Math 161: Category theory in context Problem Set 3¹ due: March 3, 2015

Emily Riehl

Exercise 1. In the presence of a full and faithful functor $F: C \to \mathcal{D}$ prove that objects $x, y \in C$ are isomorphic if and only if Fx and Fy are isomorphic in \mathcal{D} .

Exercise 2. For each of the three functors

$$\mathbb{1} \xrightarrow[]{0}{\underbrace{<-!}{>}} 2$$

between the categories 1 and 2, describe the corresponding natural transformations between the covariant functors $CAT \rightarrow SET$ represented by these categories.

Exercise 3. A functor *F* defines a **subfunctor** of *G* if there is a natural transformation $\alpha: F \Rightarrow G$ whose components are monomorphisms. In the case of $G: C^{\text{op}} \rightarrow \text{Set}$ a subfunctor is given by a collection of subsets $Fc \subset Gc$ so that each $Gf: Gc \rightarrow Gc'$ restricts to define a function $Ff: Fc \rightarrow Fc'$. Provide an elementary characterization of the elements of a subfunctor of the representable functor C(-, c).

Exercise 4. As discussed in Section 2.2, diagrams of shape ω are determined by a countably infinite family of objects and a countable infinite sequence of morphisms. Describe the Yoneda embedding $y: \omega \hookrightarrow \text{Ser}^{\omega^{\text{op}}}$ in this manner (as a family of ω^{op} -indexed functors and natural transformations). Prove, without appealing to the Yoneda lemma, that y is full and faithful.

Exercise 5. Use the defining universal property of the tensor product to prove that

- (i) $\Bbbk \otimes_{\Bbbk} V \cong V$ for any \Bbbk -vector space V
- (ii) $U \otimes_{\Bbbk} (V \otimes_{\Bbbk} W) \cong (U \otimes_{\Bbbk} V) \otimes_{\Bbbk} W$ for any \Bbbk -vector spaces U, V, W.

Exercise 6. There is a natural automorphism ι of the contravariant power-set functor $P: SET^{op} \to SET$ whose component functions $\iota_A: P(A) \to P(A)$ send a subset $A' \subset A$ to its complement. The Yoneda lemma tells us that ι is induced by an endomorphism of the representing object. What is it? Does this function induce a natural automorphism of the covariant power-set functor?

Exercise 7. The set B^A of functions from a set A to a set B represents the contravariant functor $Set(- \times A, B)$: $Set^{op} \rightarrow Set$. In analogy with the universal bilinear map \otimes of Example 2.3.6, describe the universal property of the element

$$\operatorname{ev} \colon B^A \times A \to B$$

in $\text{Set}(B^A \times A, B) \cong \text{Set}(B^A, B^A)$ that classifies the natural isomorphism.

Exercise 8*. Leaving your phone, computer, book, and notes at home, barricade yourself in a room in the Science Center until you can state and prove the Yoneda lemma.²

DEPT. OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MA 02138 *E-mail address*: eriehl@math.harvard.edu

¹Problems labelled n^* are optional (fun!) challenge exercises that will not be graded.

²For safety's sake, inform a reliable friend who would be able to arrange a search and rescue operation.