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1. The wave equation on bounded domains

Formally, the solution to the wave equation on a bounded domain is quite similar to the solution
to the heat equation on a bounded domain, although qualitatively the solutions are quite different.
Let M̄ be a compact Riemannian manifold with boundary. The wave equation is given by

(1.1)
∂2u

∂t2
−∆u = 0,

for u = u(t, x), t ∈ R, x ∈ M. The initial conditions are given by

(1.2) u(0, x) = f(x), ut(0, x) = g(x).

Then if ∂M is nonempty, impose the Dirichlet boundary condition

(1.3) u(0, x) = 0, x ∈ ∂M.

Now let uj(x) again refer to the orthonormal basis of L2(M),

(1.4) uj ∈ H1
0 (M) ∩ C∞(M̄), ∆uj = −λjuj , 0 ≤ λj ↗ ∞.

Then write

(1.5) u(t, x) =
∑
j

aj(t)uj(x).

Then the coefficients aj(t) satisfy
(1.6)

a′′j (t) + λjaj(t) = 0, aj(0) = f̂(j), a′j(0) = ĝ(j), f̂(j) = (f, uj), ĝ(j) = (g, uj).

Therefore,

(1.7) aj(t) = f̂(j) cos(λ
1/2
j t) + ĝ(j)λ

−1/2
j sin(λ

1/2
j t).

If ∂M = ∅ and M is connected, then 0 is an eigenvalue of multiplicity one. In that case,

(1.8) a0(t) = f̂(0) + ĝ(0)t.

Remark 1. Notice that for any t ∈ R,

(1.9) lim
λ↘0

λ−1/2 sin(λ1/2t) = t.

Suppose for simplicity that all λj are nonzero. Then a solution to (1.1)–(1.3) is given by

(1.10) u(t, x) =
∑
j

[f̂(j) cos(λ
1/2
j t) + ĝ(j)λ

−1/2
j sin(λ

1/2
j t)]uj(x),

which is equivalent to the operator expression

(1.11) u(t, x) = cos(t
√
−∆)f +

sin(t
√
−∆)√

−∆
g.

Then we have

(1.12) f ∈ Ds, g ∈ Ds−1 implies u ∈ C(R,Ds), ∂jt ∈ C(R,Ds−j).

Recall that

(1.13) Ds = {v ∈ L2(M) :
∑
j≥0

|v̂(j)|2λsj <∞}.
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According to the definition D0 = L2, D1 = H1
0 , D2 = H2(M) ∩H1

0 (M), and

(1.14) D2k ⊂ H2k(M).

Then if s > n
2 , u ∈ C(R × M̄) and then the boundary condition (1.2) is satisfied in the ordinary

sense.

Now define the energy norm

(1.15) Es(t) = ∥u(t)∥2Ds
+ ∥ut(t)∥2Ds−1

,

where ∥v∥Ds
= ∥(−∆)s/2v∥L2(M). Therefore if

(1.16) u ∈ C1(R,Ds) ∩ C2(R,Ds−1),

(1.17)
d

dt
Es(t) = 2Re(ut(t), u(t))Ds+2Re(ut(t), utt(t))Ds−1 = 2Re(ut(t), (−∆)su(t))+2Re(ut(t),∆(−∆)s−1u(t)) = 0.

Therefore, we have the energy identity

(1.18) Es(t) = Es(0).

In the case that λ0 = 0, (1.15) annihilates constants, so we don’t quite get a norm. We now prove
that wave equations satisfy the finite propagation speed.

Consider

(1.19) D∞ = ∩jDj .
Notice that D∞ ⊂ C∞(M̄). If K ⊂ M̄ is closed, s ∈ R, we say that f ∈ Ds is D-supported in K if
and only if

(1.20) (v, f) = 0, for all v ∈ D∞ such that supp(v) ⊂ M\K.
This notion coincides with the familiar notion of support when s ≥ 0.

Lemma 1. Let K ⊂ M be closed, s ∈ [0,∞), v ∈ Ds ⊂ L2(M). Then v is D-supported in K if
and only if v is supported in K in the usual sense, that is, v(x) = 0 for almost all x ∈ M \K.

Proof. Let w ∈ D∞ have support in the usual sense on a closed set L ⊂ M\K. If v ∈ D0 vanishes

point wise almost everywhere on M \ K, then certainly (v, w) =
∫
M v(x)w(x)dV (x) = 0. This

proves (⇐).

Now suppose conversely that (v, w) = 0 for all w ∈ D∞ that vanish point wise on a neighborhood
of K. In particular, (v, w) = 0 for all w ∈ C∞

0 (M\K), so v vanishes point wise almost everywhere
on the open set U = M\K ⊂ M. Therefore, the closure of U lies in M\K, which completes the
proof. □

For s ≤ 0, C∞
0 (M) is dense in Ds. For s < 0, given p ∈ ∂M, there is a nonzero νp ∈ Ds, for any

s < −n
2 − 1, defined by (u, νp) =

∂u(p)
∂ν , and νp is D-supported on {p}.

Proposition 1. If K ⊂ M is closed, and

(1.21) Kd = {x ∈ M : dist(x,K) ≤ d},
then if f ∈ Ds, g ∈ Ds−1, are D–supported in K, it follows that

(1.22) cos(t
√
−∆)f,
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and

(1.23)
sin(t

√
−∆)√

−∆
g,

are D–supported in Kd for |t| ≤ d.

Proof. Let v ∈ D∞ be supported on M\Kd. Then,

(1.24) (cos(t
√
−∆)f, v) = (f, cos(t

√
−∆)v).

Assuming for a moment that cos(t
√
−∆)v has finite propagation speed when v ∈ D∞, since v

is smooth, so the right hand side vanishes for |t| ≤ d. The same sort of analysis applies to
(−∆)1/2 sin(t

√
−∆)g, to complete the proof. □

To show finite propagation speed for smooth functions, suppose Ω does not intersect R × ∂M,
suppose that ∂Ω consists of two smooth surfaces Σ1 and Σ2, and let Ωt denote the intersection of
Ω with {t} ×M. If u solves (1.1),

(1.25) 0 =

∫
Ω

ut(utt −∆u)dV dt =
1

2

∫
Ω

∂

∂t
[u2t + |∇xu|2]dV dt−

∫
Ω

divx(ut∇xu)dV dt.

Therefore,

(1.26) 0 =
1

2

∫
∂Ω

[u2t + |∇xu|2]ω −
∫ ∫

∂Ωt

ut
∂u

∂νx
dStdt.

Here dSt is the natural surface measure on ∂Ωt. If N = (Nt, Nx) is the outward pointing normal
to ∂Ω ⊂ R×M,

(1.27) ω = NtdS, dStdt = |Nx|dS.

Thus, if u satisfies the wave equation on Ω,

(1.28)

∫
Σ2

{[u2t + |∇xu|2]|Nt| − 2ut
∂u

∂νx
|Nx|}dS =

∫
Σ1

{[|ut|2 + |∇xu|2]|Nt|+ 2ut
∂u

∂νx
|Nx|}dS.

Since

(1.29) 2|ut
∂u

∂νx
| ≤ u2t + |∇xu|2,

if

(1.30) |Nx| ≤ |Nt|,

then

(1.31) [u2t + |∇xu|2]|Nt| − 2ut
∂u

∂νx
|Nx| ≥ 0,

point wise. This implies finite propagation speed.

Proposition 2. If s ∈ R and f ∈ Ds is D–supported in a closed set K ⊂ M, then for any
neighborhood Kd of K, there exists a sequence fj ∈ D∞, all supported in Kd, such that fj → f in
Ds.
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Proof. Choose φ ∈ C∞
0 ((−d, d)),

∫
φ(t)dt = 1, and consider

(1.32) fj =

∫
φj(t) cos(t

√
−∆)fdt, φj(t) = jφ(jt).

Integrating by parts,

(1.33) (−∆)kfj =

∫
φ
(2k)
j (t) cos(t

√
−∆)dt ∈ Ds,

for each k, so fj ∈ D∞. It is clear that fj → f , and by Proposition 1, each fj is D–supported in
Kd. Therefore, by Lemma 1, each fj is supported in Kd. □

2. Wave equation on unbounded domains

Now consider the wave equation on R × M, where M is a noncompact Riemannian manifold.
Assume that M is complete and without boundary. Construct the solution to the wave equation

(2.1)
∂2u

∂t2
−∆u = 0, on R×M, u(0, x) = f(x), ut(0, x) = g(x),

under the hypothesis

(2.2) f ∈ H1
0 (M), g ∈ L2(M), supp(f, g) ⊂ K,

where K ⊂ M is compact. Then produce the unique solution

(2.3) u ∈ C(R, H1(M)) ∩ C1(R, L2(M)),

with the property that

(2.4) supp(u(t)) is compact in M, ∀t ∈ R.

Let Ōj ⊂ M be compact subsets with smooth boundary, such that O1 ⊂⊂ O2 ⊂⊂ ... ⊂⊂ Oj ⊂⊂↗
M. Given f, g ∈ K and s > 0, choose N sufficiently large so that Ks ⊂ ON , where Ks = {x ∈ M :
dist(x,K) ≤ s}.

Now let ∆j be the Laplace operator onOj , with Dirichlet boundary condition, so that cos(t
√

−∆j)

and (−∆j)
−1/2 sin(t

√
−∆j) are defined on L2(Oj), H

1
0 (Oj), and so forth. By finite propagation

speed,

(2.5) u(t) = cos(t
√

−∆j)f +
sin(t

√
−∆j)√

−∆j

g, for |t| < s, j ≥ N,

which has support on ON and is independent of j ≥ N . This specifies the solution to (2.1), given
(2.2). Define

(2.6) U(t){f, g} = {u(t), ∂tu(t)},

obtaining a one–parameter family of maps

(2.7) U(t) : C∞
0 (M)⊕ C∞

0 (M),

which satisfies the group property

(2.8) U(0) = I, U(t1 + t2) = U(t1)U(t2).

Moreover, if f, g ∈ C∞
0 (M), the proof of energy conservation implies

(2.9) ∥df∥2L2(M) + ∥g∥2L2(M) = ∥dxu(t)∥2L2(M) + ∥∂tu(t)∥2L2(M),
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for each t ∈ R. Set H to be the completion of C∞
0 (M) in the norm

(2.10) ∥f∥H = ∥df∥L2(M).

Proposition 3. The family of maps U(t) in (2.6) has a unique extension to a unitary group

(2.11) U(t) : H⊕ L2(M) → H⊕ L2(M).

The wave equation solution may be used to solve the heat equation,

(2.12)
∂u

∂t
= ∆u, u(0, x) = f(x).

Suppose f ∈ L2(M) is supported in a compact set K. Now then, if K ⊂ Oj , e
t∆jf is defined by

(2.13) et∆jf =
∑
j

e−tλj f̂(j)uj(x).

