
BASIC CONCEPTS IN CATEGORY THEORY

EMILY RIEHL

1. Basic Definitions

Definition 1.1. A category C consists of:

(i) A collection of objects ob C denoted by A,B,C, . . .
(ii) A collection of morphisms mor C denoted by f, g, h, . . .

(iii) A rule assigning to each f ∈ mor C two objects dom f and cod f , its domain and codomain. We

write f : dom f → cod f or dom f
f // cod f .

(iv) For each pair (f, g) of morphisms with cod f = dom g we have a composite morphism gf : dom f →
cod g subject to the axiom h(gf) = (hg)f whenever gf and hg are defined.

(v) For each object A we have an identity morphism 1A : A→ A, subject to the axioms 1Bf = f = f1A
for all f : A→ B.

Definition 1.2. We say a category C is small if it has only a set of objects and a set of morphisms. We say
a category C is locally small if for any two objects A,B of C the collection of all morphisms A → B in C is
a set. We denote this set by C(A,B).

Given a category C, its opposite category Cop has the same objects but with the domain and codomain
operations interchanged (and thus composition is reversed). Hence, when we prove a theorem in category
theory, we simultaneously prove a “dual theorem,” obtained by replacing all the categories involved with
their opposites.

Definition 1.3. Let C and D be categories. A functor F : C → D consists of

(i) a mapping A 7→ FA : ob C → obD
(ii) a mapping f 7→ Ff : mor C → morD

such that domFf = F (dom f), codFf = F (cod f), F (1A) = 1FA, and F (gf) = (Fg)(Ff) whenever gf is
defined in C.

Definition 1.4. Let C,D be two categories and F,G : C // // D two functors. A natural transformation

α : F → G consists of a mapping A 7→ αA ob C → morD such that αA : FA→ GA for all A and

FA

Ff

��

αA // GA

Gf

��
FB

αB // GB

commutes for any f : A→ B in C.

Note that, given another functor H and another transformation β : G → H we can form the composite
βα defined by (βα)A = βAαA. The composition is associative and has identities so we have a category [C,D]
of functors C → D and natural transformations between them.

Definition 1.5. We say a morphism f : A→ B is a monomorphism if fg = fh⇒ g = h for all g, h : C → A.
Dually, f is an epimorphism if kf = `f ⇒ k = ` for all k, ` : B → C.

This handout was produced for the Warm-up Program (inexplicably abbreviated as “WOMP”) for incoming graduate
students at the University of Chicago. It is based off lectures by Peter Johnstone in his Part III course in Category theory at
Cambridge in 2006. Some of the original LaTeX is due to Inna Zakharevich.
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2. Limits and Colimits

Definition 2.1. Let J be a category (almost always small or finite). By a diagram of shape J we mean
a functor D : J → C. The objects D(j) for j ∈ ob J are called vertices of D and the morphisms D(α) for
α ∈ mor J are called edges of D.

For any object A of C and any J we have a constant diagram ∆A of shape J all of whose vertices are A
and all of whose edges are 1A. By a cone over D : J → C with summit A we mean a natural transformation
λ : ∆A → D. Equivalently, this is a family (λj : A → D(j) | j ∈ ob J) of morphisms (the legs of the cone)

such that A
λj

}}{{
{{
{{
{{ λj′

""D
DD

DD
DD

D

D(j)
D(α) // D(j′)

commutes for any α : j → j′ in J . Note that ∆ is a functor C → [J, C].

Definition 2.2. A limit of a diagram D : J → C is a cone (A, λ) that is universal among cones over D.
That is, given another cone (B, δ) over D, there is a unique morphism f : B → A such that δj = λjf for
each j ∈ J .

The dual notion is a colimit. A cone under D : J → C with summit A is a natural transformation
λ : D → ∆A. A colimit of D is a cone (A, λ) under D that is universal among cones under D. That is, given
another cone (B, δ) under D, there is a unique morphism f : A→ B such that δj = fλj for each j ∈ J .

