
A SURVEY OF CATEGORICAL CONCEPTS

EMILY RIEHL

Abstract. This survey is intended as a concise introduction to the basic

concepts, terminology, and, most importantly, philosophy of category theory

by carefully examining their implications in a number of elementary examples.
We particularly emphasize the importance of the concept of representability,

which is often imperfectly understood at first acquaintance. The categorical

material included here is chosen to provide a foundation for discussion of more
sophisticated topics, in particular, for enriched category theory.

Atiyah described mathematics as the “science of analogy”; in this vein, the
purview of category theory is mathematical analogy. Specifically, category theory
provides a unifying language that can be deployed to describe phenomena in any
mathematical context. Surprisingly given its level of generality, these concepts are
neither meaningless and nor in many cases so clearly visible prior to their advent. In
part, this is accomplished by a subtle shift in perspective. Rather than characterize
mathematical objects directly, the categorical approach emphasizes the morphisms,
which give comparisons between objects of the same type. Structures associated
to particular objects can frequently be characterized by their universal properties,
i.e., by the existence of certain canonical morphisms to other objects of a similar
form.

A great variety of constructions can be described at this level of generality:
products, kernels, and quotients for instance are all limits or colimits of a partic-
ular shape, a characterization that has the advantage of describing the universal
property associated to each construction. Tensor products, free objects, and lo-
calizations are also uniquely characterized by universal properties in appropriate
categories. Important technical differences between particular sorts of mathemati-
cal objects can be described by the distinctive properties of their categories: that
it has certain limits and colimits, but not others, that certain classes maps are
monomorphisms or epimorphisms. Constructions that take mathematical objects
of one sort and produce mathematical objects of another sort are often morphisms
between categories, called functors. Functors can then be said to preserve, or not,
various categorical structures. Of particular interest is when these functors describe
an equivalence of categories, which means that objects of the one sort can be trans-
lated back and forth between those of the other without losing any information.

1. Categories

A category is an organizational and linguistic tool providing a context in which
to describe the interaction between mathematical objects of any description and
the morphisms that encode comparisons between them. The mathematical objects
themselves are called the objects of the category and comparisons between them take
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the form of morphisms aka arrows aka maps with specified domain and codomain.
Any pair of arrows such that the domain of the latter equals the codomain of the
former can be composed and this composition law is associative. Finally, each
object has a specified identity endo-arrow that acts trivially with respect to pre-
and postcomposition.
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Notation. We write x, y ∈ C to indicated that x and y are objects of C; a morphism
f with domain x and codomain y is depicted as f : x→ y. We write C(x, y) for the
set of arrows in C from x to y.

Examples abound: Set, with objects sets and arrows functions; Vectk, with
objects vector spaces over a fixed field k and arrows linear transformations; ModR,
with objects left modules with respect to a fixed ring R and arrows R-linear maps;
Gp, with objects groups and arrows homomorphisms; Ab, the subcategory of
abelian groups and homomorphisms; Ch∗(Z) whose objects are chain complexes of
abelian groups and whose morphisms are chain maps; Top, with objects topolog-
ical spaces and arrows continuous functions; Top∗, with objects based spaces and
arrows based maps; Ban, with objects Banach spaces and arrows either bounded
linear maps or linear contractions.

These examples are all concrete meaning the objects are sets with structure and
the arrows are, among other things, set functions. But this is not always the case.
For instance, a group (or, most generally, a monoid) forms a category with a single
object: the arrows are the elements of the group, composition is multiplication,
and the identity is the unit. Or, for instance, the elements of a poset (or, most
generally, a preorder) form the objects of a category which has a unique arrow
from one object to another if and only if the domain is less than or equal to the
codomain. In this way, a topology on a set X, regarded as a poset O(X) of open
sets ordered by inclusion, forms a category.

A group acting on a set gives rise to its orbit category, whose objects are the
set elements and whose arrows are labeled by elements of the group that act on
the domain to return the codomain. Or there is a category whose objects are
closed manifolds and whose arrows are diffeomorphism classes of cobordisms. Or
there are categories whose objects are either chain complexes or spaces and whose
arrows are (chain) homotopy classes of maps. Or whose objects are points in a fixed
topological space and whose arrows are boundary preserving homotopy classes of
paths. Or there is a category, commonly denoted ∆, whose objects are finite non-
empty ordinals and whose arrows are order-preserving maps. And so on.

Aside 1.1. In certain examples, the primary role played by the objects of a category
is to parameterize composability, as is familiar in the distinction between a group
(a one object category with all arrows invertible) and a groupoid (a many object
category with all arrows invertible). In the first case, the single object records the
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fact that all arrows are composable.1 But when considering, for instance, homotopy
classes of paths in a fixed topological space, only certain compositions are naturally
defined; the domains and codomains assigned to arrows specify precisely which.

Consider x, y ∈ C and f : x → y, g : y → x such that gf = 1x and fg = 1y. In
this case, we say that x and y are isomorphic and f and g are isomorphisms. An
elementary but important point is made by the following exercise.

Exercise 1.2. If x and y are isomorphic, then the sets C(x, z) and C(y, z) are isomor-
phic for any z. More precisely, if f : x→ y is an isomorphism, then precomposition
with f induces an isomorphism C(y, z)→ C(x, z) of hom-sets for any z ∈ C.

In general, given arrows f, g,m such that mg = mf there is no reason to suppose
that f = g. If an arrowm is left-cancelable in this way, we saym is a monomorphism
or that m is monic. Similarly, if fe = ge implies f = g, then we say e is an
epimorphism or e is epic. Isomorphisms are necessarily both epic and monic, though
there are certain categories in which the converse does not hold. For example, a
continuous homeomorphism need not admit an inverse and hence might not be an
isomorphism in Top. It is a useful exercise to determine the monomorphisms and
epimorphisms in particular categories.

Categories beget categories. There are a number of ways to obtain new cate-
gories from existing ones. Most basically, a subcategory of a given category consists
of a subcollection of objects, together with their identities, and a subcollection of
arrows, closed under domains, codomains, and composition.

Example 1.3. The opposite category Cop has the same objects and arrows, but
domains and codomains and direction of composition are reversed. This leads
to an important principle of duality in category theory: every theorem has a dual
theorem, whose statement and proof are obtained by replacing the relevant category
by its opposite.

Example 1.4. The arrow category C2 has arrows in C as objects; a morphism f → g
is a commutative square

·
f

��

u // ·
g

��
·

v
// ·

The above diagram indicates that u and v are arrows whose domains and codomains
agree with those of f and g in the way suggested by the figure (the “·”s serving
as placeholders for generic objects of C that may or may not coincide) such that
gu = vf . More generally, a directed graph whose edges and vertices are labelled
by arrows and objects of a category C is said to commute if the composites of the
arrows along any paths between two fixed vertices agree in C.

Example 1.5. The product C×D of two categories C and D is the category whose
objects are pairs (c, d) with c ∈ C and d ∈ D. A morphism (f, g) : (c, d) → (c′, d′)
consists of a morphism f : c→ c′ of C and a morphism g : d→ d′ of D. Composition

1Interestingly, the higher-dimensional analogs of this construction — to be precise, a 2-category
with one object, one arrow, and many 2-dimensional automorphisms of this arrow — forces com-

mutativity by the Eckmann-Hilton argument; the 2-dimensional morphisms form an abelian group.



