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1. Fundamental solution to the heat equation

Let M̄ be a compact, Riemannian manifold with boundary. The heat equation is given by

(1.1)
∂u

∂t
= ∆u, u(0, x) = f(x).

If ∂M ≠ ∅, then impose the Dirichlet condition,

(1.2) u(t, x) = 0, x ∈ ∂M.

We could also impose the Neumann boundary condition ∂u
∂ν = 0 for x ∈ ∂M.

It is possible to construct solutions to (1.1)–(1.2) using eigenfunctions of ∆. Indeed, let {uj} be
the orthonormal basis of ∆ in L2(M),

(1.3) uj ∈ H1
0 (M) ∩ C∞(M̄), ∆uj = −λjuj , 0 ≤ λj < ∞.

Given f ∈ L2(M), we can write

(1.4) f =
∑
j

f̂(j)uj , f̂(j) = (f, uj).

Then set

(1.5) u(t, x) =
∑
j

f̂(j)e−tλjuj(x).

Define the function space

(1.6) Ds = {v ∈ L2(M) :
∑
j≥0

|v̂(j)|2λs
j < ∞} = {v ∈ L2(M) :

∑
j≥0

v̂(j)λ
s/2
j uj ∈ L2(M)}.

Now then, since

(1.7) uj ∈ H1
0 (M) ∩ C∞(M̄), Tuj = −µjuj , ∆uj = −λjuj , λj =

1

µj
,

so an equivalent characterization of Ds is

(1.8) Ds = (−T )s/2L2(M).

Clearly, D0 = L2(M) and D2 = TL2(M). By the elliptic regularity theorem,

(1.9) D2 = H2(M) ∩H1
0 (M).

In general, Ds+2 = TDs, so by induction,

(1.10) D2k ⊂ H2k(M), k = 1, 2, 3, ...

Lemma 1.

(1.11) D1 = H1
0 (M).

Proof. Observe that Ds is the completion of the space of finite linear combinations of eigenfunctions
{uj}, call it F , with respect to the Ds norm, defined by

(1.12) ∥v∥2Ds
=

∑
j

|v̂(j)|2λs
j .

Now then, if v ∈ F ,

(1.13) (dv, dv) = (v,−∆v) =
∑
j

(v, uj)(uj ,−∆v) =
∑
j

|v̂(j)|2λj .
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Therefore, for v ∈ F ,

(1.14) ∥v∥2D1
= ∥dv∥2L2(M).

In fact, Ds is the completion of Dσ for any σ > s. Since (1.14) holds for all v ∈ D2 and D2 =
H2(M) ∩H1

0 (M), which implies (1.11). □

Now then, by (1.5),

(1.15) f ∈ Ds ⇒ u ∈ C(R+,Ds); ∂j
t u ∈ C(R+,Ds−2j).

It is clear from (1.5) that ∂tu = ∆u for t > 0. If f ∈ Ds with s > n
2 , then u ∈ C([0,∞)× M̄) and

u satisfies (1.1) and (1.2) in the ordinary sense.
Uniqueness for solutions to (1.1) and (1.2) within the class

(1.16) C(R+,Ds) ∩ C1(R+,Ds−2),

follows from the simple energy estimate

(1.17)
d

dt
∥u(t)∥2Ds−2

= 2Re(
∂u

∂t
, u(t))Ds−2

= −2∥u(t)∥2Ds−1
≤ 0.

Denote the solution to (1.1)–(1.2) by

(1.18) u(t, x) = et∆f(x).

Now, by (1.5),

(1.19) u ∈ C∞((0,∞),Dσ), for all σ ∈ R.

In particular, for any f ∈ Ds,

(1.20) u ∈ C∞((0,∞)×M).

The heat equation satisfies the maximum principle.

Proposition 1. If u ∈ C([0, a)×M) ∩ C2((0, a)×M) and u solves (1.1) in (0, a)×M, then

(1.21) sup
[0,a)×M̄

u(t, x) = max{ sup
x∈M

u(0, x), sup
x∈∂M,t∈[0,a)

u(t, x)}.

In particular, if (1.2) and (1.3) hold, then

(1.22) sup
[0,a)×M

u(t, x) = sup
M̄

f(x).

