Math 401: Introduction to Abstract Algebra Problem Set 3^1 due: February 18, 2019

Emily Riehl

Exercise 1. Let d be a positive integer and let n be an integer. Prove that $d \mid n$ if and only if in the unique expression n = dq + r with $q, r \in \mathbb{Z}$ and $0 \leq r < d$ the remainder r = 0.

Exercise 2. True or false? If $a \mid c$ and $b \mid c$ then $a \cdot b \mid c$. If true, supply a proof. If false, supply a counterexample.

Exercise 3. Suppose that p_1, \ldots, p_k are distinct primes and that

 $n = p_1^{b_1} \cdots p_k^{b_k}$ $m = p_1^{a_1} \cdots p_k^{a_k}$ and

- for $a_1, ..., a_k, b_1, ..., b_k \in \mathbb{N}$. Show that (i) $gcd(m, n) = p_1^{\min\{a_1, b_1\}} \cdots p_k^{\min\{a_k, b_k\}}$ (ii) $lcm(m, n) = p_1^{\max\{a_1, b_1\}} \cdots p_k^{\max\{a_k, b_k\}}$ (iii) $mn = lcm(m, n) \cdot gcd(m, n)$.

Exercise 4. True or false? For all $n, m \in \mathbb{N}$, $mn = \operatorname{lcm}(m, n) \cdot \operatorname{gcd}(m, n)$. If true, supply a proof. If false, supply a counterexample.

Exercise 5. Generalize a theorem from class to show that if p is a prime number and $p \mid a_1 \cdots a_k$ for integers a_1, \ldots, a_k then there exists an index *i* so that $p \mid a_i$.

Exercise 6. A binary operation on a set S is a function $\star: S \times S \to S$ that takes as input an ordered pair of elements of S and returns an element of S; write $(a,b) \mapsto a \star b$. The binary operation \star is **associative** if for all $a, b, c \in S$, $a \star (b \star c) =$ $(a \star b) \star c^2$ Which of the following binary operations on \mathbb{Z} are associative?

- (i) The operation that assigns to the pair (a, b) the minimum of a and b.
- (ii) The operation that assigns (a, b) the element a.
- (iii) The operation that assigns (a, b) the element a b.

Exercise 7*. Prove the division algorithm for polynomials with real coefficients. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ and $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + a_n x^{m-1} + \dots +$ $b_1 x + b_0$ be polynomials with coefficients in \mathbb{R} . Show that there exist polynomials q(x), r(x) so that

$$f(x) = q(x) \cdot g(x) + r(x)$$

with the degree of r(x) less than the degree of g(x).³ [Hint: use induction on the degree of f(x).]

DEPT. OF MATHEMATICS, JOHNS HOPKINS UNIV., 3400 N CHARLES ST, BALTIMORE, MD 21218 E-mail address: eriehl@math.jhu.edu

¹Problems labelled n^* are optional (fun!) challenge exercises that will not be graded.

²For an associative binary operation, an unbracketed product $a \star b \star c$ can be interpreted as either $a \star (b \star c)$ or $(a \star b) \star c$. If \star is not associative, then this triple product is likely not meaningful.

³The degree of the polynomial g(x) is the highest power of x it contains, in this case m.