4 EMILY RIEHL

and identities are defined componentwise. It follows that for any pair of arrows f
and g, the diagram

(c, d)

(f,g)
HHH

$$HHH

(f,1d) //

(1c,g)

��

(c′, d)

(1c′ ,g)

��
(c, d′)

(f,1d′ )
// (c′, d′)

commutes.

Example 1.6. Any category C has a skeleton skC defined uniquely up to isomor-
phism. The skeleton of C has exactly one object from each isomorphism class of C.
Hom-sets are well-defined by Exercise 1.2; composition and identities are inherited
from C.

Example 1.7. Fixing an object c ∈ C, the slice category or comma category c/C has
arrows c→ c′ ∈ C as objects and morphisms commutative triangles

c

���������

��@@@@@@@

c′ // c′′

under c. For instance, if C = Top (or Set) and c is the one-object space (or
set), this slice category is the category Top∗ of based spaces (pointed sets) and
basepoint-preserving maps. Of equal importance is the dual notion: slicing over an
object. We write C/c for (c/Cop)op. Slice categories are the starting point to define
categories of vector bundles, sheaves, and a variety of more exotic algebro-geometric
structures.

It is obvious that the category C/c should be isomorphic to the subcategory
of the arrow category C2 containing only those objects whose codomain is c and
those morphisms whose codomain component is the identity at c. Indeed, this
identification can be realized as an isomorphism in a particular category, which we
shall now introduce.

2. Functoriality and naturality

A particularly important example is the category Cat whose objects are cat-
egories, which, to avoid set-theoretical paradoxes, we take to be small, meaning
with only a set’s worth of objects and arrows. This excludes all the concrete cate-
gories mentioned above. We have yet to describe the appropriate notion of arrow
comparing two categories. Experience teaches us that the appropriate comparisons
between mathematical objects are those that preserve their structures; in this case,
the objects, arrows, domains, codomains, compositions, and identities of the cate-
gory. A functor does precisely this: given categories C and D a functor F : C→ D

assigns an object of D to each object of C and an arrow of D to each arrow of C
in such a way that domains, codomains, identities, and composites are preserved.
One easily checks that functors can themselves be composed, and in this way Cat
becomes a category with functors as its arrows. Two categories are isomorphic if
they are isomorphic as objects of Cat. We shall see below that this is not a very
useful notion.
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In common parlance, the adjective functorial means that a construction on ob-
jects can be extended to a construction on arrows that preserves composition and
identies (preservation of domains and codomains being regarded as obvious). For
instance, one launching point of algebraic topology is the fundamental group func-
tor, which associates to each based topological space X the abelian group π1X of
basepoint preserving homotopy classes of loops in X at the base point. A continuous
map f : X → Y of based spaces induces a group homomorphism π1f : π1X → π1Y
and this construction is functorial: π1g ·π1f = π1(gf) and π1(1X) = 1π1X . This last
equations says that the identity function induces the identity (not to be confused
with the trivial) homomorphism. In other words, the fundamental group defines a
functor π1 : Top∗ → Gp from based topological spaces to groups.

The functoriality axioms have real mathematical power, enabling for instance a
slick proof of the Brouwer fixed point theorem.

Theorem 2.1 (Brouwer fixed point theorem). Any continuous endomorphism of
the closed unit disk has a fixed point.

Proof. Give the disk D2 and its boundary S1 the same basepoint, so that the
inclusion i : S1 → D2 is a map in Top∗. Suppose an (unbased) continuous function
f : D2 → D2 has no fixed point and define a retraction r : D2 → S1 by mapping
x ∈ D2 to the intersection of the ray from f(x) to x with S1. This retraction fixes
the boundary, so r is a map of based spaces such that r ◦ i = 1S1 .

A well-known calculation shows that π1D
2 = 0, π1S

1 = Z; the functor π1 defines
group homomorphisms

π1S
1 π1i // π1D

2 π1r // π1S
1 .

By the first fucntoriality axiom, π1r · π1i = π1(ri) = π1(1S1); by the second,
π1(1S1) = 1Z. But the identity homomorphism cannot factor through the trivial
group 0. �

Many familiar constructions organize themselves as functors. For instance, there
are functors

Top
S // sSet

F∗ // sAb

∑
(−1)i// Ch∗(Z)

Hn // Ab

that map a space to its total singular complex; a simplicial set to its free simplicial
abelian group; a simplicial abelian group to a chain complex under the Dold-Kan
correspondence; and a chain complex to its nth homology group. The composite
functor is the nth singular homology of a space, as usually defined.

Here are some important elementary examples.

Example 2.2. For any category C, there are functors skC→ C and C→ skC between
the category and its skeleton (Example 2.2); the first is the obvious inclusion. The
second maps an object to its isomorphism class. A choice of a representative for
each class and an isomorphism between every other object and the representative
is required define the functor on arrows.

Example 2.3. The concrete categories mentioned above are equipped with forgetful
functors to Set, commonly denoted U for “underlying.” More generally, there are
forgetful functors U : Vectk → Ab that forget the scalar multiplication but not
addition.
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Example 2.4. Consider the category whose objects are finite dimensional real vector
spaces equipped with their standard basis, and whose morphisms f : Rn → Rm are
m-dimensional vector-valued continuously differentiable functions of n variables.
Consider another category with the same objects but whose maps Rn → Rm are
m × n matrices of continuous real-valued functions of n-variables. There is an
identity-on-objects functor from the first category to the second that associates to
f the m×n matrix of its partial derivatives. Here, functoriality of this construction
encodes the chain rule for vector-valued functions.

Example 2.5. There is a functor P : Set→ Set that maps a set to its powerset and
a function f : A→ B to the function f∗ : PA→ PB that takes a subset of A to its
image in B.

There is another natural powerset functor that maps f : A→ B to the function
f∗ : PB → PA that maps a subset of B to its preimage in A. Such functors are called
contravariant : a contravariant functor from C to D is an ordinary, aka covariant,
functor Cop → D. A functor Cop → D is equivalently a functor C → Dop, but we
prefer the former representation so that when we draw arrows in the target they
point in the most natural direction.

For example, a presheaf over a space X is exactly a contravariant functor on
O(X) valued in Set, Ab, or any appropriate category. The term presheaf is used
more generally in category theory to mean any contravariant Set-valued functor on
a small category. For instance, a simplicial set is just a presheaf on the category
∆ defined above.

Example 2.6. For a fixed group G, a functor from its one-object category G to
Vectk is exactly a representation of G; a functor to Set is exactly a set with a
(left) group action. A contravariant functor from G to Set is a set with a right
G-action.

Natural transformations. More subtly, there is an important notion of arrow
between two functors with common domain and codomain. This is perhaps the first
real insight of category theory, and indeed it was the motivation for the subjects’
foundational paper. We have seen that mathematical constructions frequently as-
semble into functors; parallel functors F,G : C→ D could conceivably be compared.
Sometimes these comparisons are ad-hoc, but in other instances, they are colloqui-
ally described as natural. These latter comparisons then typically assemble into a
natural transformation between the functors F and functor G.

Recalling that “comparisons” in category theory take the form of arrows, the data
of a natural transformation α : F ⇒ G consists of a collection of arrows αc : Fc→
Gc in D for each object c of C. “Naturality” means that these comparisons commute
with those arising from the arrows of C. That is, for each arrow h : c→ c′ of C, the
following diagram commutes

(2.7)

Fc
Fh //

αc

��

Fc′

αc′

��
Gc

Gh
// Gc′

i.e., α′c · Fh = Gh · αc.

