Math 161: Category theory in context Problem Set 9 due: April 28, 2015

Emily Riehl

Exercise 1. Verify that the Kleisli category is a category by checking that the composition operation of Definition 5.2.8 is associative and unital.

Exercise 2. Describe the image of the canonical functor from the Kleisli category of a monad to the Eilenberg-Moore category.

Exercise 3. Recall a monoid is a set *M* together with maps $\eta: 1 \to M$ and $\mu: M \times M \to M$ so that certain diagrams commute in SET; see Definition 1.6.2. A monoid homomorphism is a function $f: M \to M'$ so that the diagrams

commute in SET. Prove that the functor U: MONOID \rightarrow SET is monadic by appealing to the monadicity theorem.

Exercise 4. For any group G, the forgetful functor $Set^G \to Set$ admits a left adjoint that sends a set X to the G-set $G \times X$, with G acting on the left. Prove that this adjunction is monadic by appealing to the monadicity theorem.

Exercise 5. Generalizing Exercise 4, for any small category J and any cocomplete category C the forgetful functor $C^{J} \rightarrow C^{obJ}$ admits a left adjoint Lan: $C^{obJ} \rightarrow C^{J}$ that sends a functor $F \in C^{obJ}$ to the functor $Lan F \in C^{J}$ defined by

$$\operatorname{Lan} F(j) = \coprod_{x \in \mathsf{J}} \coprod_{\mathsf{J}(x,j)} Fx.$$

- (i) Define LanF on morphisms in J.
- (ii) Define Lan on morphisms in C^{ob J}.
- (iii) Use the Yoneda lemma to show that Lan is left adjoint to the forgetful (restriction) functor $C^{J} \rightarrow C^{ob J}$.
- (iv) Prove that this adjunction is monadic by appealing the monadicity theorem.

Exercise 6.* Describe a more general class of functors $K : I \to J$ between small categories so that for any cocomplete C the restriction functor $\operatorname{res}_K : \mathbb{C}^J \to \mathbb{C}^I$ strictly creates colimits of res_K -split parallel pairs. All such functors admit left adjoints and are thus monadic. As a further challenge, describe the left adjoint.

DEPT. OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MA 02138 *E-mail address*: eriehl@math.harvard.edu