Completing the square,

(2.14)
∑
j

1√
4πt

∫ ∞

−∞
e−s

2/4t cos(s
√
λj)f̂(j)ds =

∑
j

e−tλj f̂(j) = et∆jf.

Therefore, consider

(2.15) H(t)f(x) =
1√
4πt

∫ ∞

−∞
e−s

2/4tW (s)f(x)ds,

where W (s)f(x) = v(t, x) solves (2.1) with g = 0. Then if f is supported on K,

(2.16) W (s)f(x) = cos(s
√
−∆j)f(x), if K|s| ⊂ Oj .

Then,

(2.17) H(t)f(x) = et∆jf(x) +
1√
4πt

∫
Tj

e−s
2/4t[W (s)f(x)− cos(s

√
−∆j)f(x)]ds,

where if K ⊂ Oj ,

(2.18) Tj = {s ∈ R : dist(K, ∂Oj) < |s|}.
Since cos(s

√
−∆j) and W (s) have L2–operator norms ≤ 1, we have

(2.19) H(t)f = lim
j→∞

et∆jf, in L2(M),

for f ∈ L2(M) with compact support. Here et∆jf(x) is set equal to zero on M\Oj . Thus, H(t)
extends uniquely to an operator on L2(M) of norm ≤ 1, and we have

(2.20) H(t)f = lim
j→∞

et∆jPjf, in L2(M), ∀f ∈ L2(M),

where Pjf(x) = χOj
(x)f(x).

Proposition 4. If M is a complete Riemannian manifold of dimension n, the operator H(t) has
integral kernel h(t, x, y), smooth on (0,∞)×M×M and satisfying the estimate

(2.21) 0 ≤ h(t, x, y) ≤ Cκ(x, δ)κ(y, δ)(1 + t−k⟨t−1ρ2⟩k)2e−ρ
2/4t,

where dist(x, y) = ρ+ 2δ, κ(x, δ) = C(U), for U the ball of radius δ > 0 centered at x and k > n
4 .

(2.22) H(t)f(x) =

∫
M
h(t, x, y)f(y)dV (y).



7

Furthermore, under certain hypotheses on M, h(t, x, y) will decrease rapidly as dist(x, y) → ∞ for
fixed t > 0.

Proof. Let Uj be open sets in M and let ρ = dist(U1, U2) = inf{dist(y1, y2) : yj ∈ Uj}. Assume f
is supported in U1. Then by finite propagation speed,

(2.23) H(t)f(x) =
1√
4πt

∫
|x|≥ρ

e−s
2/4tW (s)f(x)ds, for x ∈ U2.

Now if Rjf(x) = χUj
(x)f(x),

(2.24) ∥R2H(t)R1∥L(L2) ≤
1√
4πt

∫
|s|≥ρ

e−s
2/4tds ≤ e−ρ

2/4t.

To estimate derivatives, use the equation ∂2sW (s) = ∆W (s). Integrating by parts,

(2.25) ∆kH(t)f(x) =
1√
4πt

∫
|s|≥ρ

(∂2ks e−s
2/4t)W (s)f(x)ds,

given x ∈ U2, supp(f) ⊂ U1. Making the estimate

(2.26) |∂2ks e−s
2/4t| ≤ Ckt

−k⟨(4t)−1s2⟩ke−s
2/4t.

Therefore,

(2.27) ∥R2∆
kH(t)R1∥L(L2) ≤ Ckt

−k
∫ ∞

ρ/
√
t

(1 + s2)ke−s
2/4ds ≤ Ckt

−k⟨t−1ρ2⟩ke−ρ
2/4t.

For k > n
4 , n = dim(M), there is a Sobolev estimate of the form

(2.28) |f(x2)| ≤ C(U2)[∥∆kf∥L2(U2) + ∥f∥L2(U2)].

Therefore,

(2.29) ∥h(t, x2, ·)∥L2(U1) ≤ C ′C(U2)(1 + t−k⟨t−1ρ2⟩k)e−ρ
2/4t.

By symmetry and another application of the argument,

(2.30) |h(t, x2, x1)| ≤ C ′C(U1)C(U2)(1 + t−k⟨t−1ρ2⟩k)2e−ρ
2/4t.

Positivity follows from the positivity of heat kernels hj(t, x, y) of et∆j . In fact, by the maximum
principle for the heat equation,

(2.31) 0 ≤ hj(t, x, y) ↗ h(t, x, y), as j → ∞.

Therefore the proof is complete. □

3. The linear wave equation

Now let u(t, x) be the solution to the linear wave equation

(3.1) ∂ttu−∆u = 0, u(0, x) = f(x), ut(0, x) = g(x).

The finite propagation speed computations easily imply uniqueness for a solution to (3.1). Now
then, in one dimension, the solution may be given by

(3.2) u(t, x) =
1

2
f(x− t) +

1

2
f(x+ t) +

1

2

∫ x+t

x−t
g(s)ds.
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It is possible to generalize (3.2) to Rn with n odd. Let Ar denote the spherical means of a function,

(3.3) (Arh)(x) =
1

4π

∫
S2

h(x+ ry)dσ(y).

By the divergence theorem,
(3.4)

∂r(Arh)(x) =
1

4π

∫
S2

⟨∇xh(x+ ry), y⟩dσ(y) = r

4π

∫
|y|<1

∆xh(x+ ry)dy =
r−2

4π
∆x

∫
|x−y|<r

h(y)dy.

Rewriting the last integral in polar coordinates,

(3.5)
1

4π

∫
|y−x|<r

h(y)dy =

∫ r

0

ρ2Aρh(x)dρ.

Therefore,

(3.6) ∂r(Arh(x)) = r−2∆x

∫ r

0

ρ2Aρh(x)dρ.

Therefore,

(3.7)
∂

∂r
(r2

∂

∂r
Arh(x)) = ∆xr

2Arh(x).

Therefore, H(r, x) = Arh(x) solves Darboux’s equation

(3.8) (
∂2

∂r2
+

2

r

∂

∂r
)H(r, x) = ∆xH(r, x).

Now then, r → Arh(x) is even, so

(3.9) H(0, x) = h(x), ∂rH(0, x) = 0.

Now then, suppose u(t, x) is C2 and that u solves (3.1) in R1+3. Now set

(3.10) U(r; t, x) = (Aru(t, ·))(x) =
1

4π

∫
S2

u(t, x+ ry)dσ(y).

Therefore,

(3.11) ∆xU = (
∂2

∂r2
+

2

r

∂

∂r
)U = r−1 ∂

2

∂r2
(rU).

Since ∂2t u(t, x) = ∆xu(t, x),

(3.12) ∆xU =
1

4π

∫
S2

∆xu(t, x+ ry)dσ(y) =
1

4π

∂2

∂t2

∫
S2

u(t, x+ ry)dσ(y) =
∂2

∂t2
U.

Therefore,

(3.13) v(t, r) = rU(r; t, x),

solves the one dimensional wave equation

(3.14) ∂2t v = ∂2rv, v(0, x) = rArf(x), ∂tv(0, x) = rArg(x).

Plugging in (3.2) to (3.14),

(3.15) v(t, r) =
1

2
[(r + t)Ar+tf(x) + (r − t)Ar−tf(x)] +

1

2

∫ r+t

r−t
ρAρg(x)dρ.
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Since Arf and Arg are even functions of r and since v = rU ,

(3.16) U =
1

2r
[(t+ r)At+rf(x)− (t− r)At−rf(x)] +

1

2r

∫ t+r

t−r
ρAρg(x)dρ.

Now then, since u(t, x) = U(0; t, x), and letting r ↘ 0,

(3.17) u(t, x) = ∂t(tAtf(x)) + tAtg(x) =
1

4πt2

∫
|x−y|=t

[tg(y) + f(y)− ⟨∇yf(y), x− y⟩]dσ(y).

Proposition 5. Any C2 solution of the Cauchy problem (3.1) in R × R3 must be given by (3.17)
and therefore must be unique. Conversely, if f ∈ C3(R3) and g ∈ C2(R3), then if u is given by
(3.17), then u solves (3.1). Also observe that u satisfies the sharp Huygens principle.

If n > 3 is odd, let

(3.18) Arh(x) =
1

ωn−1

∫
Sn−1

h(x+ ty)dσ(y),

where ωn−1 is the area of the unit sphere Sn−1 ⊂ Rn. If n = 2k + 1, let

(3.19) v = (
1

r

∂

∂r
)k−1r2k−1Aru(t, x).

In this case, ∂2t v = ∂2rv and

(3.20) v(0, r) = (
1

r

∂

∂r
)k−1r2k−1Arf(x) = ϕ(r), ∂tv(0, r) = (

1

r

∂

∂r
)k−1r2k−1Arg(x) = ψ(r).

Then vtt− vrr = 0, so therefore v solves the one dimensional wave equation. This fact follows from
the identity

Lemma 2. Let ϕ : R → R be Ck+1. Then

(3.21) (
d2

dr2
)(
1

r

d

dr
)k−1(r2k−1ϕ(r)) = (

1

r

d

dr
)k(r2k

dϕ

dr
).

Proof. Prove this by induction. When k = 1,

(3.22) (
d2

dr2
)(rϕ) = 2ϕ′(r) + rϕ′′(r) = (

1

r

d

dr
)(r2ϕ).

Now show that (3.21) implies that the same result holds with k replaced by k + 1.

(3.23)

(
d2

dr2
)(
1

r

d

dr
)k(r2k+1ϕ(r)) = (

d2

dr2
)(
1

r

d

dr
)k−1(

1

r

d

dr
)(r2k+1ϕ(r))

= (
d2

dr2
)(
1

r

d

dr
)k−1((2k + 1)r2k−1ϕ(r) + r2kϕ′(r))

= (
1

r

d

dr
)k((2k + 1)r2kϕ′(r) + r2k

d

dr
(rϕ′(r))) = (

1

r

d

dr
)k((2k + 2)r2kϕ′(r) + r2k+1ϕ′′(r))

= (
1

r

d

dr
)k+1(r2k+2ϕ′(r)).

□

Remark 2. This proof was showed in class by Zhexing Zhang.
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(3.24) v(r, t) =
1

2
[ϕ(r + t)− ϕ(r − t)] +

1

2

∫ r+t

r−t
ψ(s)ds.

There are constants cj with

(3.25) c0 = 1 · 3 · 5 · · · (2k − 1) = 1 · 3 · 5 · · · (n− 2).

Therefore,

(3.26) (
1

r

∂

∂r
)k−1(r2k−1ϕ(r)) =

k−1∑
j=0

cjr
j+1 ∂

j

∂rj
ϕ(r).

Taking r ↘ 0,

(3.27) u(t, x) = lim
r↘0

Aru(t, x) = lim
r↘0

1

c0r
v(r, t) =

1

c0
∂rϕ|r=t +

1

c0
ψ(t).