In this way, functors C → D, with C and D fixed, and natural transformations
assemble into a category DC, the essential point being that natural transformations
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compose “vertically” in a strictly associative manner. For example, when C = 1,
the category with a single object and only its identity arrow, D1 is isomorphic to D

itself. If C = 2, the category with two objects and one non-identity morphism from
the first to the second, then D2 is the arrow category defined above. The category

Set∆op

is the category sSet of simplicial sets.

Aside 2.8. In fact, natural transformations admit a richer compositional structure,
precisely described by the statement that Cat itself forms a 2-category, meaning a
Cat-enriched category, with 0-, 1-, and 2-dimensional data. This is the reason for
the notation α : F ⇒ G for natural transformations.

Example 2.9. Writing G for the one-object category associated to a group G, the
functor categories SetG and VectGk are the categories ofG-sets andG-representations
with G-equivariant maps. Functor categories have a number of nice categorical
properties, which are useful in these particular examples.

Example 2.10. Regarding groups G and H as 1-object categories, a functor G→ H
is simply a group homomorphism G→ H. Given two such φ, ψ : G→ H, a natural
transformation φ⇒ ψ is determined by a single arrow (element) h ∈ H, necessarily
an isomorphism such that for all g ∈ G, h · φ(g) · h−1 = ψ(g). In other words, φ
and ψ are naturally isomorphic if and only if they are conjugate, in which case the
natural isomorphism is given by the element of H that conjugates φ into ψ.

Example 2.11. Two basic homotopy invariants of spaces are given by the funda-
mental group and reduced homology, functors π1, H̃1 : Top∗ → Gp. There is a

canonical natural transformation π1 → H̃1 that might be called “abelianization”;
for each space X, the map π1X → H̃1X is the canonical quotient map of a group
by its commutator subgroup, which vanishes in first homology.

Example 2.12. The canonical inclusion of a vector space into its double dual is a
natural transformation ι from the identity functor on Vectk to the double dual
functor

v
_

��

V

ιV

��

T // W

ιW

��
evv : f 7→ f(v) V ∗∗

T∗∗ // W ∗∗

No similar comparison exists for single duals for two reasons. A minor one has to
do with variance—the identity functor is covariant while the functor (−)∗ is con-
travariant.2 The second failure is the main point, an essential failure of naturality.
The isomorphisms V ∼= V ∗ that exist when V is finite dimensional require the
choice of a basis, which will be preserved by essentially no linear maps, indeed by
no non-identity linear endomorphism.

Another familiar isomorphism that is not natural arises in the classification of
finitely generated abelian groups, objects of a category Abfg. Let TA denote the
torsion subgroup of an abelian group A.

Proposition 2.13. Every finitely generated abelian group decomposes as a direct
sum A ∼= TA⊕ (A/TA) but these isomorphisms are not natural in A ∈ Abfg.

2A more flexible notion of extranatural transformation can accommodate functors with con-
flicting variance [?, IX.4].
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Proof. The result follows from the claim that every natural endomorphism α of the
identity functor on Abfg is multiplication by some n ∈ Z. Clearly the component of

α at Z has this description for some n. But note that homomorphisms Z a // A
correspond bijectively to elements a ∈ A by choosing a to be the image of 1 ∈ Z.
Thus, commutativity of

(2.14) ZαZ=n·−//

a

��

Z

a

��
A

αA

// A

forces us to define αA(a) = n · a.
Now a natural isomorphism A ∼= TA ⊕ (A/TA) would induce a natural trans-

formation A/TA→ A because ⊕ is the coproduct in Abfg; see §4 below. Precom-
posing with the quotient map A → A/TA, which is natural (exercise), we would
obtain a natural endomorphism of the identity functor, which by the previous claim
must be multiplication by some n ∈ Z. Now consider A = Z/2nZ. This group is
torsion, so any map, such as αZ/2nZ, which factors through the quotient by its
torsion subgroup is zero. But n 6= 0 ∈ Z/2nZ, a contradiction. �

Natural transformations bear close analogy with the notion of homotopy from
topology with one important difference: natural transformations are not generally
invertible.3 As above, let 1 denote the category with a single object and identity
arrow and let 2 denote the category with two objects 0, 1 ∈ 2 and a single non-
identity arrow 0 → 1. There are two evident functors i0, i1 : 1 → 2. A natural
transformation α : F ⇒ G between functors F,G : C → D is precisely a functor
H : C× 2→ D such that

(2.15) C

F ""DDDDDDDDD
i0 // C× 2

H

��

C
i1oo

G||zzzzzzzzz

D

commutes. The analogy with the notion of homotopy is evident.
For example, if C = 2, each functor F,G : 2→ D picks out an arrow of D, which

we’ll denote by F and G. The directed graph underlying the category 2× 2 looks
like

•

��

//

��@@@@@@@ •

��
• // •

together with four identity arrows not depicted here; the diagonal serves as the
common composite of the edges of the square. The functor H necessarily maps
the top and bottom arrows of (2.15) to F and G, respectively. The vertical arrows
define α0 and α1 and the diagonal arrow witnesses that the square analogous to
(2.7) commutes.

If, in the above discussion, the category 2 were replaced by the category I with
two objects and a single arrow in each hom-set, necessarily an isomorphism, then

3Note however, that if α is a natural transformation in which each of the constituent arrows
is an isomorphism, then the pointwise inverses assemble into a natural transformation (exercise).
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“homotopies” with this interval would be precisely natural isomorphisms. One use
of this analogy is it that leads to the correct notion of equivalence for categories
mirroring homotopy equivalence of spaces.

An equivalence of categories consists of functors F : C � D : G together with
natural isomorphisms η : idC ⇒ GF , ε : FG⇒ idD. A useful theorem characterizes
those functors forming part of an equivalence of categories.

Theorem 2.16. A functor F : C → D defines an equivalence of categories if and
only if F is

• full: for each x, y ∈ C, the map of hom-sets C(x, y)→ D(Fx, Fy) is surjec-
tive;
• faithful: for each x, y ∈ C, the map of hom-sets C(x, y) → D(Fx, Fy) is

injective;
• and essentially surjective: for every d ∈ D there is some c ∈ C such that d

is isomorphic to Fc.

For example, any possible functor 1→ I is an equivalence of categories, despite
not being surjective on objects or arrows. Similarly, the unique functor I→ 1 is an
equivalence of categories despite failing to be injective on both objects and arrows.
One might express the equivalence of I to 1 by saying this category is contractible.

It is strongly recommended that the reader work out the details necessary to
complete the following sketch proof.

Proof/Exercise. The harder direction is the converse. Here are a few hints: using
essential surjectivity (and the axiom of choice) choose, for each d ∈ D an object of
C, cleverly denoted Gd, and an isomorphism εd : FGd ∼= d. The first two properties
of F can be used to define the action of G on morphisms in such a way that ε is
natural. The essential point is that the map G so-defined is necessarily functorial ;
one should work out why this is the case and also how to define η. �

Example/Exercise 2.17. Give a precise definition of the functors of Example 2.2
and show that they define an equivalence between C and its skeleton.

Example 2.18. Temporarily restrict the category Top∗ to the full subcategory of
path connected based spaces. There is a natural transformations between the func-
tors

π1 : Top∗
π1−→ Gp ↪→ Cat and Π1 : Top∗

U−→ Top
Π1−→ Gpd ↪→ Cat.