Lemma 2.3. Limits and colimits, when they exist, are unique up to unique isomorphism. That is, given
two limits (A, λ) and (A′, λ′) of a diagram D, there exists unique isomorphisms f : A→ A′ and g : A′ → A
that commute with the legs of the cones.

Definition 2.4. A limit of a diagram D : J → C is a cone (A, λ) that is universal among cones over D.
That is, given another cone (B, δ) over D, there is a unique morphism f : B → A such that δj = λjf for
each j ∈ J .

Definition 2.5. We say that C has limits of shape J if every diagram D : J → C has a limit. This is
equivalent to saying that the functor ∆ : C → [J, C] has a right adjoint (see Section 4).

Examples 2.6.

(a) If J = ∅ then [J, C] has a unique object and the category of cones over it is isomorphic to C. So
a limit for this diagram is a terminal object ∗ of C, i.e. one such that there is a unique morphism
A→ ∗ for all A. A colimit for it is called an initial object.

(b) If J is a discrete category, a diagram of shape J is just a family of objects of C, and a cone over
it is a family of morphisms (λj : A → D(j) | j ∈ ob J). A limit for it is a product

∏
j∈ob J D(j).

Similarly a colimit for this diagram is a coproduct
∑
j∈ob J D(j).

(c) Let J be the finite category · //// · (so a diagram of shape J is a parallel pair A
f //
g
// B ). A

cone over such a digram is of the form A C
hoo k // B such that fh = k = gh, or equivalently

a morphism h : C → A satisfying fh = gh. A limit for the diagram is called an equalizer for (f, g)
(and a colimit for it is a coequalizer for (f, g)).

(d) Let J be the finite category · ·oo // · . Then a diagram of shape J is a pair of morphisms

B
g // C A

foo with common codomain. A cone over this has the form

D
i //

k
��

`

  @
@@

@@
@@

@ A

B C

satisfying fh = ` = gk or equivalently a completion of the diagram to a commutative square. A
terminal such completion is called a pullback for the pair (f, g). If C has products and equalizers
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then it has pullbacks: form the product A × B and then the equalizer E
e // A×B

fπ1 //
gπ2

// C .

Then

E
π1e //

π2e

��

A

B

is a limit for A

f

��
B

g // C

A colimit of shape Jop (i.e. of a diagram C A
goo f // B ) is called a pushout of (f, g).

Theorem 2.7.

(i) If C has equalizers and all small (resp. all finite) products, then C has all small (resp. all finite)
limits.

(ii) If C has pullbacks and a terminal object, then C has all finite limits.

Definition 2.8. Let F : C → D be a functor, J a (small) category.

• We say F preserves limits of shape J if, given D : J → C and a limit cone (λj : L→ D(j) | j ∈ ob J)
the cone (Fλj : FL→ FD(j) | j ∈ ob J) is a limit cone for FD in D.
• We say F reflects limits of shape J if given D : J → C and a cone (λj : L → D(j) | j ∈ ob J) such

that (Fλj : FL→ FD(j) | j ∈ ob C) is a limit for FD, then the original cone was a limit for D.
• We say that F creates limits of shape J if, given D : J → C and a limit (µj : M → FD(j) | j ∈ ob J)

for FD, there exists a cone (λj : L → D(j) | j ∈ ob J) over D mapping to a limit for FD, and
any such cone is a limit in C. (Note that if we require M to be in the image of F then category
equivalences might not create limits, as M may not be in the image of the equivalence. This
definition says that if there is a limit for FD in D then there is a limit for D in C that maps to a
limit of FD in D.)

Corollary 2.9. Let F : C → D be a functor. In any version of the above theorem 2.7 we may replace “C
has” by either “C has and F preserves” or “D has and F creates.”

3. Equivalences of Categories

Definition 3.1. Let C and D be two categories. By an equivalence between C and D we mean a pair of
functors F : C → D, G : D → C together with natural isomorphisms α : 1C → GF and β : FG → 1D. We
write C ' D if there exists an equivalence between C and D.