Proposition 6. If n is odd,

(3.28) u(t, x) =
1

1 · 3 · 5 · · · (n− 2)
[
∂

∂t
(
1

t

∂

∂t
)

n−3
2 tn−2Atf(x) + (

1

t

∂

∂t
)

n−3
2 tn−2Atg(x)].

Therefore, u satisfies the sharp Huygens principle. Also, u is a C2 solution if f ∈ C(n+3)/2(Rn)
and g ∈ C(n+1)/2(Rn).

When n is even, use Hadamard’s method of descent. If u solves a wave equation in R1+n, then
u is also a solution on R× Rn+1 that is independent of the last variable xn+1. Therefore,

(3.29)

1

1 · 3 · 5 · · · (n− 1)ωn
[
∂

∂t
(
1

t

∂

∂t
)

n−2
2 tn−1

∫
|y|2+y2n+1=1

f(x+ ty)dσ(y, yn+1)

+(
1

t

∂

∂t
)

n−2
2 tn−1

∫
|y|2+y2n+1=1

g(x+ ty)dσ(y, yn+1)].

Projecting the upper and lower hemispheres of Sn−1 onto |y| < 1, where dy =
√

1− |y|2dσ(y, yn+1),

(3.30)

1

1 · 3 · 5 · · · (n− 1)ωn
[
∂

∂t
(
1

t

∂

∂t
)

n−2
2 tn−1

∫
|y|2+y2n+1=1

f(x+ ty)
dy√

1− |y|2

+(
1

t

∂

∂t
)

n−2
2 tn−1

∫
|y|2+y2n+1=1

g(x+ ty)
dy√

1− |y|2
].

Theorem 1. If k = 2, 3, ... f ∈ C [n/2]+k(Rn) and g ∈ C [n/2]+k−1(Rn), then the Cauchy problem
(3.1) has a unique solution u ∈ Ck(Rn+1

+ ). Also, if f and g are supported in {x : |x| < R} and if n

is odd then u(t, x) = 0, unless |t− |x|| < R and u(t, x) = O((1 + t)−
n−1
2 ). For such data and even

n, |x| ≤ t+R in the support of u and u(t, x) = O((1 + t)−
n−1
2 (1 + |t− |x||)−n−1

2 .
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4. The Cauchy–Kowalewsky theorem

The Cauchy–Kowalewsky theorem asserts the local existence of a real analytic solution to the
Cauchy problem

(4.1)

∂mu

∂tm
+

m−1∑
j=0

∑
|α|≤m−j

Ajα(t, x)
∂α

∂xα
∂ju

∂tj
= f(t, x),

u(t0, x) = g0(x), · · · , ∂m−1
t u(t0, x) = gm−1(x).

Suppose that Ajα(t, x) and f(t, x) are real analytic on a neighborhood of (t0, x0) in Rn+1 and g0,
..., gm−1 are real analytic in a neighborhood of x0 in Rn. Without loss of generality suppose t0 = 0
and x0 = 0.

As in the case of ordinary differential equations, it is possible to convert (4.1) into a first–order
system.

(4.2)
∂

∂t


u
∂u
∂t
...

∂m−1u
∂tm

 =


0 1 0 · · · 0
0 0 1 · · · 0

0
...

...
...

...
0 0 · · · 0 (4.1).


Rewriting (4.2),

(4.3)
∂u

∂t
= L(t, x)∂xu+ L0(t, x)u+ f, u(0, x) = g(x),

where

(4.4) L(t, x)∂x =

n∑
j=1

Lj(t, x)
∂

∂xj
.

Suppose that Lj(t, x) are real analytic, K × K matrix–valued functions, and f and g are real
analytic, with values in CK . Then

(4.5) ∂j+1
t u =

j∑
l=0

(jl )[(∂
j−l
t L)∂x∂

l
tu+ (∂j−lt L0)∂

l
tu] + ∂jt f.

Then by induction, ∂j+1
t u(0, x) is uniquely determined. Therefore, (4.3) has at most one real

analytic, local solution u.

On the other hand, if we can use (4.5) to get sufficiently good estimates on ∂j+1
t u|t=0 = uj+1(x),

that the power series

(4.6) u(t, x) =

∞∑
j=0

1

j!
uj(x)t

j ,

converges for t in some neighborhood of 0, then (4.6) furnishes the solution to (4.3). Set u0(x) = g(x)
and define uj+1(x) inductively by

(4.7) uj+1(x) =

j∑
l=0

∑
ν

(jl )∂
j−l
t Lν(0, x) · ∂νul(x) + ∂j−1

t f(0, x).



12 BENJAMIN DODSON

It is useful to extend the real analytic coefficients and other data to holomorphic functions defined
on a neighborhood U in Cn. Similarly, extend L(t, x), f(t, x), g(x) as functions holomorphic in x
in a neighborhood of 0 ∈ Cn. Suppose L(t, z), f(t, z), and g(z) are all holomorphic for z in a
neighborhood of the closed unit ball B̄ ⊂ Cn with real analytic dependence on t for |t| ≤ 1.

Define the Banach spaces hj of functions f , holomorphic on B, and having the property that

(4.8) Nj(f) = sup
z∈B

δ(z)j |f(z)|,

is finite, where δ(z) = 1− |z| is the distance of z from ∂B. Now then, from (4.7),

(4.9) Nj+1(uj+1) ≤
j∑
l=0

∑
ν

∥∂j−lt Lν(0)∥L∞(B)Nj+1(∂νul) +Nj+1(∂
j
t f).

Claim 1. There exists a constant γ, depending only on n, such that

(4.10) Nj+1(∂xν
ul) ≤ γ(j + 1)Nj(ul).

Since Nj(v) ≤ Nl(v) for l ≤ j,

(4.11) Nj+1(uj+1) ≤ γ(j + 1)

j∑
l=0

∑
ν

(jl )∥∂
j−l
t Lν(0)∥L∞Nl(ul) +Nj+1(∂

j
t f).

Given the hypothesis on L, namely that L is real analytic in t for |t| ≤ 1, we can assume there
are estimates of the form

(4.12)
∑
ν

∥∂mt Lν(0)∥L∞(B) ≤ C1λ
mm!.

Now make the inductive hypothesis on ul that there exist constants C2 and µ such that

(4.13) Nl(ul) ≤ C2µ
ll!, 0 ≤ l ≤ j.

The case when l = 0 follows from the hypothesis on g(x). Also assume that for all j,

(4.14) Nj+1(∂
j
t f) ≤ C2µ

j(j + 1)!.

Plugging (4.13) and (4.14) into (4.11), yields

(4.15) Nj+1(uj+1) ≤ γC1C2(j + 1)!

j∑
l=0

λj−lµl + C2µ
j(j + 1)!.

Suppose without loss of generality that µ ≥ 2λ and µ ≥ 2γC1 + 1. Then
∑j
l=0 λ

j−lµl ≤ 2µj , so

(4.16) Nj+1(uj+1) ≤ C2(j + 1)!(2γC1)µ
j + C2µ

j(j + 1)! ≤ C2µ
j+1(j + 1)!.

This completes the induction,

(4.17) Nj(uj) ≤ C2µ
jj!, for all j.

Proposition 7. Given the real analyticity hypothesis on (4.1), there is a unique real analytic
solution u(t, x) on a neighborhood of (t0, x0) in Rn+1. The size of the region on which u(t, x) is
defined and analytic depends on the size of the regions to which the coefficients and data of (4.1)
have holomorphic extension, determined by (4.12), (4.13), and (4.17).
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It is possible to restate the Cauchy–Kowalewsky theorem in coordinate–invariant fashion. Let
S be a smooth hypersurface in an open set O ⊂ Rn. If S is noncharacteristic for a differential
operator P = p(x,D) of order m if for each x ∈ S, σP (x, ν) = pm(x, ν) is invertible, where ν is a
nonvanishing normal to S at x.

Remark 3. Let Pu(x) =
∑

|α|≤m pαD
αu(x), where Dα = Dα1

1 · · ·Dαn
n , where Dj = 1

i
∂
∂xj

. The

coefficients pα(x) could be matrix valued. Then,

(4.18) pm(x, ξ) =
∑

|α|=m

pα(x)ξ
α,

is called the principal symbol.

Consider the following Cauchy problem,

(4.19) p(x,D)u = f, u|S = g0, Y u|S = g1, · · · Y m−1u|S = gm−1.

Then on any neighborhood of x0 ∈ S, we can make an analytic change of variables for some real
analytic invertible A(x), Q = A(x)−1p(x,D) has the form of (4.1), and S is given by t = 0. Then

∂jt j|S can be determined inductively from u|S , ..., Y ju|S .

Proposition 8. If p(x,D) is a differential operator of order m with real analytic coefficients on O,
S is a real analytic hypersurface in O, Y is a real analytic vector field transverse to S, and f and
gj are real analytic, then there exists a unique real analytic solution to (4.1) on some neighborhood
of S.

Now to prove a uniqueness result.

Proposition 9. Let P = p(x,D) be a differential operator of order m, with real analytic coefficients
on an open set O ⊂ Rn, and let S ⊂ O be a smooth noncharacteristic hypersurface. Suppose that
u ∈ Hm(O) solves

(4.20) p(x,D)u = 0 on O, u|S = 0, Y u|S = 0, · · · Y m−1u|S = 0.

Proof. Suppose O \ S has two connected components, O+ and O−. Alter u to produce v so that
v = u(x) ofr x ∈ O+ and v = 0 for x ∈ O−. Then by (4.17),

(4.21) v ∈ Hm(O), p(x,D)v = 0, on O.

Choose x0 ∈ S. If S is noncharacteristic at x0, then there exists a real analytic hypersurface Σ0,
tangent to S at x0. Make a real analytic change of variable so that Q = A(x)−1p(x,D) has the
form (4.1), and Σ0 is given by t = 0, say xn = 0. Choosing Σ0 appropriately, arrange S so that
S is given by t = φ(x′)2 ≥ |x′|2, where x′ = (x1, ..., xn−1). The adjoint operator Q∗ also has real
analytic coefficients on O. Let Στ = O ∩ {t = τ}. Let Στ = O ∩ {t = τ}.

By the Cauchy–Kowalewski theorem, there exists δ > 0 such that, for τ ∈ (−δ, δ) and a polyno-
mial a on Rn,

(4.22) Q∗w = a, w = ∂tw = ... = ∂m−1
t w = 0,

on Στ has a solution w that is real analytic on {x ∈ O : |x − x0| < δ +
√
δ}. If we pick τ ∈ (0, δ)

and let Uτ be the set bounded by Στ and S,

(4.23) (u, a)L2(Uτ ) = (v,Q∗w)L2(Uτ ) = (Qv,w) = 0.