The first regards the fundamental group as a one object category; the second forgets
the basepoint, computes the fundamental groupoid, and again regards this as a
category. The inclusion of the fundamental group into the fundamental groupoid
defines a natural transformation π1 ⇒ Π1 such that each component π1X → π1X,
itself a functor, is furthermore an equivalence of categories. Consequently, for each
based space X, there exists an inverse equivalence π1X → π1X, but its definition
requires the choice of paths connecting each point to the basepoint, hence is not a
natural transformation.

By Theorem 2.16, a full and faithful functor F : C → D is an equivalence onto
its essential image, the full subcategory of objects isomorphic to Fc for some c ∈ C.
Such functors have a useful property: if F is full and faithful and Fc and Fc′ are
isomorphic in D, then c and c′ are isomorphic in C. We will introduce what is easily
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the most important full and faithful functors in category theory toward the end of
the next section: the covariant and contravariant Yoneda embeddings.

3. Representability and the Yoneda lemma

Implicit in the proof of Proposition 2.13 are two deep ideas: that of representable
functors and an unreasonably useful result, called the Yoneda lemma, that classifies
natural transformations with representable domain.

Representables. Tacitly, we have been assuming that all our categories are locally
small, which is to say that the collection of arrows between fixed objects forms a set
and not a proper class. Locally small categories are precisely categories enriched
in the category Set; we introduce this terminology to suggest that other options
might be available. We want this to be our basic notion of category and won’t
always mention this implicit assumption in the future.

Given a locally small category C and an object x ∈ C, there are two representable
functors taking values in Set, one covariant and one contravariant. The notation

C(x,−) : C→ Set C(−, x) : Cop → Set

y 7→ C(x, y) z 7→ C(z, x)

suggests the definition: the covariant representable at x maps an object y to the set
of arrows from x to y; the contravariant representable is defined dually. A morphism
f : y → z acts on the left of the set C(x, y) and the right of the set C(z, x) by post-
and precomposition respectively. Note that the functors C(−, c) and Cop(c,−) are
canonically naturally isomorphic.

More generally, a functor F : C→ Set is representable if it is naturally isomorphic
(i.e., isomorphic in the category SetC) to C(c,−) for some C. In this case, we say
that F is represented by the object c, though, as we shall emphasize below, the
data of a representation also includes the choice of isomorphism. In general, this
definition only makes sense for Set-valued functors, though if the category C is
enriched over some other category V, meaning loosely that the hom-sets of C have
the structure of objects in the category V, then there is an analogous notion of
representable functors F : C→ V.

Example 3.1. The forgetful functor U : Ab → Set is represented by the integers:
this is to say, the set of elements of the abelian group A is isomorphic to the set of
group homomorphisms Z→ A, and this isomorphism is natural in A.

Because the set of group homomorphisms A→ B is itself an abelian group, with
addition defined pointwise in B, it makes sense to assert that the identity functor
id : Ab→ Ab is also represented by Z. The proof is an enrichment of the previous
assertion: the abelian group of homomorphisms Z → A is naturally isomorphic to
the group A.

Example 3.2. The forgetful functors U : ModR → Set and U : Vectk → Set are
represented by R and k respectively. As above, the set-level isomorphisms respect
various enrichments of these categories: these same objects represent the forgetful
funtors ModR → Ab and Vectk → Ab or the identity functors on ModR and
Vectk.

Example 3.3. The functor Cat→ Set that maps a small category to its underlying
set of objects is represented by the category 1: i.e., functors 1 → C correspond
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bijectively to objects of C. Similarly, the functor Cat → Set that maps a small
category to its underlying set of arrows is represented by the category 2.

Example 3.4. The identity functor on Set is represented by the singleton set. The
forgetful functor U : Top→ Set is represented by the one-point space. The forget-
ful functor U : Top∗ → Set is represented by the space S0 with two points and the
discrete topology.

Exercise 3.5. What contravariant functor does the Sierpinkski space represent?

Example 3.6. The contravariant power-set functor Setop → Set is represented
by the set with two elements {0,1}. In other words, set functions A → {0, 1}
correspond to subsets of A, say the subset of elements that map to 1, and this
correspondence is preserved by precomposition by an arbitrary function f : B → A.

We’ll see in the next section that the covariant power-set functor Set → Set is
not representable.

Example 3.7. Consider the category of CW-complexes and homotopy classes of
maps. The contravariant functor assigning a space (the underlying set of) its nth
cohomology group with coefficients in a fixed abelian group A is represented by a
CW-complex, commonly denoted K(A,n). We’ll prove shortly that representing
objects are unique up to isomorphism in the relevant category. Here this means
that K(A,n) is unique up to homotopy equivalence.

More generally, every generalized cohomology theory is represented by some
spectrum in the stable homotopy category.

The Yoneda lemma. Let us examine the natural isomorphism of Example 3.1
more closely, taking care to write UA when we mean the underlying set of an
abelian group A. The natural transformation Ab(Z,−)⇒ U is determined by the
element 1 ∈ UZ in the following manner. A generic homomorphism f : Z → A is
mapped to the element Uf(1) ∈ UA. Note that the element 1 ∈ UZ is associated
to the identity map at Z.

No part of this discussion required that the map Ab(Z,−)⇒ U was an isomor-
phism. In the general case, given F : C→ Set and c ∈ C, one could imagine trying
to build a natural transformation C(c,−)⇒ F by following a similar prescription:
choose x ∈ Fc and map f : c→ d to the element Ff(x) ∈ Fd. This is the essential
idea behind the following result.

Lemma 3.8 (Yoneda lemma). Let c ∈ C and F : C → Set. Natural transfor-
mations C(c,−) ⇒ F correspond bijectively to elements of the set Fc, and this
correspondence is natural in both F and c.

Proof. Given α : C(c,−) ⇒ F we associate the element αc(1c) ∈ Fc. Conversely,
given x ∈ Fc, we claim there is a unique natural transformation that sends the
identity at c to x: naturality of α at f : c→ d, i.e., commutativity of the square

(3.9) C(c, c)

f∗

��

αc // Fc

Ff

��
C(c, d)

αd

// Fd

forces us to define αd(f) = Ff(x). These assignments are inverses.
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Naturality in F asserts that, given β : F ⇒ F ′, the element of F ′c associated to
βα : C(c,−)⇒ F ′ is the image of the element of Fc associated to α under βc. Both
elements are βcαc(1c) by definition.

Naturality in c asserts that, given h : c → c′, the element associated to the
composite

C(c′,−)
h∗ +3 C(c,−)

α +3 F

is the image of the element associated to α under Fh : Fc → Fc′. By definition,
the former element is

αc(h
∗(1c′)) = α′c(h) = Fh(αc(1c))

as desired. �

In light of Lemma 3.8, we say a representation for a representable functor F : C→
Set consists of an object c ∈ C together with an element x ∈ Fc determining a
natural isomorphism C(c,−) ∼= F .

Example 3.10. Consider a groupG as a one-object category. The unique represented
functor in the category of G-sets SetG is the Cayley representation of G: the set G
acted on by left-multiplication. The Yoneda lemma says that this is the free G-set
with one generator, i.e., G-equivariant maps G→ X correspond to elements of X.

By the Yoneda lemma again, a G-set X is representable if and only if it is a
G-torsor, i.e., if and only if G acts freely and transitively on X. Necessarily the
sets X and G are isomorphic. A choice of representation amounts to a choice of
a point in X that correspond to the identity of G, so we think of a G-torsor as a
copy of G where we have “forgotten the identity.”

Example 3.11. Recall, simplicial sets are Set-valued contravariant functors on the
category ∆ of non-empty finite ordinals and order-preserving maps. The repre-
sented functors, variously denoted ∆n or ∆[n], play an important role in describe
constructions in this category, precisely because maps ∆n → X correspond bijec-
tively to n-simplices in the simplicial set X, by Yoneda’s lemma.

