Math 411: Honors Algebra I Problem Set 1

due: September 13, 2017

Emily Riehl

Exercise 1. For each of the following functions determine whether they are injective, surjective, and bijective and construct a left, right, or two-sided inverse whenever these exist.

- (i) The function $f: \mathbb{N} \to \mathbb{N}$ defined by $f(x) = x^2$.
- (ii) The function $f \colon \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.
- (iii) The function $f: \mathbb{Z} \times \mathbb{Z}_{>0} \to \mathbb{Q}$ defined by $(a, b) \mapsto \frac{a}{b}$; here $\mathbb{Z}_{>0}$ denotes the set of positive integers.
- (iv) The function $\pi_B \colon A \times B \to B$ defined by $\pi_B(a, b) = b$.
- (v) The function $\pi: A \to A_{/\sim}$ associated to an equivalence relation \sim on A defined by $\pi(a) = [a]_{\sim}$.
- (vi) The function from the set of subsets of \mathbb{N} to the set of countably-infinite binary sequences (0, 1, 0, 0, 0, 1, ...) that sends a subset $S \in \mathbb{N}$ to the sequence that has a 1 in the *n*th coordinate if and only if $n \in S$.
- (vii) Writing $10 = \{0, \ldots, 9\}$ and $[0, 1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$, the function $f: 10^{\mathbb{N}} \to [0, 1]$ that sends a sequence of decimal digits $(x_n)_{n \in \mathbb{N}}$ to the real number $0.x_1x_2x_3\ldots$

Exercise 2. Write B^A for the set of functions from A to B.

- (i) Express the cardinality of B^A in terms of the cardinalities of A and B, assuming these are finite sets.
- (ii) Express the cardinality of the powerset 2^A of A in terms of the cardinality of A, assuming that A is a finite set.
- (iii) Explain why (ii) is a special case of (i).

Exercise 3. How many functions are there from a set of n elements to itself? How many bijections are there between a set with n elements and itself?

Exercise 4.

- (i) Let $f: A \to B$ be a function that has a left inverse $g: B \to A$ and also a right inverse $h: B \to A$. Prove that h = g.
- (ii) Prove that $f: A \to B$ is a bijection if and only if f is an isomorphism without using (i).

Exercise 5.

- (i) For any function $f: A \to B$ define an explicit isomorphism between A and the graph $\Gamma_f \subset A \times B$.
- (ii) Define a natural function $\Gamma_f \to B$. Is it necessarily injective? Is it necessarily surjective?

Exercise 6.

- (i) Define an isomorphism between any set A and the set A^1 of functions from a singleton set to A.
- (ii) Argue that a function $f: A \to B$ is uniquely determined by its collection of composites with functions $1 \to A$.

Exercise 7. Explain in your own words why all sets with three elements are isomorphic and speculate why I don't care what we call the elements of a 3-element set.

Exercise 8. Suppose $p: A \to B$ is a surjective function. Explain how the fibers of p define an equivalence relation on A and prove that B is isomorphic to the set of equivalence classes for this equivalence relation.

Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218 *E-mail address*: eriehl@math.jhu.edu

 $\mathbf{2}$