By the Stone–Weierstrass theorem, since the polynomials are dense in C(Uτ ), u = 0 on Uτ . □
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4.1. Some Banach spaces of harmonic functions. Let B be the unit ball in Rk and let Xj be
the space of harmonic functions f on B such that

(4.24) Nj(f) = sup
x∈B

δ(x)j |f(x)|,

is finite, where δ(x) = 1 − |x| is the distance of x from ∂B. When k = 2n, R2n ≈ Cn via
zl = xl + ixn+l. Then the space hj of holomorphic functions on B such that (4.24) is finite is a
closed, linear subspace of Xj . Now then,

(4.25)
∂

∂zl
: hj → hj+1,

and

(4.26) ∂l =
∂

∂xl
: Xj → Xj+1.

Now then, recall the Poisson integral formula on Rk.

Lemma 3. If u is harmonic on Ω ⊂ Rk and p ∈ Br(p) ⊂ Ω, then for any ω ∈ Sk−1,

(4.27) ω · ∇u(p) = k − 1

r2
Avg∂Br(p)

{ω · (y − p)u(y)}.

Therefore,

(4.28)
∂

∂xl
u(x) =

k − 1

ρ2
Avg∂Bρ(x){(yl − xl)u(y)}.

Now then, for y ∈ ∂Bρ(x), |yl − xl| ≤ ρ and δ(y) ≥ δ(x)− ρ. Taking ρ = βδ(x), 0 < β < 1,

(4.29) |∂lu(x)| ≤
k − 1

ρ2
· ρ[(1− β)δ(x)]−jNj(u) =

k − 1

β(1− β)j
δ(x)−(j+1)Nj(u).

Therefore, for u ∈ Xj ,

(4.30) Nj+1(∂lu) ≤
k − 1

β(1− β)j
Nj(u).

The factor on the right is minimized at β = 1
j+1 . Plugging this into (4.30),

(4.31) (1− 1

j + 1
)−j ≤ e.

Indeed,
∑∞
n=1

1
(j+1)n = 1

j , so by Taylor expansion log(1− 1
j+1 ) ≥ − 1

j , so (4.31) follows. Therefore,

(4.32) Nj+1(∂lu) ≤ γk(j + 1)Nj(u), γk = (k − 1)e.

Also since ∂
∂zl

= 1
2 (∂l − i∂n+l), for all j ≥ 0, u ∈ hj ,

(4.33) Nj+1(
∂u

∂zl
) ≤ γ2n(j + 1)Nj(u).

Therefore, arguing by induction on (4.32), for u ∈ X0,

(4.34) Nm(Dαu) ≤ γmk (m!)N0(u), |α| = m.

Corollary 1. The estimate (4.34) implies real analyticity of harmonic functions.
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5. Geometrical optics

In this section we look at solutions to the wave equation,

(5.1)
∂2u

∂t2
−∆u = 0,

where R×M, where M is a Riemannian manifold, having initial data with a simple jump across
a smooth surface,

(5.2) u(0, x) = a(x)H(φ(x)),

where H is a Heaviside function, H(s) = 1 for s > 0, H(s) = 0 for s < 0. Alternatively suppose
the initial data is highly oscillatory,

(5.3) u(0, x) = a(x)F (λφ(x)),

where λ > 0 is large and F ∈ C∞(R) is bounded, together with all its derivatives, as well as an
infinite sequence of antiderivatives. Assume a ∈ C∞

0 (M) and ∇φ ̸= 0 on a neighborhood U of
supp(a). Also suppose

(5.4) ut(0, x) = 0.

We show that for |t| < T , for T sufficiently small, u(t, x) has the asymptotic behavior

(5.5) u(t, x) ∼
∑
j≥0

uj(t, x),

where in case (5.2),

(5.6) uj(t, x) =
∑
±
a±j (t, x)hj(φ

±(t, x)),

for certain functions hj ∈ C∞(R \ {0}) whose j-th derivative jumps at 0. In case (5.3),

(5.7) uj(t, x) = uj(t, x, λ) =
∑
±
λ−ja±j (t, x)Fj(λφ

±(x)),

for certain Fj ∈ C∞(R). In both cases, a±j , φ
± ∈ C∞((−T, T )×M) with

(5.8) φ±(0, x) = φ(x),

and a+0 (0, x) + a−0 (0, x) = a(x). The functions φ± are called phase functions and a±j are called

amplitudes. Take h0 = H and F0 = F . Also, u−
∑
j≤N uj is relatively smooth and relatively small

for N large.

Recall the product rule and chain rule,

(5.9)
∆(uv) = (∆u)v + 2∇u · ∇v + u(∆v),

∆F (u) = F ′(u)∆u+ F ′′(u)|∇u|2.

Plugging (5.9) into the wave equation with uj(t, x) =
∑

± λ
−ja±j (t, x)Fj(λφ

±(t, x)),

(5.10)
(∂2t −∆)uj(t, x) =

∑
±

[λ2−ja±j F
′′
j (λφ

±)(|∂tφ±|2 − |∇xφ
±|2)

+λ1−jF ′
j(λφ

±)(2φ±
t ∂ta

±
j − 2∇xφ

± · ∇xa
±
j + a±j ∆φ

±)− λ−jFj(λφ
±)(□a±j )].
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Grouping the terms with coefficients λµ,

(5.11) µ = 2 :
∑
±
a±0 F

′′(λφ±)(|∂tφ±|2 − |∇xφ
±|2) = 0,

(5.12)

µ = 1 :
∑
±

[a±1 F
′′
1 (λφ

±)(|∂tφ±|2−|∇xφ
±|2)+F ′(λφ±)(2φ±

t ∂ta
±
0 −2∇xφ

±·∇xa
±
0 +a

±
0 □φ

±)] = 0,

(5.13)
µ = 0 :

∑
±

[a±j+1F
′′
j+1(λφ

±)(|∂tφ±|2 − |∇xφ
±|2)

+F ′
j(λφ

±)(2φ±
t ∂ta

±
j − 2∇xφ

± · ∇xa
±
j + a±j □φ

±) + Fj−1(λφ
±)(□a±j−1))] = 0.

First observe that (5.11) vanishes provided φ± satisfies the eikonal equation

(5.14) |∂tφ±|2 − |∇xφ
±|2 = 0.

Lemma 4. There is a neighborhood U of K = supp(a) and a T > 0 such that this initial value
problem has a unique pair of solutions φ± ∈ C∞((−T, T )× U) satisfying

(5.15) φ±(0, x) = φ(x), ∂tφ
±(0, x) = ±|∇xφ(x)|.

Proof. Consider the general first order partial differential equation

(5.16) F (x, u,∇u) = 0,

where F (u, x, ξ) is smooth on Ω×R×Rn and u|S = v, where S is a smooth hypersurface of Ω and
v ∈ C∞(S). Set ζ0 = ( ∂v∂x1

, ..., ∂v
∂xn−1

) at x0 and assume that

(5.17) F (x0, v(x0), (ζ0, τ0)) = 0,
∂F

∂ξn
̸= 0.

This is the noncharacteristic hypothesis.

Definition 1 (Eikonal equation). An eikonal equation is an equation of the form

(5.18) F (x,∇u) = 0.

Note that in the case of Lemma 4,

(5.19) F (x1, ..., xn+1, ξ1, ..., ξn+1) = ξ21 + ...+ ξ2n − ξ2n+1 = 0,

where ξn+1 = ∂tφ and ξi =
∂φ
∂xi

for 1 ≤ i ≤ n. Here we let S = Rn be a hypersurface in Rn+1.
Then

(5.20)
∂F

∂ξn+1
̸= 0,

on S, since |∇φ| ≠ 0 on S.

Returning to the general eikonal equation, we say that Λ is a graph of ξ if and only if ξ = Ξ(x)
is a graph of du.

Proposition 10. The surface is locally a graph if and only if

(5.21)
∂Ξj
∂xk

=
∂Ξk
∂xj

.
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Proof. The condition (5.21) is equivalent to the condition that
∑
j Ξjdxj is closed. Indeed,

(5.22) d(
∑
j

Ξjdxj) =
∑ ∂Ξj

∂xk
dxk ∧ dxj = 0.

Therefore, by Poincare’s lemma,
∑

Ξjdxj = dα for some 0–form α. This implies that ξ = du. □

Proposition 11. The surface Λ is the graph of u locally if and only if σ(X,Y ) = 0 for all X, Y
tangent to Λ, where σ is the symplectic form

(5.23) σ =

n∑
j=1

dξj ∧ dxj .

Proof. Take

(5.24) Xj =
∂

∂xj
+
∑
l

∂Ξl
∂xk

∂

∂ξl
.

Now then,

(5.25) σ(Xj , Xk) = σ(
∂

∂xj
+
∑
l

∂Ξl
∂xj

∂

∂ξl
,
∂

∂xk
+
∑
l′

∂Ξl
∂xj

∂

∂ξl
) =

∂Ξj
∂xk

− ∂Ξk
∂xj

.

□

Now specify a surface Σ of dimension n− 1 over S = {xn = 0} by

(5.26) Σ = {(x, ξ) : xn = 0, ξj = ∂jv, 1 ≤ j ≤ n− 1, F (x, ξ) = 0}.
Since ∂F

∂ξn
̸= 0, F (x′, 0; ∂1v, ..., ∂n−1v, τ) = 0 implicitly defines τ(x′). This defines a smooth surface

of dimension n− 1 through (x0, (ζ0, τ0)).

Now define Λ to be the union of integral curves of the Hamiltonian vector field HF through Σ,

(5.27) HF =

n∑
j=1

∂F

∂ξj

∂

∂xj
− ∂F

∂xj

∂

∂ξj
.

Since HF has a nonvanishing ∂
∂xn

component over S, locally Λ is the graph of a function ξ = Ξ(x).

Also, it is straightforward to see from (5.27) that HFF = 0.

Theorem 2. Λ is locally a graph of du for a solution u to F (x, du) = 0, u|S = v.

Proof. Let X, Y be tangent to Λ at (x, ξ) in Λ ⊂ R2n and take σ(X,Y ). Suppose x ∈ S and
(x, ξ) ∈ Σ. Decompose X = X1 +X2 and Y = Y1 + Y2 where X1 and Y1 are tangent to Σ, X2, Y2
are multiples of HF at (x, ξ).

Since Σ is the graph of a gradient,

(5.28) σ(X1, Y1) = 0.

Next,

(5.29)

σ(X1, Y2) = cσ(X1, HF ) = cσ(
∂

∂xj
+

∑
l

∂Ξl
∂xj

∂

∂ξl
,

n∑
j=1

∂F

∂ξj

∂

∂xj
− ∂F

∂xj

∂

∂ξj
)

=
∂F

∂xj
+

∑
l

∂Ξl
∂xj

∂F

∂ξl
= Xj(F ) = 0.
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The last equality follows from the fact that F = 0 on Σ and X is tangent to Σ.
Now suppose X and Y are tangent to Λ at a point F t(x, ξ), where (x, ξ) ∈ Σ and F t is the flow

generated by HF . Then

(5.30) σ(X,Y ) = (F t∗σ)(F t
♯X,F t

♯Y ).