A more-sophisticated consequence of Yoneda’s lemma is the following: a colimit-
preserving functor (see §4) whose domain is the category of simplicial sets, is
uniquely determined by its values on the full subcategory of represented functors.
For instance, the geometric realization functor from simplicial sets to topological
spaces is characterized by the condition that the geometric realization of ∆n is the
standard topological n-simplex.

Example 3.12. Fix a topological group G and let Man be the category of para-
compact manifolds and homotopy classes of smooth maps. There is a functor
P : Manop → Set that sends paracompact manifolds B to the set of isomor-
phism classes of principle G-bundles over B. This functor is contravariant: given
f : B′ → B, the associated set-function forms principle G-bundles over B′ by pulling
back each G-bundle over B.

The functor P is represented by an object BG ∈ Man called the classifying
space of the group G and an element of P (BG), i.e., a principle G-bundle commonly
denoted EG→ BG. The Yoneda lemma says that any G-bundle E → B is obtained
up to isomorphism as the image of EG → BG under the action of the functor P
on some map B → BG, i.e., E → B is obtained by pulling back EG → BG along
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B → BG. In this way, homotopy classes of maps B → BG classifying principle
G-bundles over B up to isomorphism.

The Yoneda embedding. A morphism f : c→ d in C gives rise to natural trans-
formations between both the covariant and contravariant functors represented by
these objects. The natural transformation f∗ : C(−, c) ⇒ C(−, d) is defined by
postcomposing with the arrow f ; dually, f∗ : C(d,−) ⇒ C(c,−) is defined by pre-
composing with f . We shall see shortly that all natural transformations between
represented functors arise this way.

Exercise 3.13. Verify that f∗ : C(−, c) ⇒ C(−, d) and f∗ : C(d,−) ⇒ C(c,−) are
natural transformations and use these to define functors

(3.14) C→ SetC
op

and Cop → SetC.

These functors are referred to as the covariant and contravariant Yoneda em-
beddings, respectively. The adjective “embedding” is usually reserved for functors
that are injective on objects and also full and faithful. These latter characteristics
are a consequence of the Yoneda lemma.

Corollary 3.15. The Yoneda embeddings (3.14) are full and faithful.

Exercise 3.16. Prove this.

Many applications of the Yoneda lemma are in fact consequences of this corollary;
indeed sometimes this result is called the Yoneda lemma. One surprisingly useful
consequence is that to prove that two objects in C are isomorphic, it suffices to
prove that their represented functors are naturally isomorphic. For instance, this
is ho we concluded above that representing objects are unique up to isomorphism.

Remark 3.17. The key step in the proof of Proposition 2.13 involved Corollary 3.15:
because the identity functor on abelian groups is represented by Z, any natural
endomorphism of that functor arise from an endomorphism of Z, and these are
classified by the integers. Compare (2.14) with (3.9).

For another application, consider a group G as a one-object category. The
Yoneda embedding defines a functor

Gop → SetG.

Its image is the unique represented G-set; in Example 3.10 we saw this is the set
G with left multiplication. Corollary 3.15 implies that the only endomorphisms of
this set that commute with the action of G are given by right multiplication by G.

We’ll see further applications of the Yoneda lemma and its corollary in the next
sections.

4. Limits, colimits, and universal properties

One of the main themes of category theory is that mathematical structures that
are often defined set-theoretically can be completely characterized by a description
of the morphisms to or from the structure qua object of a particular category.
Such a characterization, called a universal property of the object so-described, can
immediately be generalized from Set to any other category. More precisely, the
generalization from a Set-based universal property to a generic one, makes use
of the idea of representability, introduced in the previous section. But first let’s
examine a concrete example.
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Definition via universal property. For instance, the cartesian product of two
sets is a set equipped with two projection arrows with the following property: a
function to the cartesian product is uniquely determined by the functions obtained
by composing with these projections, and furthermore any similar pair of maps
factors uniquely through the cartesian product in this way. Similarly:

Definition 4.1. The product of objects A,B ∈ C consists of an object P together
with arrows p1 : P → A, p2 : P → B such that the triple (P, p1, p2) is universal in
then following sense: given any Z ∈ C and arrows f : Z → A, g : Z → B, f and g
factor uniquely through p1 and p2 along a common arrow.

(4.2) Z

∃!
���
�
�

f

��~~~~~~~~
g

��@@@@@@@@

A P
p1oo p2 // B

The utility of this abstract definition is that it helps identify the right notion
in a generic category. For instance, interpreting this definition in Top endows the
product of topological spaces with the product topology. To define the product of
spaces X and Y , we must endow the set X × Y with a suitable topology.4 In order
for the projections to be continuous, the preimage U ×Y of each open U ⊂ X must
be open in X × Y ; similarly the sets X × V must be open for all open V ⊂ Y .
Taking intersections, the product of any open sets in X and Y must be open in
X × Y .

Now we’ll show the topology assigned the product of X and Y can’t be any finer.
If there were additional open sets in the topology assigned the product X×Y , then
this space would not satisfy the required universal property (4.2) when we take Z to
be X ×Y with the product topology. Commutativity with the projections requires
that the underlying set function X×Y → X×Y is the identity; the identity is only
continuous when the topology on the domain is finer than that on the codomain.

More generally, if Xα are spaces indexed by elements in some possibly infinite
set, the previous discussion says that we should endow their product

∏
αXα with

the topology generated under finite intersections by the open sets Uα× (
∏
β 6=αXβ)

for each open Uα ⊂ Xα.
Here’s a somewhat more sophisticated example:

Definition 4.3. The tensor product of V,W ∈ Vectk is a vector space V ⊗W
equipped with a bilinear map

V ×W −⊗− // V ⊗W
that is universal in the following sense. Any bilinear map V ×W → Z, factors
through ⊗ along a unique linear map V ⊗W → Z.

Indeed, the defining universal property of the tensor product gives a recipe for
its construction. Supposing the vector space V ⊗W exists, consider its quotient by
the vector space spanned by the image of the bilinear map5 −⊗−. By definition the
quotient map V ⊗W → V ⊗W/〈v ⊗w〉 precomposes with −⊗− to yield the zero

4One might quibble that the product of spaces might a priori have a different underlying set

than the product of the underlying sets, or different projection maps, but in fact there is no other

possibility; see Theorem 5.9 below.
5The image of a bilinear map is not itself a sub-vector space, so closing under span is necessary.
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bilinear map. But the zero map V ⊗W → V ⊗W/〈v ⊗ w〉 also has this property,
so by the universal property of V ⊗W , these linear maps must agree. Because the
quotient map is surjective, this implies that V ⊗W is isomorphic to the span of the
vectors v⊗w for all v ∈ V and w ∈W modulo the bilinearity relations satisfied by
−⊗−. This is of course the usual constructive definition.

Exercise 4.4. Show that scalar multiplication k×V → V is a bilinear map satisfying
the universal property of the tensor product. Hence k ⊗ V ∼= V .

Just for fun, let’s give one more definition.

Definition 4.5. Let R be a commutative ring and S ⊂ R a subset not containing
the additive identity. The localization of R at S is a ring A equipped with a
homomorphism R → A such that elements of S map to units in A and universal
with this property: given another homomorphism R → B that carries elements of
S to units, then there is a unique ring homomorphism A→ B such that

R //

��@@@@@@@@ A

∃
���
�
�

B

commutes.

