Math 401: Introduction to Abstract Algebra Problem Set 9¹ due: April 15, 2019

Emily Riehl

Read. §12, §14

Exercise 1. Find an example of a group G with a subgroup H so that

 $\{(x,y) \mid xy \in H\}$

is not an equivalence relation on G.

Exercise 2. Find an example of a group G with a subgroup H so that

$$\{(x,y) \mid xyx^{-1}y^{-1} \in H\}$$

is not an equivalence relation on G.

Exercise 3. For $G = A_4$ work out the left and right cosets of

- (i) the subgroup $H = \{e, (12)(34), (13)(24), (14)(23)\}$ and
- (ii) the subgroup $K = \{e, (123), (132)\}$

Verify that

- (i) the left and right cosets coincide in the first case: gH = Hg for all $g \in G$
- (ii) but not in the second: for some $g \in G$, $gK \neq Kg$.

Challenge (optional): can you figure out what property holds of H but not of K that explains this?

Exercise 4. Let G be a finite group and let H be a subgroup which contains precisely half of the elements of G. Show that gH = Hg for every $g \in G$.²

Exercises. §12 | 12.6, 12.9

Exercise 5*. Convince yourself that the braid group B_3 is infinite, non-abelian, and is generated by the two braids b_1 and b_2 shown in Figure 12.4 on page 65.³

DEPT. OF MATHEMATICS, JOHNS HOPKINS UNIV., 3400 N CHARLES ST, BALTIMORE, MD 21218 *E-mail address*: eriehl@math.jhu.edu

¹Problems labelled n^{\ast} are optional (fun!) challenge exercises that will not be graded.

 $^{^2\}mathrm{Hint:}$ it might be helpful to think about their complements.

³Note to say that an infinite group is generated by two elements b_1 and b_2 means that every other element can be written as a product involving repetitions of b_1 , b_2 , b_1^{-1} , and b_2^{-1} .