Now then, F t
♯X and F t

♯Y are tangent to Λ at (x, ξ) ∈ Λ. It is a theorem of symplectic geometry
that HF leaves the symplectic form invariant. Therefore,

(5.31) σ(X,Y ) = σ(F t
♯X,F t

♯Y ) = 0.

□

This proves the existence of a solution to the eikonal equation. □

Now turn to the µ = 1 term, given by (5.12). The term (5.12) vanishes provided

(5.32) 2φ±
t

∂a±0
∂t

= 2∇xφ
± · ∇xa

±
0 − a±0 (□φ

±).

By (5.15), φ± ̸= 0 on U for |t| sufficiently small. The linear equations (5.32) for a±0 are called the
first transport equation. Now then, using (5.3), (5.4),

(5.33) a+0 + a−0 = a, φ+
t a

+
0 + φ−

t a
−
0 = 0, at t = 0.

Therefore,

(5.34) a+0 (0, x) = a−0 (0, x) =
1

2
a(x).

We have a±0 ∈ C∞((−T, T )× U), compactly supported in U for each t ∈ (−T, T ) for T sufficiently
small.

Now turn to the µ = 1− j ≤ 0 term, j ≥ 1. This term vanishes provided

(5.35) Fj(s) =

∫
Fj−1(s)ds,

and

(5.36) 2φ±
t

∂a±j
∂t

− 2∇xφ
± · ∇xa

±
j + a±j (□φ

±) = −□a±j−1.

Equation (5.36) is called the higher order transport equations. If u(t, x) is given by (5.5) and (5.7),

(5.37) ∂tuj ∼
∑
±

[λ1−ja±j F
′
j(λφ

±)φ±
t + λ−j(∂ta

±
j )Fj(λφ

±)].

Using (5.4) and also requiring that uj(0, x) = 0 for j ≥ 1, we require that

(5.38) a+j + a−j = 0,
∑
±

[a±j F
′
j(λφ

±)φ±
t + (∂ta

±
j−1)Fj−1(λφ

±)] = 0, at t = 0.

Using (5.35) and (5.15),

(5.39) a+j + a−j = 0, φ+
t (a

+
j − a−j ) = −∂t(a+j−1 + a−j−1), at t = 0.

Then the transport equations (5.36) have unique solutions a±j ∈ C∞((−T, T ) × U) that are com-

pactly supported in U for each t ∈ (−T, T ).
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Now obtain some estimates on the solutions. Set

(5.40) vN =

N∑
j=1

uj .

Then vN satisfies

(5.41)
∂2vN
∂t2

−∆vN = rN (t, x), vN (0, x) = a(x)F (λφ(x)), ∂tvN (0, x) = ρN (x),

where

(5.42) ρN (x) = λ−N
∑
±
∂ta

±
N (0, x) · FN (λφ),

and

(5.43) rN (t, x) = λ−N
∑
±

(□a±N )FN (λφ±).

Consider the following elementary result.

Proposition 12. If φ± ∈ C∞((−T, T )×M) and b ∈ C∞
0 (M), then

(5.44) {λ−µb(x)FN (λφ±) : λ > 1}.

is bounded in Cj((−T, T ), Hµ−j(M)) for each µ, j ≥ 0 provided FN (s) and all its derivatives are
bounded.

Now, u− vN satisfies

(5.45)
(∂2t −∆)(u− vN ) = −rN ,

(u− vN )(0, x) = 0, ∂t(u− vN )(0, x) = −ρN (x).

Therefore, we have the following.

Proposition 13. The geometric optics construction of vN produces an approximation to the solu-
tion to (5.1), (5.3), and (5.4) satisfying

(5.46) u− vN is O(λ−ν) in Cj((−T, T ), HN+1−ν−j(M)),

for 0 ≤ ν ≤ N , j ≥ 0, as long as, for each N , FN (s) and all its derivatives are bounded.

6. The formation of caustics

The geometrical optics construction of the previous section breaks down when the eikonal equa-
tion does not have a global solution. Take M = Rn with the flat metric. Then define

(6.1) φ±(t, y) = φ(x), y = x± tN(x), N(x) = |∇φ(x)|−1∇φ(x).

It is straightforward to verify that by the implicit function theorem, for t small, y = x ± tN(x) is
1− 1 and onto for x in a compact set. Moreover, if ∇φ is nowhere zero, then the level sets of φ are
n − 1–dimensional manifolds. Finally, if y is in a level set for φ(t, y) for some t > 0, and y is the

image of x, ∇φ(x)
|∇φ(x)| is orthogonal to the level set intersecting y at t. Now then, since

(6.2) (∂tφ(t, y)|t=0)
2 = |∇yφ(0, y)|2,

φ(t, y) satisfies the eikonal equation for t small.
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Therefore, if S ⊂ Rn is a level set of φ, then for fixed t, the level sets of φ±(t, ·) are the images
F±t(S) under the maps F±t(S) on Rn defined by F±(x) = x ± tN(x). As |t| gets larger, these
images can develop singularities or caustics. Compute

(6.3) DN(x) = |∇φ(x)|−1∇i∇jφ(x)− |∇φ(x)|−3∇j∇kφ(x)∇kφ(x)∇iφ(x).

Observe that DN(x) annihilates N(x). Indeed,

(6.4)
DN(x) ·N(x) = |∇φ(x)|−2∇i∇jφ(x)∇iφ(x)− |∇φ(x)|−4∇j∇kφ(x)∇kφ(x)∇iφ(x)∇iφ(x)

= |∇φ(x)|−2∇i∇jφ(x)∇iφ(x)− |∇φ(x)|−2∇j∇kφ(x)∇kφ(x) = 0.

If x ∈ Σβ = {φ(x) = β}, then DN(x) leaves TxΣβ invariant and acts on it as −A, the negative of
the Weingarten map. Therefore, the eigenvalues of DN(x) are 0 and the negatives of the principal
curvatures of Σβ at x. Therefore, the derivative

(6.5) DFt(x) = I + tDN(x),

is singular if and only if 1
t is the value of a principal curvature of Σβ at x.

Recall the wave equation

(6.6)

∂2u

∂t2
−∆u = 0, on R× R2,

u(0, x) = a(x)F (λφ(x)), ut(0, x) = 0.

Take F (s) = eis. As before, a ∈ C∞
0 (R2). There is a short–time approximation solution of the form

(6.7) u(t, x) ∼
∑
±

∑
j≥0

λ−ja±j (t, x)e
iλφ±(t,x).

Remark 4. Here we absorb i−j into the amplitudes.

We want to obtain an asymptotic formula as λ→ ∞ near the caustics.

Recall that the exact solution to (6.6) is

(6.8) u(t, x) = R′(t) ∗ u0,

where u0(x) = a(x)eiλφ(x) and R′(t) is the t–derivative of the Riemann function

(6.9) R(t, x) = c2(t
2 − |x|2)−1/2, for |x| < t, 0, for |x| > t.

Therefore, for a fixed t > 0, R′(t) is a radial distribution that is singular precisely on a circle of
radius t centered at the origin. Therefore, we expect u to have the form

(6.10) v(t, x) =
1

t

∫
|y−x|=t

u0(y)ds(y) =
1

2π

∫ π

−π
a(x+ t(cos(s), sin(s)))eiλφ(x+t(cos(s),sin(s)))ds.

An integral of the form

(6.11) I(λ) =

∫ ∞

−∞
a(s)eiλψ(s)ds, a ∈ C∞

0 (R2),

can be analyzed by the stationary phase method. If ψ has no critical points,

(6.12) I(λ) =

∫
a(s)(

1

iλψ′
d

ds
)keiλψ(s)ds,

and integrating by parts.
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If ψ has at least one critical point at s0, and that critical point is nondegenerate, and a is
supported near s0, then ψ(s)−ψ(s0) or its negative has a smooth, real–valued square root t(s) such
that t(s0) = 0, t′(s0) > 0. Then

(6.13) I(λ) = eiλφ(s0)
∫
b(t)eiαλt

2

dt, b ∈ C∞
0 (R).

Then if x = t2,

(6.14) I(λ) =
1

2
eiλφ(s0)

∫ ∞

0

[b(x1/2) + b(−x1/2)]x−1/2eiαλxdx ∼ eiλφ(s0)λ−1/2[α0 + α1λ
−1 + ...].

If φ has a finite number of critical points,

(6.15) I(λ) ∼
∑
j

Aj(λ)λ
−1/2eiλψ(sj), Aj(λ) ∼ α0j + α1jλ

−1 + ...

If a(s) = a(y, s) and ψ(s) = ψ(y, s) depend smoothly on the parameters y, then we have (6.15) for
I(λ) = I(y, λ) with αkj = αkj(y) and ψ(sj) = ψ(y, sj(y)) depending smoothly on y as long as the
critical points of ψ(y, s) as a function of s are all nondegenerate and depend smoothly on y.

Now then, suppose ∇φ(y) ̸= 0 for y ∈ supp(a). Given x ∈ R2, t > 0, denote by St(x) the circle of
radius t centered at x. The way in which St(x) is tangent to various level curves Σβ of φ determines
the nature of the stationary points of the phase in the last integral in (6.10).

If 1
t is bigger than the largest curvature of any Σβ then St(x) will have only simple tangencies

with such level curves. Now then, suppose y ∈ Σβ and 1
t = κ(y), the curvature of Σβ at y. Let

x = y + tN(y). Then St(x) has higher order tangency with Σβ at y. Suppose y is not a stationary
point for κ on Σβ at a nonzero rate at y. In this case,

(6.16) ψ(s0) = β, ψ′(s0) = ψ′′(s0) = 0, ψ′′′(s0) ̸= 0.

In this case, ψ(s)− β has a smooth cube root near s = s0, call it t(s), t(s0) = 0, t′(s0) > 0. Then

(6.17) I(λ) = eiλφ(s0)
∫
b(t)eiλt

3

dt, b ∈ C∞
0 (R).

Setting x = t3,

(6.18) I(λ) =
1

3
eiλφ(s0)

∫
b(x1/3)x−2/3eiλxdx ∼ eiλφ(x0)λ−1/3[α0 + α1λ

−1 + ...].

7. Pseudodifferential operators

Write the Fourier inversion formula as

(7.1) f(x) =

∫
f̂(ξ)eix·ξdξ,

where

(7.2) f̂(ξ) = (2π)−n
∫
f(x)e−ix·ξdx.

Remark 5. We customarily write (7.1) and (7.2) with a coefficient of (2π)−n/2. Of course, it is
possible to distribute the (2π)−n between (7.1) and (7.2) however we wish.
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If Dj =
1
i
∂
∂xj

, Dα = Dα1
1 · · ·Dαn

n , one obtains

(7.3) Dαf(x) =

∫
ξαf̂(ξ)eix·ξdξ.