The following lemma should not be a surprise.

Lemma 4.6. Any object defined by a universal property, when it exists, is unique
up to unique isomorphism.

A slick general proof appears below. But for now, let’s examine this statement
in a specific case because there is some possibility for confusion. Let A,B ∈ Set.
The sets

A×B = {(a, b) | a ∈ A, b ∈ B} and B ×A = {(b, a) | b ∈ B, a ∈ A}

both satisfy the universal property of the product of A and B. Lemma 4.6 asserts
they are uniquely isomorphic.

At this point an alert and skeptical reader might object: if A and B are finite,
say of cardinality m and n, then there are (mn)! isomorphisms between these sets.
But recall the data of a product of A and B is not just an object but also a pair of
“projection arrows”

A A×B
p1oo p2 // B A B ×A

p2oo p1 // B

and an isomorphism between the objects qua products must commute with these
projections.

Now that the statement is understood, the proof is easy. By the universal prop-
erty of B × A in the left diagram and A× B in the right, there are unique arrows
φ and ψ such that

A×B
p1

||xxxxxxxxx
p2

""FFFFFFFFF

φ

���
�
� B ×A

p2

||xxxxxxxxx
p1

""FFFFFFFFF

ψ

���
�
�

A B ×A
p2oo p1 // B A A×B

p1oo p2 // B
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commute. But then ψφ and the identity at A × B can both take the place of the
dotted arrow in the following commutative diagram

A×B

���
�
�

p1

||xxxxxxxxx
p2

""FFFFFFFFF

A A×B
p2oo p1 // B

so by the uniqueness statement in the universal property of A × B, ψφ = id.
Similarly, φψ = id. Hence, φ and ψ are the desired isomorphisms.

Note we’ve made no explicit use of the category of Set (after the discussion of
the purported “counterexample”) nor have we made essential use of the sort of
universal property involved. These observations should give some indication of the
generality of the argument.

Limits and colimits. Objects defined by universal property can be classified as
either limits or colimits in an appropriate category. These notions are dual. A
slogan is that limits are built from other objects by imposing additional coherence
conditions. Colimits are formed by gluing objects together. Before giving precise
definitions we must introduce some ancillary notions.

A diagram in a category C is simply a functor F : J → C where the domain
category J is assumed to be small. A cone over a diagram F with summit c ∈ C

is a natural transformation from the constant functor at c to F . In other words, a
cone consists of arrows c→ Fj for each j ∈ J, called the legs of the cone, such that
each triangle formed by the image of some morphism in J and the appropriate legs
of the cone commutes.

A limit is a cone over F that is universal in the sense that any other cone over
F factors uniquely through the limit. Concretely, a limit consists of an object in
C, often written limF , together with a cone limF → Fj such that for any other
cone, say with summit c, there is a unique morphism c→ limF such that each leg
of the cone factors along this map through the limit cone.

Dually, a cone under F with summit c ∈ C is a natural transformation from F
to the constant functor at c; its legs are arrows Fj → c. A colimit is a cone under
F that is universal in the sense that any other cone factors uniquely through the
colimit. This is to say, for any other cone, say with summit c, there is a unique
morphism colimF → c such that the legs of the cone factor uniquely through this
map along the legs Fj → colimF of the colimit cone.

Example 4.7. A product of several objects, generalizing the notion introduced above,
is the limit of a diagram on a discrete6 category J. The dual notion is a coproduct.
The coproduct of sets A and B is simply their disjoint union. The coproduct of
groups G and H is the so-called free product G ∗ H, the group whose elements
are finite lists of elements in G and H and whose composition is by concatenation.
Note that the underlying set of the group G ∗H is much larger than the coproduct
of the underlying sets of G and H.

Example 4.8. Products in Vectk are direct products: Recall from Example 3.2
that the vector space k represents the forgetful functor U : Vectk → Set. Hence,
elements of the direct product

∏
α Vα correspond to linear maps k →

∏
α Vα, which

by the universal property of the product correspond to maps k → Vα for each α.

6Containing no non-identity morphisms.
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In other words, an element of
∏
α Vα corresponds to a vector in each Vα, subject

to no further restrictions. Because each of the canonical projections
∏
α Vα → Vα

must be linear, we see that addition and scalar multiplication in the direct product
are component-wise.

Coproducts in Vectk are direct sums, which are smaller than direct products if
the index set is infinite. The direct product admits canonical injections Vα →

∏
α Vα

that map v ∈ Vα to the vector with v in the αth component and zero vectors
elsewhere.7 These define a canonical map

⊕
α
Vα →

∏
α

Vα

from the direct sum to the direct product. It is instructive to use the defining
universal properties to understand why this map is not generally an isomorphism.

Exercise 4.9. Describe the data and universal property of the limits of diagrams of
shape

J = • //// • or J = • // • •oo

Limits of the first sort are called equalizers, and limits of the second sort are called
pullbacks. Colimits over the dual categories Jop are called coequalizers and pushouts.

Suppose J is the empty category. There is a unique diagram J→ C for any C. A
limit consists of an object 1 ∈ C, called a terminal object, such that for any c ∈ C

there is a unique arrow c→ 1. Dually, a colimit is an object 0 ∈ C, called an initial
object, such that for any c ∈ C there is a unique arrow 0→ c.

For example, the empty set is initial and the singleton set is terminal in Set
or in Top. In Top∗, the singleton space is both initial and terminal; in Gp or
Ab the trivial group is similarly both initial and terminal. In the category of rings
with identity, the ring Z is initial because ring homomorphisms necessarily preserve
both the additive and multiplicative identity. The zero ring is terminal. Neither
category depicted in Exercise 4.9 above has an initial object; the middle object in
the latter category is terminal.

Let Z≥0 and Z≤0 be, respectively, the posets of positive and negative integers,
i.e., the categories with these objects and with a unique arrow i→ j if and only if
i ≤ j. These categories are generated by the directed graphs

Z≥0 • // • // • // • // • // · · ·

Z≤0 · · · // • // • // • // • // •

A limit of a diagram Z≤0 → C is sometimes called an inverse limit and a colimit
of a diagram Z≥0 → C is somties called a direct limit, but we try to avoid this
terminology. For example, the limit of the diagram

· · ·� Z/p4 � Z/p3 � Z/p2 � Z/p
in Ab is the group Zp of p-adic integers. The colimit of

Z/p ↪→ Z/p2 ↪→ Z/p3 ↪→ Z/p4 ↪→ · · ·
is the group Z/p∞.

There is a good reason why mathematicians are seldom interested in colimits of
diagrams of shape Z≤0 or limits of diagrams of shape Z≥0. Because the category

7Using the universal property of the product, we could define these to be the maps that are
determined by the identity map to Vα and the zero linear map Vα → Vβ for all β 6= α.
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Z≤0 itself has a terminal object 0, the colimit of any diagram of shape Z≤0 is
necessarily isomorphic to the value of that diagram on this object. Dually, because
0 in an initial object in the category Z≥0, the limit of any diagram of shape Z≥0 is
isomorphic to the value of that diagram on this object. A generalization of these
observations yields the theory of cofinal functors: functors I → J such that the
colimit of any diagram over J is isomorphic to the colimit of the restriction to a
diagram over I.

Example 4.10. Let R be the category whose objects are real numbers and which
has a unique morphism x → y if and only if x ≤ y. A functor Z≤0 → R is a
non-increasing sequence of real numbers. This functor has a limit if and only if the
sequence is bounded below and has a limit, in the classical “ε-δ” sense.

