Math 401: Introduction to Abstract Algebra Problem Set 7 due: March 25, 2019

Emily Riehl

Read. §6, §7

Exercise 1. Show that group isomorphisms preserve the order of every element: if $\phi: G \to H$ is an isomorphism then for all $g \in G$ the order of g is equal to the order of $\phi(g)$.

Exercise 2. Show that the composite of two group homomorphisms is a group homomorphism.

Exercise 3. Show that the correspondence $x \leftrightarrow x^{-1}$ defines an isomorphism from a group G to itself if and only if G is abelian.

Exercise 4.

- (i) Are there any non-zero homomorphisms $\mathbb{Z}/n \to \mathbb{Z}$ for $n \in \mathbb{N}$? If so, define one. If not, explain why not.
- (ii) How many homomorphisms are there from \mathbb{Z} to \mathbb{Z}/n ?

Exercise 5. Let $p, n \in \mathbb{N}$ with p prime. For which n does there exist a non-zero group homomorphism $\mathbb{Z}/p \to \mathbb{Z}/n$?

Exercise 6.

- (i) Show that the subset of S_7 comprised of those permutations that fix the elements 2, 5, 7 form a subgroup. What is the order of this subgroup?
- (ii) Show that the subset of S_7 comprised of those permutations that permute the elements 2, 5, 7 among themselves form a subgroup. What is the order of this subgroup?

Exercise 7. Let $S_n = \text{Aut}_{\text{Set}}(\{1, 2, ..., n\})$ denote the group of permutations of an *n*-element set.

- Find an element of order d in S_n for any d < n.
- For which n is S_n abelian? Give a proof or supply a counterexample for each $n \ge 1$.

Exercise 8. Prove that the order of an element $\alpha \in S_n$ is the least common multiple of the cycle lengths obtained when α is written as a product of disjoint cycles.

Exercise 9*. Classify the homomorphisms from \mathbb{Z}/n to \mathbb{Z}/m for any $n, m \in \mathbb{N}$. In particular, how many homomorphisms are there from \mathbb{Z}/n to \mathbb{Z}/m ?

DEPT. OF MATHEMATICS, JOHNS HOPKINS UNIV., 3400 N CHARLES ST, BALTIMORE, MD 21218 *E-mail address*: eriehl@math.jhu.edu