Now suppose p(x,D) is a differential operator,

(7.4) p(x,D) =
∑
|α|≤k

aα(x)D
α.

Then,

(7.5) p(x,D)f(x) =

∫
p(x, ξ)f̂(ξ)eix·ξdξ,

where

(7.6) p(x, ξ) =
∑
|α|≤k

aα(x)ξ
α.

It is possible to generalize (7.5) and (7.6) to belong to a number of different symbol classes.

Definition 2 (Symbol class). For ρ, δ ∈ [0, 1], m ∈ R, define Smρ,δ to consist of C∞ functions p(x, ξ)
satisfying

(7.7) |Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ⟨ξ⟩m−ρ|α|+δ|β|.

We say that the operator defined by (7.5) belongs to OPSmρ,δ. We say that p(x, ξ) is the symbol of

p(x,D).

Remark 6. When p(x,D) is a differential operator of the form (7.4) and aα(x) and all its deriva-
tives are bounded, then ρ = 1, δ = 0, and m = k.

Next suppose there are smooth pm−j(x, ξ) that are homogeneous in ξ of degree m− j for |ξ| ≥ 1,
that is, pm−j(x, rξ) = rm−jpm−j(x, ξ) for r, |ξ| ≥ 1, and if

(7.8) p(x, ξ) ∼
∑
j≥0

pm−j(x, ξ),

in the sense that

(7.9) p(x, ξ)−
N∑
j=0

pm−j(x, ξ) ∈ Sm−N−1
1,0 ,

for all N , then we say that p(x, ξ) ∈ Smcl .

Remark 7. Again observe that if p(x,D) is a differential operator of order m then p ∈ Smcl .

Definition 3. We call pm(x, ξ) the principal symbol of p(x,D).

Claim 2. We have the estimate

(7.10) p(x,D) : S(Rn) → S(Rn).

Proof. It is straightforward to verify that if f ∈ S(Rn) then since p ∈ Smρ,δ,
∫
p(x, ξ)f̂(ξ)eix·ξdξ is

bounded. Next, since xαeix·ξ = (−Dξ)
αeix·ξ, integrating by parts implies xα

∫
p(x, ξ)f̂(ξ)eix·ξdξ is

bounded. Taking a derivative

(7.11) Dj(p(x, ξ)e
ix·ξ) = ξjp(x, ξ)e

ix·ξ +Djp(x, ξ)e
ix·ξ,

which proves the bound. □
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Lemma 5. If δ < 1, then

(7.12) p(x,D) : S ′(Rn) → S ′(Rn).

Proof. Given u ∈ S ′ and v ∈ S, then formally,

(7.13) ⟨v, p(x,D)u⟩ = ⟨pv, û⟩,

where

(7.14) pv(ξ) = (2π)−n
∫
v(x)p(x, ξ)eix·ξdx.

Integrating by parts,

(7.15) ξαpv(ξ) = (2π)−n
∫
Dα
x (v(x)p(x, ξ))e

ix·ξdx,

so

(7.16) |pv(ξ)| ≤ Cα⟨ξ⟩m+δ|α|−|α|.

Therefore, if δ < 1, pv(ξ) is rapidly decreasing. Similarly, we get a rapid decrease of derivatives of
pv(ξ), so pv(ξ) ∈ S. Therefore, the right hand side of (7.13) is well–defined. □

7.1. Adjoints and products. Given p(x, ξ) ∈ Smρ,δ the adjoint has the formula

(7.17) p(x,D)∗v = (2π)−n
∫
p(y, ξ)∗ei(x−y)·ξv(y)dydξ.

The amplitude p(y, ξ)∗ is not a function of (x, ξ), so we need to transform (7.17) into such a function.
To do this, define a general class of operators

(7.18) Au(x) = (2π)−n
∫
a(x, y, ξ)ei(x−y)·ξu(y)dydξ.

We say that a(x, y, ξ) ∈ Smρ,δ1,δ2 if

(7.19) |Dγ
yD

β
xD

α
ξ a(x, y, ξ)| ≤ Cαβγ⟨ξ⟩m−ρ|α|+δ1|β|+δ2|γ|.

We can transform (7.18) into
(7.20)

(2π)−n
∫
q(x, ξ)ei(x−y)·ξu(y)dydξ, q(x, ξ) = (2π)−n

∫
a(x, y, η)ei(x−y)·(η−ξ)dydη = eiDξ·Dya(x, y, ξ)|y=x.

Indeed, since (2π)−n
∫
ei(y

′−y)·ξdξ = δ(y′ − y),

(7.21)

(2π)−2n

∫ ∫
a(x, y′, η)ei(x−y

′)·(η−ξ)ei(x−y)·ξu(y)dydξdηdy′

= (2π)−n
∫
a(x, y, η)δ(y′ − y)ei(x−y

′)·ηdy′dydη = (2π)−n
∫
a(x, y, η)ei(x−y)·ηdydη.

Now then, formally making a Taylor expansion of a(x, y, η),

(7.22) (2π)−n
∫
a(x, x, η)ei(x−y)·(η−ξ)dydη =

∫
a(x, x, η)δ(η − ξ)dη = a(x, x, ξ).
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Next, integrating by parts,
(7.23)

(2π)−n
∫
∂ya(x, y, η)|y=x(y − x)ei(x−y)·(η−ξ)dydη = (2π)−n

∫
∂ya(x, y, η)|y=x

−1

i
∂η(e

i(x−y)·(η−ξ))dydη

=
1

i

∫
∂η∂ya(x, y, η)|x=yei(x−y)·(η−ξ)dydη = iDξ ·Dya(x, y, ξ)|x=y,

which gives

(7.24) q(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξD

α
y a(x, y, ξ)|y=x.

If a(x, y, ξ) ∈ Smρ,δ1,δ2 with 0 ≤ δ2 < ρ ≤ 1, then the general term in (7.24) belongs to S
m−(ρ−δ2)|α|
ρ,δ

where δ = max{δ1, δ2}.

Proposition 14. If a(x, y, ξ) ∈ Sm|rho,δ1,δ2 with 0 ≤ δ2 < ρ ≤ 1, then (7.18) defines an operator

(7.25) A ∈ OPSmρ,δ, δ = max{δ1, δ2}.
Furthermore, A = q(x,D) where q(x, ξ) has the asymptotic expansion

(7.26) q(x, ξ) =
∑

|α|<N

i|α|

α!
Dα
ξD

α
y a(x, y, ξ)|y=x = rN (x, ξ) ∈ S

m−N(ρ−δ2)
ρ,δ .

Applying Proposition 14 to (7.17), we obtain

Proposition 15. If p(x,D) ∈ OPSmρ,δ, 0 ≤ δ < ρ ≤ 1, then

(7.27) p(x,D)∗ = p∗(x,D) ∈ OPSmρ,δ,

with

(7.28) p∗(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξD

α
xp(x, ξ)

∗.

It is possible to utilize this argument for products of pseudodifferential operators.

Proposition 16. Given pj(x,D) ∈ OPS
mj

ρj ,δj
, suppose

(7.29) 0 ≤ δ2 < ρ ≤ 1, ρ = min{ρ1, ρ2}.
Then

(7.30) p1(x,D)p2(x,D) = q(x,D) ∈ OPSm1+m2

ρ,δ ,

with δ = max{δ1, δ2}, and

(7.31) q(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξ p1(x, ξ)D

α
xp2(x, ξ).

Proof. Indeed, formally computing the product,
(7.32)

p1(x,D)p2(x,D) = (2π)−2n

∫
p1(x, η)e

i(x−y)·η
∫
p2(y, ξ)e

i(y−y′)·ξu(y′)dy′dydηdξ

= (2π)−n
∫
ei(x−y

′)·ξA(x, ξ)u(y′)dy′dξ, A(x, ξ) = (2π)−n
∫
p1(x, η)p2(y, ξ)e

i(x−y)·(η−ξ)dydη.
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Again make a Taylor expansion of p2(y, ξ) in y.

(7.33) (2π)−n
∫
p1(x, η)p2(x, ξ)e

i(x−y)·(η−ξ)dydη =

∫
p1(x, η)p2(x, ξ)δ(η−ξ)dη = p1(x, ξ)p2(x, ξ).

Next, integrating by parts,

(7.34)

(2π)−n
∫
p1(x, η)∂yp2(y, ξ)|y=x(y − x)ei(x−y)·(η−ξ)dydη

= (2π)−n
∫
p1(x, η)∂yp2(y, ξ)|y=x

−1

i
∂η(e

i(x−y)·(η−ξ))dydη = ∂ηp1(x, η)∂yp2(y, ξ)|y=x,η=ξ.

□

Now then, if Pj = pj(x,D) ∈ OPS
mj

ρ,δ are scalar and 0 ≤ δ < ρ ≤ 1, then the leading order terms

in the expansions of the symbols of P1P2 and P2P1 agree. Therefore, if Pj ∈ OPS
mj

ρ,δ are scalar,

[P1, P2] ∈ OPS
m1+m2−(ρ−δ)
ρ,δ . Moreover, the leading order term in the expansion of the symbol of

[P1, P2] is given by the Poisson bracket

(7.35) {p1, p2}(x, ξ) =
∑
j

∂p1
∂ξj

∂p2
∂xj

− ∂p1
∂xj

∂p2
∂ξj

,

with

(7.36) [P1, P2] = q(x,D), q(x, ξ) =
1

i
{p1, p2}(x, ξ) mod S

m1+m2−2(ρ−δ)
ρ,δ .

7.2. Elliptic operators and parametrices. We say that p(x,D) ∈ OPSmρ,δ is elliptic if for some
r <∞,

(7.37) |p(x, ξ)−1| ≤ C⟨ξ⟩−m, for |ξ| ≥ r.

Therefore, if ψ(ξ) ∈ C∞(Rn), ψ = 0 for |ξ| ≤ r, ψ = 1 for |ξ| ≥ 2r, then by the chain rule,

(7.38) ψ(ξ)p(x, ξ)−1 = q0(x, ξ) ∈ S−m
ρ,δ .

Then by (7.31),

(7.39)
q0(x,D)p(x,D) = I + r0(x,D),

p(x,D)q0(x,D) = I + r̃0(x,D),

with

(7.40) r0(x, ξ), r̃0(x, ξ) ∈ S
−(ρ−δ)
ρ,δ .

Make the formal expansion

(7.41) I − r0(x,D) + r0(x,D)2 − ... ∼ I + s(x,D) ∈ OPS0
ρ,δ,

and setting q(x,D) = (I + s(x,D))q0(x,D) ∈ OPS−m
ρ,δ , we have

(7.42) q(x,D)p(x,D) = I + r(x,D), r(x, ξ) ∈ S−∞.

Similarly, let q̃(x,D) ∈ OPS−m
ρ,δ satisfy

(7.43) p(x,D)q̃(x,D) = I + r̃(x,D), r̃(x, ξ) ∈ S−∞.