An important theorem says that limits over small categories of any shape can
be constructed by first forming two products and then taking an equalizer. In this
way, we can prove that a number of familiar categories are complete, that is, have
all small limits. These include Set, Top, Gp, Ab, Vectk, ModR, Cat, and the
categories SetC for any small category C. Each of these examples is also cocomplete,
having all small colimits. But not all categories have all limits and colimits. For
example, the category Met of metric spaces has neither binary coproducts nor
infinite products.

Representability of limits and colimits. Fixing a diagram D : J→ C, there is a
functor Cop → Set that sends an object of c to the set of cones over D with summit
c. Similarly, there is a functor C → Set that sends c to the set of cones under D
with summit c. Unpacking the definitions given above, a limit for D is exactly a
representation for the former functor and a colimit is a representation for the latter.
This observation already has some mileage. By the Yoneda lemma, representing
objects qua representations are unique up to unique isomorphism. Hence, limits
qua limits are unique up to unique isomorphism, extending the concrete argument
given above.

Given a Set-valued functor F , there is a category called the category of elements
of F obtained by a procedure known as the Grothendieck construction. A covariant
functor F : C → Set is representable if and only if its category of elements has an
initial object and a contravariant functor is representable if and only if its category
of elements has a terminal object. Applying these facts to the functors of cones
over/under D described above, we see that any limit is simply a terminal object in
the appropriate category and dually that any colimit is simply an initial object in
the appropriate category.

A more satisfying description of the “cones over D” functor is possible. For each
j ∈ J, there is a functor C(−, Dj) : Cop → Set that sends an object of c to the set
of arrows c → Dj in C. Maps in J induce natural transformations between these

functors. By Example 5.12 below, this diagram of functors SetC
op

has a limit.
Unpacking the universal property of the limit reveals that the resulting functor

lim
j∈J

C(−, Dj) : Cop → Set

is precisely the functor that takes c to the set of cones over D introduced above.
This is what’s meant by the assertion that “limits are defined representably”: the
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limit is an object equipped with an isomorphism

C(c, lim
J
D) ∼= lim

J
C(c,Dj)

natural in c. Note that the right-hand limit takes place in Set. Dually, the colimit
is an object equipped with a natural isomorphism

C(colim
J

D, c) ∼= lim
J

C(Dj, c).

5. Adjunctions

Eilenberg and Mac Lane, authors of the foundational paper “General theory of
natural equivalences,” have asserted that the purpose of defining a category was
to define a functor, and the purpose of defining a functor was to define a natural
transformation. The modern consensus is that the definitive illustration of the
power of the categorical perspective is in the definition of an adjunction, due to
Daniel Kan.

To illustrate, suppose we have a set A and a topological space X. The key
observation is that a function from A to the underlying set of the space X is
equivalently a continuous function from the space A endowed with the discrete
topology to X, and conversely, every continuous function from the discrete space
A to X corresponds to a unique function between the underlying sets.

Write U : Top→ Set for the functor that forgets the topology assigned a space
and D : Set → Top for the functor that assigns a set the discrete topology. We
have just observed that there is a bijection between the hom-sets

Top(DA,X) ∼= Set(A,UX).

Furthermore, this bijection is natural in both variables: given a continuous map
h : X → X ′, the underlying set function of a composite

DA
g // X

h // X ′

is the composite of the set-function g : A→ UX with Uh. Similarly, if f : A′ → A
is any set-function, the composite

A′
f // A

g // UX

corresponds to the continuous function defined by precomposing g : DA→ X with
Df . When this is the case, we say that the functor D is left adjoint to U . More
generally,

Definition 5.1. An adjunction consists of a pair of functor

(5.2) F : C
//

⊥ D : Goo

together with, for each c ∈ C and d ∈ D, a hom-set isomorphism

(5.3) D(Fc, d) ∼= C(c,Gd)

natural in both variables.
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Because the functor F appears on the left of (5.3), we say that F is left adjoint8

to G. Corresponding arrows Fc→ d and c→ Gd are called adjuncts. An alternate
formulation of the naturality condition, particularly convenient in homotopy theory
because of its obvious relevance to “lifting problems,” is that a square

(5.4)

Fc

Ff

��

// d

g

��
Fc′ // d′

commutes in D if and only if

c //

f

��

Gd

Gg

��
c′ // Gd′

commutes in C, where the unlabelled horizontal arrows in each diagram are ad-
juncts.

Example 5.5. The functor U : Top → Set is also a left adjoint. Set-functions
UX → A correspond to continuous functions X → IA, where I : Set → Top is
the functor that endows a set A with the indiscrete topology. One might use the
diagram

Top U // Set
⊥

⊥

D

��

I

]]

to indicate that D a U a I.

Another key example naturally motivates an equivalent definition. To explore
this, let’s consider what it would mean to have a left adjoint to the forgetful functor
U : Gp → Set. By Definition 5.1, if U has a left adjoint, then for each set A, the
functor

Set(A,U−) : Gp→ Set

that sends a group G to the set of maps A→ UG would be representable. By the
Yoneda lemma, a representation consists of a group, which we’ll call FA, together
with an element of the set Set(A,UFA), i.e., a functor A → UFA satisfying a
particular universal property: For any group G, the map

Gp(FA,G)→ Set(A,UG)

that sends a homomorphism h : FA → G to the function A → UFA
h→ UG is an

isomorphism. That is, every map A → UG uniquely factors through our specified
function A→ UFA along a group homomorphism FA→ G. Note that under this
correspondence, the map A → UFA is associated to the identity homomorphism
at FA.

In this example, FA is the free group on the set A whose elements are words
whose letters are elements of A and whose group operation is concatenation. The
function A→ UFA maps each element of A to the corresponding one-letter word.
The universal property says that any set function A → UG extends to a unique
group homomorphism FA→ G.

A second equivalent definition of an adjunction is proposed by the following
exercise.

8The direction is indicated by the symbol “⊥”, also written F a G. Many authors eschew

this notation and instead attempt to organize the diagrams (5.2) so that the left adjoint always
appears on the left, but in the presence of several functors, e.g. in the following example, this is

not always possible.



A SURVEY OF CATEGORICAL CONCEPTS 21

Exercise 5.6. Suppose given F : C � D : G together with natural hom-set isomor-
phisms (5.3). Define natural transformations η : 1⇒ GF , whose components ηc are
adjunct to the identity at Gc, and ε : FG ⇒ 1, whose components εd are adjunct
to the identity at Fd. Show that the composites

(5.7) Gd
ηGd // GFGd

Gεd // Gd and Fc
Fηc // FGFc

εFc // Fc

are identities. Such η and ε are called the unit and counit, respectively.

Conversely, a pair of functors equipped with natural transformations η and ε,
called the unit and counit respectively, that satisfy the triangle identities (5.7)
uniquely determines an adjunction, with adjunct arrows corresponding via a pro-
cedure analogous to the one described above.

Adjunctions and (co)limits. Excluding the Yoneda lemma, the following theo-
rem is perhaps the most useful result from category theory. First, we need a few
definitions.

Definition 5.8. Fix a small category J. A functor F : C→ D

• preserves limits of shape J, if F takes any limit cone over some diagram
D : J→ C to a limit cone over the diagram FD : J→ D.
• reflects limits of shape J, if a cone over D in C whose image under F is a

limit cone over FD was necessarily a limit cone in C.
• creates limits of shape J if, for every diagram of shape J in C whose image

under F has a limit in D, there is some limit cone in C whose image is
isomorphic to the specified limit cone in D.

