Metric Spaces Worksheet 4

Sequences III

The final aspect of sequences we'll be interested in - and the one you're most likely to meet in your continued education - is the notion of a subsequence. To discuss these objects we need the following notion.
Definition 1 (strictly increasing function). A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is strictly increasing if for all $n, m \in \mathbb{N}, n<m \rightarrow f(n)<f(m)$.
Definition 2 (subsequence). If $\left(a_{n}\right)$ is a sequence in (X, d) then a subsequence of $\left(a_{n}\right)$ is a strictly increasing function $k: \mathbb{N} \rightarrow \mathbb{N}$, which we think of as generating a new sequence $a \circ k: \mathbb{N} \rightarrow X$ and which we write as $\left(a_{k_{n}}\right)$.

It is useful to think of a subsequence of $\left(a_{n}\right)$ as an infinite list or specification of terms of $\left(a_{n}\right)$ we wish to keep, such that these terms maintain their relative locations form $\left(a_{n}\right)$.

Example 3 (some examples of subsequences in \mathbb{R})

Examples of subsequences are plentiful indeed. In the Euclidean space \mathbb{R}, the following are a list of sequences and some associated subsequences.

1. The sequence $\left(a_{n}\right)$ where $a_{n}: \equiv n$, whose terms are $0,1,2,3, \ldots$, has subsequences such as
i. $\left(a_{k_{n}}\right)$ where $k(n): \equiv$ "the $(n+1)^{\text {th }}$ prime", the terms of the subsequence here are 2,3,5,7,11...
ii. $\left(a_{j_{n}}\right)$ where $j(n): \equiv 2 n$, the terms of the subsequence here are $0,2,4,6, \ldots$
iii. $\left(a_{i_{n}}\right)$ where $i(n): \equiv n+100$, the terms of the subsequence here are 100,101,102,103,...
2. The sequence $\left(b_{n}\right)$ where $b_{n}: \equiv n /(n+1)$, whose terms are $0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots$, has subsequences such as
i. $\left(b_{k_{n}}\right)$ where $k(n): \equiv$ "the $(n+1)^{\text {th }}$ prime", the terms of the subsequence here are $\frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \frac{11}{12} \ldots$
ii. $\left(b_{j_{n}}\right)$ where $j(n): \equiv 2 n$, the terms of the subsequence here are $0, \frac{2}{3}, \frac{4}{5}, \frac{6}{7}, \frac{8}{9}, \ldots$
iii. $\left(b_{i_{n}}\right)$ where $i(n): \equiv n+100$, the terms of the subsequence here are $\frac{100}{101}, \frac{101}{102}, \frac{102}{103}, \frac{103}{104}, \ldots$
3. The sequence $\left(c_{n}\right)$ where $c_{n}: \equiv(-1)^{n}$, whose terms are $1,-1,1,-1, \ldots$, has subsequences such as
i. $\left(c_{k_{n}}\right)$ where $k(n): \equiv$ "the $(n+1)^{\text {th }}$ prime", the terms of the subsequence here are $1,-1,-1,-1, \ldots$
ii. $\left(c_{j_{n}}\right)$ where $j(n): \equiv 2 n$, the terms of the subsequence here are $1,1,1,1, \ldots$
iii. $\left(c_{i_{n}}\right)$ where $i(n): \equiv n+100$, the terms of the subsequence here are $1,-1,1,-1, \ldots$

Question 4. Last time we looked at the sequences $\left(a_{n}\right),\left(b_{n}\right)$, and $\left(c_{n}\right)$ we decided whether they were convergent, divergent, constant, eventually constant, or none of these. Without proving anything, for each sequence in this list guess what type of sequence it is.

Let's warm up by relating constant-ness to subsequences as follows.
Lemma 5 (subsequence of eventually constant is eventually constant). If $\left(a_{n}\right)$ is an eventually constant sequence in a metric space (X, d), and $\left(a_{k_{n}}\right)$ is a subsequence of $\left(a_{n}\right)$ defined by a strictly increasing function $k: \mathbb{N} \rightarrow \mathbb{N}$, then $\left(a_{k_{n}}\right)$ is eventually constant too.

Complete the proof here

Question 6. Why are all subsequences of a constant sequence themselves constant? Can you find a non-eventually-constant sequence with a constant subsequence?
Complete the proof here

Now we're ready to establish some results connecting convergence and subsequences. Try to prove the following lemma and its corollary.

Lemma 7 (subsequence of convergent means convergent). If $\left(a_{n}\right)$ is a convergent sequence in a metric space (X, d) and $\left(a_{k_{n}}\right)$ is a subsequence then $\left(a_{k_{n}}\right)$ is convergent.

Complete the proof here

Corollary 8 (divergent subsequence means divergent). If $\left(a_{n}\right)$ is a sequence in a metric space (X, d) and $\left(a_{k_{n}}\right)$ is a divergent subsequence then $\left(a_{n}\right)$ is divergent.

Complete the proof here

At this point we have worked out some of the relationships between convergence and subsequences. Try to complete the tables below.

If $\left(a_{n}\right)$ is	Convergent	Divergent
Then $\left(a_{k_{n}}\right)$ can be	only convergent (lemma 7)	$?$
If $\left(a_{k_{n}}\right)$ is	Convergent	Divergent
Then $\left(a_{n}\right)$ can be	$?$	only divergent (corollary 8)

Although somewhat counter-intuitive, there are sometimes metric spaces wherein every sequence has a convergent subsequence.

Lemma 9 (finite sets force convergent subsequences). If (X, d) is a metric space and $F \subseteq X$ is a finite subset of X then any sequence $\left(a_{n}\right)$ in F must have a convergent subsequence.

Hint 10 . Reduce this problem to proving that every sequence must have a constant subsequence. Why is this enough?
Complete the proof here

Created by tslil clingman, 2019. This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

