x^2 + 1) \subset \mathbb{R}[x]$.

- (i) Define a ring homomorphism $\phi \colon \mathbb{R}[x] \to \mathbb{C}$ that sends $\mathbb{R} \subset \mathbb{R}[x]$ to $\mathbb{R} \subset \mathbb{C}$ and sends x to $i = \sqrt{-1}$.³
- (ii) Prove that the homomorphism ϕ is surjective.
- (iii) Prove that $(x^2 + 1)$ is contained in the kernel of ϕ . In fact $(x^2 + 1)$ is a **maximal ideal** so this implies that ker $\phi = (x^2 + 1)$.

¹This is why ideals $I \subset R$ do not define subrings. Most ideals do not contain 1.

²An injective ring homomorphism $\Bbbk \hookrightarrow K$ defines a **field extension** of \Bbbk .

³Pick one square root of -1.

(iv) Apply a theorem from class to prove that the quotient ring $\mathbb{R}[x]/(x^2+1)$ is isomorphic to \mathbb{C} .

Exercise 6. Consider the principal ideal $(x^2 + x + 1) \in (\mathbb{Z}/2)[x]$.

- (i) Prove that any polynomial $f(x) \in (\mathbb{Z}/2)[x]$ with coefficients in $\mathbb{Z}/2$ is equivalent modulo $(x^2 + x + 1)$ to a polynomial of the form a + bx with $a, b \in \mathbb{Z}/2$.
- (ii) How many elements are in the quotient ring $(\mathbb{Z}/2)[x]/(x^2 + x + 1)$?
- (iii) Prove that the quotient ring $(\mathbb{Z}/2)[x]/(x^2 + x + 1)$ is a field by writing down the multiplication table and verifying that every non-zero element is a unit.
- (iv) Explain what this has to do with question 4 on Problem Set 9.

Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218 $E\text{-}mail\ address:\ \texttt{eriehl@math.jhu.edu}$