Theorem 5.9. Right adjoints preserve limits and left adjoints preserve colimits.

Proof 1. Let’s use the Yoneda lemma and representability of limits. Given G : D→
C, a left adjoint F a G, and a diagram D : J→ D admitting a limit in D, then we
have a sequence of hom-set isomorphisms, natural in c ∈ C

C(c, U lim
J
Dj) ∼= D(Fc, lim

J
Dj) ∼= lim

J
D(Fc,Dj) ∼= lim

J
C(c, UDj) ∼= C(c, lim

J
UDj)

The Yoneda lemma implies that U limJDj
∼= limJ UDj, as desired. By naturality of

the adjunctions and the representations for the limits, this diagram commutes with
the natural maps to C(c, UDj) ∼= D(Fc,Dj) associated to some leg limJDj → Dj
of the limit cone, whence the desired result. �

Proof 2. Let’s dissect this argument in a specific case and show that right adjoints
preserve products. Let x, y ∈ D. We wish to show firstly that U(x×y) satisfies the
universal property of the product of Ux and Uy and furthermore, that the image
in C of the projections in D defines the limit cone.

Given another object c ∈ C with maps c → Ux and c → Uy, their adjuncts
define maps Fc → x and Fc → y in D. By the universal property of the product
x×y, these maps factor uniquely through the projections via an arrow Fc→ x×y.
Its adjunct defines an arrow x → U(x × y) that, by naturality of the adjunction,
factors through the images of the projections. Given another such factorization, its
adjunct would similarly factor through the cone on x× y in D, by naturality again.
Thus Ux← U(x× y)→ Uy is a product in C. �
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Remark 5.10. Note this is why we knew in §4 that the product of spaces had
to be defined by suitably topologizing the product of their underlying sets, and
furthermore why the projection maps had to align with the set-theoretic projections.

Remark 5.11. Because the underlying set of the direct sum of two abelian groups
is not the same as the disjoint union of their underlying sets, we know the forgetful
functor U : Ab→ Set does not admit a right adjoint.

Example 5.12. By Example 3.3, each object c ∈ C in a small category corresponds
uniquely to a functor 1→ C. Precomposition defines a functor

evc : SetC → Set

that evaluates a functor F : C → Set at the object c. The functor evc admits
both left and right adjoints given by left and right Kan extension, an exceedingly
important concept that we will not describe here. By Theorem 5.9, it follows that
limits and colimits in SetC are formed pointwise: i.e., evaluating a (co)limit of a
diagram of functors at an object c ∈ C produces a (co)limit of the diagram formed
by evaluating each functor at c. Conversely, it’s reasonably easy to verify that the
the limits at each object in C assemble into a functor that satisfies the universal
property required of the limit of the diagram of functors.

Example 5.13. Let X be a topological space. It follows from Theorem 5.9 that any
limits that exist in its category of sheaves are formed as in the category of presheaves
on the poset O(X) of open subsets.9 In fact, the existence of the adjunction

Sh(X) � � //⊥ [O(X)op,Set]
sheafifyoo

both guarantees that Sh(X) has all colimits and tells us how to compute them.
Any diagram of sheaves has a colimit as presheaves, because the latter category is
cocomplete, with colimits formed pointwise, as in any functor category. The left
adjoint preserves this colimit diagram, but the diagram is then naturally isomorphic
to the original in the category of sheaves.10

Parameterized adjunctions. Kan’s motivating example is somewhat more so-
phisticated. To illustrate, let C be any category with small products and coproducts.
There is a bifunctor, i.e., functor of two variables,

− · − : Set× C→ C

that takes a pair (A, c) to the A-indexed coproduct of copies of c, sometimes denoted
A ·c. Furthermore, for each fixed set A, the functor A ·− admits a right adjoint: by
the universal property of the coproduct, maps A · c→ d in C are simply A-indexed
maps c → d, which are encoded by a single map from c to a single object dA, the
A-indexed product of copies of d. In other words, we have a hom-set isomorphism

(5.14) C(A · c, d) ∼= C(c, dA)

9A more sophisticated result, that any adjunction with fully faithful right adjoint is monadic,
implies that the category of sheaves has all limits that exist as presheaves.

10This last assertion is true because the sheafification of a sheaf is again a sheaf: the formal
reason is that the counit of an adjunction is an isomorphism if (and only if) the right adjoint is
full and faithful.
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natural in both c and d. Inspecting the definitions, we see that these right adjoints
also assemble into a bifunctor

(−)− : Setop × C→ C

that is contravariant in the first variable: given a set function f : B → A, we define
dA → dB , using the universal property of the latter product, to be the map defined
on the component of b ∈ B by projecting from dA to the component of the product
indexed by f(b) ∈ A.

Furthermore, the isomorphism (5.14) is natural in A. The composite of an
arrow c → dA with the “re-indexing” map dA → dB just described has the same
description as the composite B · c → A · c → d: the component corresponding to
b ∈ B is the component of c → dA, or equivalently of A · c → d, corresponding to
f(b).

This example illustrates a general phenomenon, which is more clearly expressed
for a generic bifunctor F : A×B→ C.

Theorem 5.15. Let F : A × B → C and suppose for each b ∈ B, the functor
F (−, b) : A → C admits a right adjoint Gb : C → A. These functors assemble into
a bifunctor G : Bop × C → A in a unique way so that Gb(c) = G(b, c) and so that
the isomorphisms

C(F (a, b), c) ∼= A(a,G(b, c))

are natural in all three variables.

Proof. We use Gb to define the action of G(b,−) on morphisms c → c′. To define
the action of G(−, c) on g : b′ → b, it suffices by the Yoneda lemma to define a
natural transformation between the functors represented by G(b, c) and G(b′, c).
This natural transformation is the composite

A(a,G(b, c)) ∼= C(F (a, b), c)
F (a,g)∗// C(F (a, b′), c) ∼= A(a,G(b′, c)).

The desired naturality statement follows immediately from this definition. �

We have seen several other examples of bifunctors that admit pointwise right
adjoints above. A category is cartesian closed if for each c ∈ C, the product functor
−×c : C→ C admits a right adjoint. By Theorem 5.15 these right adjoints assemble
into a bifunctor hom(−,−) : Cop × C → C that we refer to as the internal-hom.

For example, the category Set and the category SetC for any small C are both
cartesian closed. The category Top of all topological spaces is not cartesian closed,
but certain subcategories are. For instance, the subcategory of locally compact
Hausdorff spaces is cartesian closed, with internal-homs given the compact-open
topology. More famously, the category of compactly generated spaces is cartesian
closed, though here the categorical product differs from the product in the category
of all spaces. (This in particular, tells us that the inclusion functor from compactly
generated spaces to all spaces is not a right adjoint.)

In the category ModR or Vectk, the tensor product described above admits
pointwise right adjoints, which we also call internal-homs. Both examples behave
similarly: the bifunctor

hom(−,−) : Vectop
k ×Vectk → Vectk
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assigns a pair V,W the vector space of linear functors V → W .The adjoint corre-
spondence

Vectk(U ⊗ V,W ) ∼= Vectk(U,hom(V,W ))

says that linear maps U ⊗ V → W correspond to linear maps U → hom(V,W )
and that this correspondence is natural in all three variables. Indeed, a linear map
from U to the vector space of linear functions from V to W is precisely a bilinear
function on U and V taking values in W , and hence a linear map U ⊗ V → W by
the defining universal property of the tensor product.