Definition 3.2. Let F : C → D be a functor.

(i) We say F is faithful if given any two objects A,B ∈ C and two morphisms f, g : A → B Ff = Fg
implies f = g.

(ii) We say F is full if given any two objects A,B ∈ C every morphisms g : FA → FB n D is of the
form Ff for some f : A→ B in C.

(iii) We say a subcategory C′ of C is full if the inclusion C′ → C is a full functor.

Lemma 3.3. (Assuming the axiom of choice.) A functor F : C → D is part of an equivalence iff it is full,
faithful and essentially surjective on objects. (i.e. every B ∈ obD is isomorphic to some FA).

4. Adjunctions

Definition 4.1. Suppose we are given categories C,D and functors F : C → D, G : D → C. We say that F
is left adjoint to G or G is right adjoint to F we’re given, for each A ∈ ob C and each B ∈ obD a bijection
between morphisms FA→ B in D and morphisms A→ GB in C, which is natural in A and B. (If C and D
are locally small this means that the functors Cop ×D → Set sending (A,B) to D(FA,B) and to C(A,GB)
are naturally isomorphic.) We write (F a G) if F is left adjoint to G.

We call the corresponding morphisms h : FA → B, ĥ : A → GB of an adjunction adjuncts. Note that
the naturality condition means that
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FA
h //

Ff

��

B

g

��
commutes iff

A
ĥ //

f

��

GB

Gg

��
commutes.

FC
j // D C

ĵ // GD

Given functors F : C ↔ D : G with (F a G) we have a natural transformation η : 1C → GF and dually a
natural transformation ε : FG → 1D (the counit of the adjunction), where ηA is defined to be the adjunct
of 1FA and εB is the adjunct of 1GB .

Theorem 4.2. Given functors F : C � D : G, specifying an adjunction F (a G) is equivalent to specifying
natural transformations η : 1C → GF and ε : FG→ 1D satisfying the triangular identities:

F

1F ""E
EE

EE
EE

EE
Fη // FGF

εF

��

and G
ηG //

1G ""E
EE

EE
EE

EE
GFG

Gε
��

F G

Theorem 4.3. Left adjoints preserve colimits and right adjoints preserve limits.

5. The Yoneda Lemma

If C is locally small then the mapping B → C(A,B) becomes a functor C(A,−) : C → Set. Given
a morphism g : B → C in C, C(A, g) : C(A,B) → C(A,B) sends f ∈ C(A,B) to gf . (Associativity of
composition implies that this is a functor.) Similarly, A 7→ C(A,B) defines a functor C(−, B) : Cop → Set.

Lemma 5.1 (Yoneda Lemma).

(i) Let C be a locally small category, A ∈ ob C and F : C → Set a functor. Then there is a bijection
between natural transformations C(A,−)→ F and elements of FA.

(ii) Moreover, this bijection is natural in A and F .

Corollary 5.2. For a locally small category C there is a full and faithful functor Y : Cop → [C,Set] (the
Yoneda embedding) sending A ∈ ob C to C(A,−).

To explain Yoneda (ii), suppose that C is small. Then [C,Set] is locally small, since a natural transfor-
mation F → G is a set-indexed family of functions αA : FA → GA. We have a functor C × [C,Set] → Set
sending (A,F ) to FA, and another functor which is the composite

C × [C,Set]
Y×1[C,Set] // [C,Set]op × [C,Set]

[C,Set](−,−) // Set

(ii) is saying that these two functors are naturally isomorphic in each variable. Notice, however, that since
the existence of a natural isomorphism is a purely “local” condition, we only need to require that the category
be locally small.

Definition 5.3. We say that a functor F : C → Set is representable if it is naturally isomorphic to C(A,−)
for some A. By a representation of F we mean a pair (A, x) where A ∈ ob C and x ∈ FA is such that
Ψ(x) : C(A,−) → F is an isomorphism. We call x a universal element of F . It has the property that any
y ∈ FB is of the form (Ff)(x) for some f ∈ C(A,B).
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