Math 401: Introduction to Abstract Algebra Problem Set 5 due: March 5, 2019

Emily Riehl

Read. §2, §3, §4

Exercise 1. Prove that $(gh)^{-1} = h^{-1}g^{-1}$ for all elements g, h in a group G.

Exercise 2. For a fixed value of $n \in \mathbb{N}_{>0}$ verify that the set $\{0, 1, \ldots, n-1\}$ defines a group under the operation "addition modulo n."

Exercise 3. A **partition** on a set A is a decomposition of A into disjoint subsets whose union is A.

- (i) An equivalence relation \sim on a set A defines a partition of A into disjoint subsets, namely the equivalence classes of the equivalence relation. Describe this construction in your own words.
- (ii) Conversely, given any partition of A into disjoint subsets whose union is A, define a corresponding equivalence relation \sim whose equivalence classes coincide with these subsets.

Thus, the set of partitions of A is isomorphic to the set of equivalence relations on A.

Exercises.

§3 3.3, 3.4

Exercise 4. The multiplication operation $-\cdot -: G \times G \to G$ for a group G can be specified by writing down its **multiplication table**: the columns and the rows are each labelled by the elements of G, and then the entry in row g and column h is the product $g \cdot h$.

G	e	g	h		k
e	e	g	h	•••	k
g	g	g^2	$g \cdot h$		$g \cdot k$
h	h	$h \cdot g$	h^2	• • •	$h \cdot k$
:	÷	:	:	·	:
k	k	$k \cdot g$	$k \cdot h$		k^2

- (i) Explain the pattern that you see in the first row and first column of the table (indexed by the identity element e).
- (ii) Prove that every row and every column of the multiplication table of a group contains all elements of that group exactly once (like a Sudoku diagram).

Exercise 5.

- (i) Sketch a proof that the unit circle centered at the origin in $\mathbb{R} \times \mathbb{R}$ defines a group with identity element (1,0) and with addition defined by "adding angles," where the angle of a unit vector is measured counterclockwise starting from the positive x axis.
- (ii) Is this group abelian?
- (iii) Can this group be described as the symmetry group of a geometric figure?

Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218 E-mail address: eriehl@math.jhu.edu

 $\mathbf{2}$