Metric Spaces Worksheet 7

Topology III

Now we are ready to address the elephant in the room. There is indeed a relationship between the closed sets and the open sets in a metric space. In order to address, however, we must first establish a useful theorem about closed sets.

Theorem 1 (points outside a closed set are separated from that closed set). Let (X, d) be a metric space, $G \subseteq X$ be a closed set, and $x \in X \setminus G$ be a point outside G. There exists an $\varepsilon \in (0, \infty)$ such that $B_{\varepsilon}(x) \cap G = \emptyset$.

Hint 2. To prove this aim for a contradiction,

- 1. Suppose this wasn't true, and understand what that means.
- 2. Argue that for every $n \in \mathbb{N}$, under this assumption there must be at least one point in $B_{\frac{1}{n+1}}(x) \cap G$.
- 3. By appealing to the \mathbb{R} Axiom of Choice \mathbb{R} , define a sequence a_n by requiring that each $a_n \in B_{\frac{1}{n+1}(x)} \cap G$. (Essentially, you may assume there is such a sequence by invoking this plot device.)
- 4. Prove that this sequence converges.

Complete the proof here

(continued on next page)

Proof continued

Theorem 3 (open iff complement is closed). In a metric space (X, d), a subset $U \subseteq X$ is open iff its complement U^c is closed, where $U^c := X \setminus U$.

To prove theorem 3, we can break up this statement into two parts.

Proposition 4 (complements of open sets are closed). In a metric space (X,d), if $U \subseteq X$ is open then its complement U^c is closed.

Hint 5. Look back at your proof of theorem 6 of Worksheet 6, and try to figure out how to present a similar argument in the setting of a general metric space.

Complete the proof here

Proposition 6 (complements of closed sets are open). In a metric space (X, d), if $G \subseteq X$ is closed then its complement G^c is open.

Hint 7. The following proof skeleton may be useful:

- 1. Given a closed set *G*, to show that G^c we must choose a point $x \in G^c$ and find an $\varepsilon \in (0, \infty)$ for which $B_{\varepsilon}(x) \subseteq G^c$.
- 2. Argue that $B_{\varepsilon}(x) \subseteq G^{c} \leftrightarrow B_{\varepsilon}(x) \cap G = \emptyset$.
- 3. Apply a previous result.

Complete the proof here

We are now in a position to prove theorem 3 by combining the proofs of propositions 4 and 6.

Complete the proof of theorem 3

Now that we understand the relationship between closed sets and open sets, it might seem natural to ask whether there are sets which are *both* open and closed. Whence we arrive at the following amusing terminology.

Definition 8 (clopen set). A subset $S \subseteq X$ of a metric space (X, d) is said to be *clopen* if it is both open and closed. \Box

Example 9 (singletons are clopen in a discrete space)

Let (*X*, *d*) be a discrete metric space, and $x \in X$ a point. The singleton set {*x*} is clopen.

Hint 10. In proving that a set *C* is clopen, we may prove any one of:

- 1. *C* is both open and closed, directly
- 2. *C* is open and C^c is open
- 3. *C* is closed and C^c is closed
- 4. C^c is both open and closed, directly

Only context and experience can aid us in determining which route is likely to be easier. *Complete the proof here*

Question 11. Can you find a metric space in which every subset is clopen? If so, describe it mathematically. If not, prove that such a space cannot exist.

Complete your answer here

Review 12 (open sets in the Euclidean space \mathbb{R}). Determine whether each of the following subsets of the Euclidean metric space \mathbb{R} are open or closed or both or neither.

- 1. The interval $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$ for fixed $a < b \in \mathbb{R}$.
- 2. The interval $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ for fixed $a < b \in \mathbb{R}$.
- 3. The interval $[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}$ for fixed $a < b \in \mathbb{R}$.
- 4. The interval $(a, \infty) = \{x \in \mathbb{R} \mid a < x\}$ for fixed $a \in \mathbb{R}$.
- 5. The interval $[a, \infty) = \{x \in \mathbb{R} \mid a \le x\}$ for fixed $a \in \mathbb{R}$.
- 6. The point $\{o\} \in \mathbb{R}$.
- 7. The set $\mathbb{Z} \in \mathbb{R}$.
- 8. The set $\mathbb{Q} \in \mathbb{R}$.

Complete the review here

Created by tslil clingman, 2019. This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