Now then, evaluating q(x,D)p(x,D)q̃(x,D) = q(x,D) = q̃(x,D) mod OPS−∞. In fact,

(7.44) q(x,D)p(x,D) = I mod OPS−∞, p(x,D)q(x,D) = I mod OPS−∞.
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Definition 4. q(x,D) is the two–sided parametrix for p(x,D).

8. Hyperbolic evolution equations

Now we turn to examining first order systems of the form

(8.1)
∂u

∂t
= L(t, x,Dx)u+ g(t, x), u(0) = f.

Assume L(t, x, ξ) ∈ S1
1,0 with smooth dependence on t, so

(8.2) |Dj
tD

β
xD

α
ξ L(t, x, ξ)| ≤ Cjαβ⟨ξ⟩1−|α|,

where L(t, x, ξ) is aK×K matrix–valued function. Make the hypothesis of symmetric hyperbolicity,

(8.3) L(t, x, ξ)∗ + L(t, x, ξ) ∈ S0
1,0.

Suppose f ∈ Hs(Rn), s ∈ R, g ∈ C(R, Hs(Rn)).
Our strategy is to obtain a solution to (8.1) as a limit of solutions uϵ to

(8.4)
∂uϵ
∂t

= JϵLJϵuϵ + g, uϵ(0) = f,

where

(8.5) Jϵ = φ(ϵDx),

for some φ(ξ) ∈ S(Rn), φ(0) = 1. The family of operators Jϵ is called the Friedrichs mollifier, for
ϵ ∈ (0, 1], Jϵ is bounded on OPS0

1,0.
For any ϵ > 0, JϵLJϵ is a bounded linear operator on each Hs and solvability of (8.4) is el-

ementary. The next task is to obtain estimates on uϵ independent of ϵ ∈ (0, 1]. Use the norm
∥u∥Hs = ∥Λsu∥L2 . Now then,

(8.6)
d

dt
∥Λsuϵ(t)∥2L2 = 2Re(ΛsJϵLJϵuϵ,Λ

suϵ) + 2Re(Λsg,Λsuϵ).

Now then,

(8.7) 2Re(ΛsJϵLJϵuϵ,Λ
suϵ) + 2Re([Λs, L]Jϵuϵ,Λ

sJϵuϵ).

By (8.3), L+ L∗ = B(t, x,D) ∈ OPS0
1,0,

(8.8) (B(t, x,D)ΛsJϵuϵ,Λ
sJϵuϵ) ≤ C∥Jϵuϵ∥2Hs .

Proposition 17. If p(x, ξ) ∈ S0
1,0, then p : L

2(Rn) → L2(Rn).

Proof. If a ∈ S−m
ρ,δ for m sufficiently large, ρ > δ, a has a kernel K(x, x − y) ≲ 1

(1+|x−y|)n+1 , and

thus, p : Lp → Lp for any 1 ≤ p ≤ ∞. Therefore, for any σ > 0, if p ∈ S−σ
ρ,δ , p : L2 → L2, since

(P ∗P )k ∈ S−kσ
ρ,δ , which implies (P ∗P )k : L2 → L2, so P : L2 → L2.

Now let q(x,D) = p(x,D)∗p(x,D) ∈ OPS0
ρ,δ. Then suppose |q(x, ξ)| ≤ M − b for b > 0, so

A(x, ξ) = (M −Re(q(x, ξ)))1/2 ∈ S0
ρ,δ, and therefore,

(8.9) A(x,D)∗A(x,D) =M − q(x,D) + r(x,D), r(x,D) ∈ OPS
−(ρ−δ)
ρ,δ .

Since r(x,D) is bounded on L2(Rn),

(8.10) M∥u∥2L2 − ∥p(x,D)u∥2L2 = ∥A(x,D)u∥2L2 − (r(x,D)u, u) ≥ −C∥u∥2L2 .
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Therefore,

(8.11) ∥p(x,D)u∥2L2 ≤ (M + C)∥u∥2L2 .

□

Furthermore, by (7.36), [Λs, L] ∈ OPSs1,0, so the second term in (8.7) is also bounded by the
right hand side of (8.8). Likewise,

(8.12) 2(Λsg,Λsuϵ) ≤
1

2
∥Λsg∥2L2 +

1

2
∥Λsuϵ∥2L2 .

Therefore,

(8.13)
d

dt
∥Λsuϵ∥2L2 ≤ C∥Λsuϵ(t)∥2L2 + C∥g(t)∥2Hs .

Therefore, by Gronwall’s inequality,

(8.14) ∥uϵ(t)∥2Hs ≤ C(t)[∥f∥2Hs + ∥g∥2C([0,t],Hs)],

independent of ϵ ∈ (0, 1]. Now we can prove the following existence result.

Proposition 18. If (8.1) is symmetric hyperbolic and

(8.15) f ∈ Hs(Rn), g ∈ C(R, Hs(Rn)), s ∈ R,

then there is a solution u to (8.1), satisfying

(8.16) u ∈ L∞
loc(R, Hs(Rn)) ∩ Lip(R, Hs−1(Rn)).

Proof. Fix I = [−T, T ]. The bounded family

(8.17) uϵ ∈ C(I,Hs) ∩ C1(I,Hs−1),

will have a weak limit point satisfying (8.16). Furthermore, u satisfies (8.1). □

This result can be improved to

(8.18) u ∈ C(R, Hs(Rn)) ∩ C1(R, Hs−1(Rn)).

Let fj ∈ Hs+1, fj → f inHs, and let uj solve (8.1) with uj(0) = fj . Then each uj ∈ L∞
loc(R, Hs+1)∩

Lip(R, Hs), so in particular each uj ∈ C(R, Hs). Now, vj = u−uj solves (8.1) with vj(0) = f − fj ,
and ∥f − fj∥Hs → 0 as j → ∞. Using the estimates proving Propsition 18, ∥vj(t)∥Hs → 0 locally
uniformly in t, giving u ∈ C(R, Hs).

There are other notions of hyperbolicity. In particular, (8.1) is said to be symmetrizable hy-
perbolic if there is a K ×K matrix valued S(t, x, ξ) ∈ S0

1,0 that is positive definite and such that

S(t, x, ξ)L(t, x, ξ) = L̃(t, x, ξ) satisfies (8.3). In this case, construct S(t) ∈ OPS0
1,0, positive definite,

with symbol equal to S(t, x, ξ)modS−1
1,0 . Then replace the left hand side of (8.6) by

(8.19)
d

dt
(Λsuϵ(t), S(t)Λ

suϵ(t))L2 .

A K × K system with L(t, x, ξ) ∈ S1
cl is said to be strictly hyperbolic if its principal symbol

L1(t, x, ξ), homogeneous of degree 1 in ξ has K distinct, purely imaginary eigenvalues, for each x
and each ξ ̸= 0.

Proposition 19. Whenever (8.1) is strictly hyperbolic, it is symmetrizable.
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Proof. If we denote the eigenvalues of L1(t, x, ξ) by iλν(t, x, ξ), ordered so that λ1(t, x, ξ) < ... <
λK(t, x, ξ), then λν are well-defined C∞ functions of (t, x, ξ) homogeneous of degree 1 in ξ. If
Pν(t, x, ξ) are the projections onto the iλν–eigenspaces of L1,

(8.20) Pν(t, x, ξ) =
1

2πi

∫
γν

(ζ − L1(t, x, ξ))
−1dζ,

where γν is a small circle about iλν(t, x, ξ), then Pν is smooth and homogeneous of degree 0 in ξ.
Then,

(8.21) S(t, x, ξ) =
∑
j

Pj(t, x, ξ)
∗Pj(t, x, ξ),

gives the desired symmetrizer. □

Higher order, strictly hyperbolic PDE can be reduced to strictly hyperbolic, first order systems of
this nature. Therefore, the first order results can be extended to higher–order hyperbolic equations.

9. Egorov’s theorem

Now examine the behavior of operators obtained by conjugating a pseudodifferential operator
P0 ∈ OPSm1,0 by a solution operator to a scalar hyperbolic equation of the form

(9.1)
∂u

∂t
= iA(t, x,Dx)u,

where A = A1 +A0,

(9.2) A1(t, x, ξ) ∈ S1
cl real, A0(t, x, ξ) ∈ S0

cl.

Also suppose that A1(t, x, ξ) is homogeneous in ξ for |ξ| ≥ 1. Then let S(t, s) be the solution
operator to (9.1) taking u(s) to u(t). This is a bounded operator on each Sobolev space Hσ with
inverse S(s, t). Then set

(9.3) P (t) = S(t, 0)P0S(0, t).

Theorem 3 (Egorov’s theorem). If P0 = p0(x,D) ∈ OPSm1,0, then for each t, P (t) ∈ OPSm1,0
modulo a smoothing operator. The principal symbol of P (t) mod Sm−1

1,0 at a point (x0, ξ0) is equal

to p0(y0, η0), where (y0, η0) is obtained from (x0, ξ0) by following the flow C(t) generated by the
(time–dependent) Hamiltonian vector field

(9.4) HA1(t,x,ξ) =

n∑
j=1

(
∂A

∂ξj

∂

∂xj
− ∂A1

∂xj

∂

∂ξj
).

Proof. To start the proof, differentiating (9.3) gives
(9.5)
P ′(t) = S′(t, 0)P0S(0, t) + S(t, 0)P0S

′(0, t) = iA(t, x,Dx)S(t, 0)P0S(0, t)− iS(t, 0)P0S(0, t)A(t, x,Dx)

P ′(t) = i[A(t, x,Dx), P (t)], P (0) = P0.

Now then, construct an approximate solution Q(t) to (9.5) and show that Q(t) − P (t) is a
smoothing operator. That is, construct Q(t) such that

(9.6) Q′(t) = i[A(t, x,Dx), Q(t)] +R(t), Q(0) = P0,

where R(t) is a smooth family of operators in OPS−∞, where

(9.7) q(t, x, ξ) ∼ q0(t, x, ξ) + q1(t, x, ξ) + ...
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The symbol of i[A,Q(t)] is of the form

(9.8) HA1q + {A0, q}+ i
∑
|α|≥2

i|α|

α!
(A(α)q(α) − q(α)A(α)),

where A(α) = Dα
ξ A and A(α) = Dα

xA. Since we want the difference between this and ∂q
∂t to have

order −∞, define q0(t, x, ξ) by

(9.9) (
∂

∂t
−HA1)q0(t, x, ξ) = 0, q0(0, x, ξ) = p0(x, ξ).

Therefore, q0(t, x0, ξ0) = p0(y0, η0) and q0(t, x, ξ) ∈ Sm1,0. Equation (9.9) is called a transport
equation.

