Math 401: Introduction to Abstract Algebra Problem Set 1 due: February 4, 2019

Emily Riehl

defn. A function $f: A \to B$ is given by specifying for each $a \in A$ a unique element $f(a) \in B$.

Exercise 1. For any functions $f: A \to B$ and $g: B \to C$ define the **composite function** $g \circ f: A \to C$ by specifying its action on elements.

defn. A function $f: A \to B$ is

- injective iff f(a) = f(a') implies that a = a';
- surjective iff for every $b \in B$ there exists $a \in A$ so that f(a) = b;
- **bijective** iff it is both injective and surjective.

Exercise 2. How many functions are there from a set of n elements to itself, where $n \in \mathbb{N}$? How many bijections are there between a set with n elements and itself?

Exercise 3. Assume $A, B \neq \emptyset$. Prove that $f: A \to B$ is an injective if and only if it has a **left inverse**: a function $g: B \to A$ so that $g \circ f = id_A$.¹.

Exercise 4. Assume $A, B \neq \emptyset$. Prove that $f: A \to B$ is an surjective if and only if it has a **right inverse**: a function $g: B \to A$ so that $f \circ g = id_B$.

Exercise 5. Let $f: A \to B$ be a function that has a left inverse $g: B \to A$ and also a right inverse $h: B \to A$. Prove that h = g.

Exercise 6. Prove that function $f: A \to B$ is a bijection iff it has a **two-sided** inverse: a function $g: B \to A$ so that $g \circ f = id_A$ and $f \circ g = id_B$. The data of A, B, f, and g define a **isomorphism**.

Exercise 7. Two sets are **isomorphic** if there exists a bijection between them. Explain in your own words why all sets with three elements are isomorphic.

Exercise 8. Find a formula for the sum $1 + 3 + 5 + \cdots + (2n - 1)$ of the first n + 1 odd numbers (for n a positive integer) and prove (by induction) that your formula is correct.²

Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218 $E\text{-}mail\ address:\ \texttt{eriehl@math.jhu.edu}$

¹For any set A, the **identity function** $id_A : A \to A$ is defined by $id_A(a) = a$.

 $^{^2\}mathrm{Hint}:$ To discover the formula, first compute this sum for some particular small values of n and look for a pattern.