Math 401: Introduction to Abstract Algebra Problem Set 6 due: March 11, 2019

Emily Riehl

Read. §5, §6

Exercise 1. In this exercise, we'll investigate the order of the various elements $\{0, \ldots, n-1\}$ in the cyclic group \mathbb{Z}/n .

- (i) Prove that the order of $m \in \mathbb{Z}/n$ is 1 if and only if $n \mid m$.
- (ii) Prove that the order of $m \in \mathbb{Z}/n$ is $n/\gcd(m, n)$.

Exercise 2. Compute the order of all of the elements in $\mathbb{Z}/12$.

Exercise 3.

- (i) Show that the element m generates \mathbb{Z}/n if and only if gcd(m, n) = 1.
- (ii) Conclude that *every* non-zero element generates \mathbb{Z}/p when p is a prime.

Exercises.

§5 5.1, 5.2, 5.7

Exercise 4. Find a subgroup of S_4 that contains exactly six elements. How many subgroups of order 6 are there in S_4 ?

Exercise 5. If $\alpha, \beta \in S_n$ prove that $\alpha \beta \alpha^{-1} \beta^{-1}$ always lies in the subgroup A_n .

Exercise 6. Prove that the order of an element $\sigma \in S_n$ is the least common multiple of the lengths of the cycles which appear when σ is written as a product of disjoint cyclic permutations.

DEPT. OF MATHEMATICS, JOHNS HOPKINS UNIV., 3400 N CHARLES ST, BALTIMORE, MD 21218 *E-mail address*: eriehl@math.jhu.edu