Remark 8. Indeed, observe that
(9.10)
∂

∂t
q0(t, x0, ξ0) =

∂

∂t
p0(y0, η0) =

∂p0
∂x

· ẏ0 +
∂p

∂ξ
· η̇0 =

∂p0
∂x

·HA1y0 +
∂p0
∂ξ

·HA1η0 = HA1p0(y0, η0).

Now recursively obtain transport equations

(9.11) (
∂

∂t
−HA1

)qj(t, x, ξ) = bj(t, x, ξ), qj(0, x, ξ) = 0.

Remark 9. Set

(9.12) b1(t, x, ξ) = {A0, q0}+ i
∑
|α|≥2

iα

α!
(A(α)q0,(α) − q

(α)
0 A(α)) ∈ Sm−1

1,0 ,

and suppose that q1(t, x, ξ) solves (9.11). Then,

(9.13)

∂

∂t
(q0 + q1) = HA1

q0 +HA1
q1 + {A0, q0}+ i

∑
|α|≥2

iα

α!
(A(α)q0,(α) − q

(α)
0 A(α))

= i[A(t, x,D), Q0 +Q1] +R(t),

where R(t) with symbol −b1(t, x, ξ) ∈ OPSm−2
1,0 ,

(9.14) b1(t, x, ξ) = {A0, q1}+ i
∑
|α|≥2

iα

α!
(A(α)q1,(α) − q

(α)
1 A(α)).

Finally, we show that P (t) − Q(t) is a smoothing operator. This is equivalent to showing that
for any f ∈ Hσ(Rn),
(9.15) v(t)− w(t) = P (t)S(t, 0)f −Q(t)S(t, 0)f = S(t, 0)P0f −Q(t)S(t, 0)f ∈ H∞(Rn),
where H∞(Rn) = ∩sHs(Rn). Now then,

(9.16)
∂v

∂t
= iA(t, x,Dx)v, v(0) = P0f,

while by (9.6),

(9.17)
∂w

∂t
= iA(t, x,Dx)w + g, w(0) = P0f,

where

(9.18) g = R(t)S(t, 0)w ∈ C∞(R, H∞(Rn)).
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Therefore,

(9.19)
∂

∂t
(v − w) = iA(t, x,Dx)(v − w)− g, v(0)− w(0) = 0.

Therefore, by energy estimates, v(t) − w(t) ∈ H∞ for any f ∈ Hσ(Rn), which completes the
proof. □

Remark 10. A check on the proof shows that

(9.20) P0 ∈ OPSmcl ⇒ P (t) ∈ OPSmcl .

Indeed, since A1 ∈ S1
cl,

(9.21)
∂P

∂t
= HA1

P ∈ S1
cl,

since ∂A
∂ξ ∈ S0

cl,
∂P
∂x ∈ S1

cl,
∂A
∂x ∈ S1

cl, and
∂A
∂ξ ∈ S0

cl.

Using the same argument,

Proposition 20. With A(t, x,Dx) as before,

(9.22) P0 ∈ OPSmρ,δ ⇒ P (t) ∈ OPSmρ,δ,

provided

(9.23) ρ >
1

2
, δ = 1− ρ.

Proof. We need δ = 1− ρ to ensure that p(C(t)(x, ξ)) ∈ Smρ,δ and ρ > δ to ensure that the transport

equations generate qj(t, x, ξ) of progressively lower order. □

10. Microlocal regularity

Now define the notion of the wave front set of a distribution u ∈ H−∞(Rn) = ∪sHs(Rn), which
refines the notion of singular support. If p(x, ξ) ∈ Sm has principal symbol pm(x, ξ), scalar and
homogeneous in ξ, then the characteristic set of P = p(x,D) is given by

(10.1) Char(P ) = {(x, ξ) ∈ Rn × (Rn \ {0}) : pm(x, ξ) = 0}.
If pm(x, ξ) is a K ×K matrix, take the determinant. Equivalently, (x0, ξ0) is noncharacterstic for
P , or P is elliptic at (x0, ξ0), if |p(x, ξ)−1| ≤ C|ξ|−m, for (x, ξ) in a small conic neighborhood of
(x0, ξ0) and |ξ| large. A conic set is invariant under the dilations (x, ξ) 7→ (x, rξ), r ∈ (0,∞). The
wave front set is defined by

(10.2) WF (u) = ∩{Char(P ) : P ∈ OPS0, Pu ∈ C∞}.

Remark 11. WF (u) is a closed conic subset of Rn × (Rn \ 0).

Proposition 21. If π is the projection π : (x, ξ) 7→ x, then

(10.3) π(WF (u)) = singsupp(u).

Proof. First show that π(WF (u)) ⊂ singsupp(u). If x0 /∈ singsupp(u) then there exists φ ∈
C∞

0 (Rn), φ = 1 near x0, such that φu ∈ C∞
0 (Rn). Since (x0, ξ) /∈ Char(φ) for any ξ ̸= 0, so

π(WF (u)) ⊂ singsupp(u).
Now suppose x0 /∈ π(WF (u)). Then for any ξ ̸= 0, there is Q ∈ OPS0 such that (x0, ξ) /∈

Char(Q) and Qu ∈ C∞. Therefore, we can construct finitely many Qj ∈ OPS0 such that Qju ∈
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C∞ and each (x0, ξ) with |ξ| = 1 is noncharacteristic for some Qj . Let Q =
∑
Q∗
jQj ∈ OPS0.

Then Q is elliptic near x0 and Qu ∈ C∞, so u is C∞ near x0. □

Now define the associated notion of ES(P ) for a pseudodifferential operator. Let U be an open
conic subset of Rn× (Rn \0). We say that p(x, ξ) ∈ Smρ,δ has order −∞ on U if for each closed conic
set V of U , for each N ,

(10.4) |Dβ
xD

α
ξ p(x, ξ)| ≤ CαβNV ⟨ξ⟩−N , (x, ξ) ∈ V.

Definition 5 (Essential support). The essential support of P (and of p(x, ξ)) is the smallest closed
conic set on the complement of which p(x, ξ) has order −∞.

It follows from symbolic calculus that

(10.5) ES(P1P2) ⊂ ES(P1) ∩ ES(P2),

provided Pj ∈ OPS
mj

ρj ,δj
and ρ1 > δ2. Indeed, recall that the symbol of P1P2 is given by

(10.6)
∑
α

iα

α!
Dα
ξ p1(x, ξ)D

α
xp2(x, ξ).

If p1 or p2 satisfies (10.4) at (x, ξ), (10.4) also holds for (10.6).

To relate WF (Pu) to WF (u) and ES(P ), we begin with the following.

Lemma 6. Let u ∈ H−∞(Rn) and suppose that U is a conic open set satisfying

(10.7) WF (u) ∩ U = ∅.

If P ∈ OPSmρ,δ, ρ > 0, δ < 1, and ES(P ) ⊂ U , then Pu ∈ C∞.

Proof. Take P0 ∈ OPS0 with symbol identically 1 on a conic neighborhood of ES(P ) so that
P = PP0 mod OPS

−∞, it suffices to conclude that P0u ∈ C∞, so we can specialize the hypothesis
to P ∈ OPS0.

By hypothesis, we can find Qj ∈ OPS0 such that Qju ∈ C∞, and each (x, ξ) ∈ ES(P ) is
noncharacteristic for some Qj , and if Q =

∑
j Q

∗
jQj , then Qu ∈ C∞ and Char(Q) ∩ ES(P ) = ∅.

Then there exists an operator A ∈ OPS0 so that AQ = P mod OPS−∞. Indeed, let Q̃ be an
elliptic operator whose symbol equals that of Q on a conic neighborhood of ES(P ) and let Q̃−1

denote a parametrix for Q̃. Then set A = PQ̃−1, and (modC∞), Pu = AQu ∈ C∞. □

Now state a basic result on the preservation of wave front sets by a pseudodifferential operator.

Proposition 22. If u ∈ H−∞ and P ∈ OPSmρ,δ with ρ > 0, δ < 1, then

(10.8) WF (Pu) ⊂WF (u) ∩ ES(P ).

Proof. First show that WF (Pu) ⊂ ES(P ). Suppose (x0, ξ0) /∈ ES(P ). Choose Q = q(x,D) ∈
OPS0 such that q(x, ξ) = 1 on a conic neighborhood of (x0, ξ0) and ES(Q)∩ES(P ) = ∅. Therefore,
QP ∈ OPS−∞, so QPu ∈ C∞. Therefore, (x0, ξ0) /∈WF (Pu).

To show thatWF (Pu) ⊂WF (u), let Γ be a conic neighborhood ofWF (u) and write P = P1+P2,
where Pj ∈ OPSmρ,δ with ES(P1) ⊂ Γ and ES(P2) ∩WF (u) = ∅. By Lemma 6, P2u ∈ C∞. Thus,

WF (u) =WF (P1u) ⊂ Γ, which shows that WF (Pu) ⊂WF (u). □

Definition 6. A pseudodifferential operator of type (ρ, δ) with ρ > 0 and δ < 1 is microlocal.
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Corollary 2. If P ∈ OPSmρ,δ is elliptic, 0 ≤ δ < ρ ≤ 1, then

(10.9) WF (Pu) =WF (u).

Proof. We have seen thatWF (Pu) ⊂WF (u). On the other hand, if E ∈ OPS−m
ρ,δ is the parametrix

of P ,WF (u) =WF (EPu) ⊂WF (Pu). In fact, for a general P ,WF (u) ⊂WF (Pu)∪Char(P ). □

Now let eitA be the solution operator to the scalar hyperbolic equation ∂u
∂t = iA(x,D)u. Suppose

A(x, ξ) ∈ S1
cl with real principal symbol and WF (u) = Σ. Then there is a countable family of

symbols that vanishes in a neighborhood of Σ, but such that

(10.10) Σ = ∩j{(x, ξ) : pj(x, ξ) = 0}.
We know that pj(x,D)u ∈ C∞ for each j. By Egorov’s theorem, we want to construct a family
of pseudodifferential operators qj(x,D) ∈ OPS0 such that qj(x,D)eitAu ∈ C∞. Let qj(x,D) =
eitApj(x,D)e−itA. By Egorov’s theorem, qj(x,D) ∈ OPS0 modulo a smoothing operator and gives
the principal symbol for qj(x,D). Since pj(x,D)u ∈ C∞, eitApj(x,D)u ∈ C∞, which implies that
qj(x,D)eitAu ∈ C∞. Therefore, WF (eitAu) is contained in the intersection of characteristics of the
qj(x,D), which is precisely equal to C(t)Σ,
(10.11) WF (eitAu) ⊂ C(t)WF (u).

Since the argument is reversible, u = e−itA(eitAu), the wave front sets are identical.

Proposition 23. If A = A(x,D) ∈ OPS1 is scalar with real principal symbol, then for u ∈ H−∞,

(10.12) WF (eitAu) = C(t)WF (u).

The same holds for the solution operator S(t, 0) to a time–dependent scalar hyperbolic equation.
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