Math 401: Introduction to Abstract Algebra Problem Set 8 due: April 8, 2019

Emily Riehl

Read. §8, §9, §11

Exercise 1. Let G be the 12-element symmetry group of the tetrahedron. There is an injective homomorphism $\phi: G \to S_6$ defined by labeling the six edges of the tetrahedron. This homomorphism sends a symmetry of the tetrahedron to the induced permutation of these six edges. Describe the subgroup of S_6 that arises as the image of ϕ .

Exercise 2. Carry out the procedure described in the proof of Cayley's theorem to obtain a subgroup of S_6 which is isomorphic to D_3 .

Exercise 3. Prove that the matrices

()	1	0	0)		1	0	0)		(-1	0	0		(-1)	0	0 \)
-	0	1	0	,	0	-1	0	,	0	1	0	,	0	-1	0	ł
۱)	0	0	1 /		0	0	-1 /		0	0	-1 /	/	$ \left(\begin{array}{c} -1\\ 0\\ 0 \end{array}\right) $	0	1 /	J

form a subgroup of SO_3 and describe the corresponding rotations of \mathbb{R}^3 .

Exercise 4.

- (i) Show that the rotation of \mathbb{R}^3 of angle θ around the positive z-axis defines an element of SO_3 by writing down the corresponding matrix and verify that it is a matrix in SO_3 .
- (ii) If $A \in SO_3$ and $B \in O_3$ verify that the matrix $B^{-1}AB \in SO_3$.
- (iii) Use (i) and (ii) to argue that any rotation of \mathbb{R}^3 which fixes the origin is represented by a matrix in SO_3 .

Exercise 5. Suppose that H and K are finite subgroups of a group G and that the orders of H and K are relatively prime. Prove that $H \cap K = \{e\}$.

Exercise 6. Lagrange's theorem says that for any finite group G and any subgroup H, the order of H divides the order of G. Determine whether the following "converse" statement holds — "if n divides the order of G, then G has a subgroup of order n" — by either supplying a proof or finding a counterexample.

DEPT. OF MATHEMATICS, JOHNS HOPKINS UNIV., 3400 N CHARLES ST, BALTIMORE, MD 21218 *E-mail address*: eriehl@math.jhu.edu