Math 161: Category theory in context Problem Set 5¹ due: March 24, 2015

Emily Riehl

Exercise 1. For a fixed diagram $F \in C^{\mathcal{J}}$, describe the actions of the cone functors $\operatorname{Cone}(-, F): C^{\operatorname{op}} \to \operatorname{Set}$ and $\operatorname{Cone}(F, -): C \to \operatorname{Set}$ on morphisms in *C*.

Exercise 2. Prove² that the category of cones over $F \in C^{\mathcal{J}}$ is isomorphic to the comma category $\Delta \downarrow F$ formed from the constant functor $\Delta : C \to C^{\mathcal{J}}$ and the functor $F : \mathbb{1} \to C^{\mathcal{J}}$. Argue by duality the category of cones under *F* is the comma category $F \downarrow \Delta$.

Exercise 3. Prove that if

$$E \xrightarrow{h} A \xrightarrow{f} B$$

is an equalizer diagram then h is a monomorphism.

Exercise 4. Prove that if

$$\begin{array}{c|c} P \searrow k & > C \\ h & \downarrow^{d} & \downarrow^{g} \\ B \searrow f & A \end{array}$$

is a pullback square and f is a monomorphism then k is a monomorphism.

Exercise 5. Show that if \mathcal{J} has an initial object then the limit of any functor indexed by \mathcal{J} is the value of that functor at an initial object.

Exercise 6. Suppose *C* has all \mathcal{J} -shaped (co)limits. Prove that for any small category \mathcal{A} , the functor category $C^{\mathcal{A}}$ again has all \mathcal{J} -shaped colimits, constructed pointwise. That is, given a diagram $F : \mathcal{J} \to C^{\mathcal{A}}$ show that it has a limit $\lim F \in C^{\mathcal{A}}$ whose value at $a \in \mathcal{A}$ is the limit of the diagram

$$\mathcal{J} \xrightarrow{F} C^{\mathcal{A}} \xrightarrow{\mathrm{ev}_a} C$$

Exercise 7. Show that if $K: C \to D$ is an equivalence then for any D-indexed functor F, if the limit of FK exists then it also defines a limit of and limit cone for F.

Exercise 8. Let *C* be a category admitting coproducts and coequalizers and consider a functor $F: \mathcal{J} \to C$. Define a parallel pair between two coproducts whose coequalizer will equal the colimit of *F*. You should also define the cone under this parallel pair with nadir colim *F*, but you do not have to verify that it defines a coequalizer cone.

Exercise 9.* Prove that the diagram constructed in Exercise 8 is a colimit either by directly verifying the universal property or by appealing the Yoneda lemma and a theorem from class.

DEPT. OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MA 02138 *E-mail address*: eriehl@math.harvard.edu

¹Problems labelled n^* are optional (fun!) challenge exercises that will not be graded. ²Prove in this context means unpack the definitions and observe that they coincide.