Math 401: Introduction to Abstract Algebra Problem Set 10¹ due: April 22, 2019

Emily Riehl

Read. §15, §16

Exercise 1. How many elements of S_8 are conjugate to (12)(345)(678)?

Exercise 2. The center of a group G is the subgroup

 $Z(G) = \{g \in G \mid \forall x \in G, gx = xg\}$

made up of all elements that commute with all other elements of g.

- (i) Prove that Z(G) is a subgroup.
- (ii) Prove that $g \in Z(G)$ if and only if the conjugacy class of g contains a single element.
- (iii) Prove that Z(G) is normal.
- (iv) Use the calculation of the conjugacy classes in O_2 to calculate the center of O_2 .

Exercise 3. For any subset $N \subset G$ of a group G define

$$gN = \{gn \mid n \in N\}$$
 and $Ng = \{ng \mid n \in N\}$.

Let N be a subgroup of G. Prove that the following are equivalent.

- (i) N is a *normal* subgroup of G.
- (ii) For all $g \in G$, $gNg^{-1} \subset N$.
- (iii) For all $g \in G$, $gNg^{-1} = N$.
- (iv) For all $g \in G$, $gN \subset Ng$.
- (v) For all $g \in G$, $Ng \subset gN$.
- (vi) For all $g \in G$, gN = Ng.

In terminology we will introduce the equivalence (i) \Leftrightarrow (vi) says that N is normal in G if and only if each **left coset** gN equals the **right coset** Ng.

Exercise 4. The index [G, H] of a subgroup $H \subset G$ is the number of left cosets gH for that subgroup.² Suppose $H \subset G$ is a subgroup of index 2. Prove that H is normal in G. (Hint: use Exercise 3(vi) and the fact that the cosets partition G.)

Exercise 5. Prove that a homomorphism $\phi: G \to H$ is injective if and only if its kernel is the subgroup $\{e\}$.

Exercise 6. A group G is **finitely generated** if there exists finitely many elements $g_1, \ldots, g_n \in G$ so that the subgroup generated by these elements is all of G. Prove that the group $\mathbb{Q} = (\mathbb{Q}, +, 0)$ is *not* finitely generated by showing that any subgroup generated by only finitely many rational numbers q_1, \ldots, q_n does not contain some rational number $q \in \mathbb{Q}$.

¹Problems labelled n^* are optional (fun!) challenge exercises that will not be graded.

²Two left cosets are the same, in symbols gH = g'H, if these sets have the same elements, which is the case iff $g^{-1}g' \in H$.

Exercise 7. Define a presentation for the dihedral group D_{2n} with two generators r and s and justify the relations you enumerate by arguing that every element of the dihedral group has a unique representation as $r^m s^n$ where $m, n \ge 0$ and are each less than the orders of r and s respectively.

Exercise 8*. Prove that the free group on 26 generators a, b, c, \ldots, z modulo pronunciation in English is trivial.³

Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218 *E-mail address*: eriehl@math.jhu.edu

 $^{^3\!\}mathrm{Alternatively},$ google "homophonic quotients of free groups."