Math 266x: Categorical Homotopy Theory FINAL

Emily Riehl

1. Prove that any right Quillen functor has a right derived functor.

2. State and prove a formula for the geometric realization of an *n*-skeletal simplicial object in terms of its *n*-truncation.

3. Let *X* be a bisimplicial set. Define a map from its homotopy colimit, constructed using the two-sided bar construction, to its geometric realization and explain why this map is a weak equivalence.

4. Prove that the homotopy category of spaces is a closed symmetric monoidal category.

5. Let G be a topological group and let X be a continuous functor from G to a complete and cocomplete, tensored, cotensored, and topologically enriched category. Define what it would mean for an object to be an enriched homotopy limit and colimit of X and prove that such objects exist.

6. Suppose \mathscr{M} is a tensored and cotensored \mathscr{V} -category and let \mathscr{D} be small and unenriched. Show that $\mathscr{M}^{\mathscr{D}}$ is also a tensored and cotensored \mathscr{V} -category.

7. Describe the limit of a diagram $3 \rightarrow qCat$ weighted by $N(3/-): 3 \rightarrow sSet$ as an ordinary limit. What are the vertices of this simplicial set?

8. Fix a ring *R*. Describe the functorial factorization produced by the Ab-enriched algebraic small object argument on the category \mathbf{Mod}_R with respect to the single generating arrow $0 \rightarrow R$.

9. Suppose $(\otimes, \{\}, \text{hom}): \mathcal{V} \times \mathcal{M} \to \mathcal{N}$ is a two-variable adjunction between categories with pullbacks and pushouts and let $(\mathcal{L}_1, \mathcal{R}_1), (\mathcal{L}_2, \mathcal{R}_2)$, and $(\mathcal{L}_3, \mathcal{R}_3)$ be weak factorization systems on the categories \mathcal{V}, \mathcal{M} , and \mathcal{N} respectively. State and prove two conditions that are equivalent to the assertion that $\mathcal{L}_1 \otimes \mathcal{L}_2 \subset \mathcal{L}_3$.

10. Describe the simplicial categories $\mathfrak{C}(\Delta^1 \times \Delta^1)$ and $\mathfrak{C}\Delta^1 \times \mathfrak{C}\Delta^1$.

11. Show that right fibrations between ∞ -categories reflect equivalences. Show furthermore that given any right fibration $p: X \to Y$ and equivalence $p(x) \to y$ in *Y*, this 1-simplex lifts to an equivalence $x \to x'$ in *X*.

12. Recall the definition of weak categorical equivalence forced by Joyal's model structure on **sSet**. Show that weak categorical equivalences are precisely equivalences in the 2-category of quasi-categories. You don't need to prove each result you use to demonstrate this, but you should know which ones depend on which others.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MA 02138 *E-mail address*: eriehl@math.harvard.edu