Proof. Since u solves (1.1) if and only if −u solves (1.1), to prove (1.21), it suffices to show that

(1.23) u > 0 on {0} ×M∪ [0, a)× ∂M implies u ≥ 0, on [0, a)×M.

Indeed, u solves (1.1) if and only if −u solves (1.1), and (1.23) certainly implies that (1.21) holds
for −u.

Set uϵ(t, x) = u(t, x) + ϵt. For any ϵ > 0, uϵ > 0 on [0, a) × M. Indeed, if this implication is
false, then since M is compact, there is a smallest t0 ∈ (0, a) such that uϵ(t0, x0) = 0 for some
x0 ∈ M. Therefore, ∂tuϵ(t0, x0) ≤ 0 and ∆uϵ(t0, x0) ≥ 0. However, since ∂tuϵ = ∆uϵ + ϵ, there is
a contradiction. □

Corollary 1. For any f ∈ C0(M), u ∈ C([0,∞)×M).
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For δp ∈ D−n/2−ϵ for all ϵ > 0, the fundamental solution to the heat equation is

(1.24) H(t, x, p) = et∆δp(x).

By (1.20), H(t, x, p) is smooth in (t, x) for t ≥ 0. Since δp is a limit in D−n/2−ϵ of elements of
C∞

0 (M) that are ≥ 0, it follows that

(1.25) H(t, x, p) ≥ 0, for t ∈ (0,∞), x ∈ M, p ∈ M.

In fact, there is a variant of the strong maximum principle. that strengthens (1.25) to H(t, x, p) > 0
for t > 0, x, p ∈ M.

For the heat equation on Rn, then by the Fourier inversion formula,

(1.26) et∆f = (2π)−n/2

∫
e−t|ξ|2eix·ξ f̂(ξ)dξ = (2π)−n

∫
e−t|ξ|2eix·ξ

∫
e−iy·ξf(y)dydξ.

By Fubini’s theorem, for t > 0 and f ∈ L1(Rn),

(1.27) et∆f = (2π)−n

∫
f(y)

∫
e−t|ξ|2ei(x−y)·ξdξdy.

Completing the square,

(1.28) −t|ξ|2 + i(x− y) · ξ = −t|ξ − i

2t
(x− y)|2 − |x− y|2

4t
.

Now then, computing an integral in radial coordinates and making a change of variables,

(1.29)

∫
e−|x|2dx = An−1

∫ ∞

0

e−r2rn−1dr =
An−1

2

∫ ∞

0

e−uu
n−2
2 du =

An−1

2
Γ(

n

2
).

Using the identity that

(1.30) πn/2 =

∫
e−|x|2dx =

An−1

2
Γ(

n

2
),

which gives the identity,

(1.31) An−1 =
2πn/2

Γ(n2 )
.

Using (1.28) and contour integration,

(1.32)

∫
e−t|ξ|2ei(x−y)·ξdξ =

πn/2

tn/2
.

Plugging (1.32) into (1.27),

(1.33) et∆f =
1

(4πt)n/2

∫
e−

|x−y|2
4t f(y)dy.

Remark 1. Since e−
|x−y|2

4t > 0 for all x, y ∈ Rn, et∆f > 0 for all x ∈ Rn and t > 0.

It is straightforward to verify that

(1.34)
1

(4πt)n/2

∫
e−

|x−y|2
4t dy = 1.

Therefore,

(1.35) et∆ : Lp → Lp, 1 ≤ p ≤ ∞.
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Next, since |x|Ne−|x|2 ≲N e
|x|2
2 ,

(1.36) ∥∇Ne
|x|2
4t ∥L1 ≲N t−

N
2 .

Therefore,

(1.37) ∥∇Net∆∥Lp→Lp ≲N t−
N
2 .

Furthermore, since

(1.38) ∥ 1

(4πt)n/2
e−

|x−y|2
4t ∥L∞ ≤ 1

(4πt)n/2
,

(1.39) ∥et∆∥L1→L∞ ≤ 1

(4πt)n/2
.

Interpolating (1.35) and (1.39), for 1 ≤ p ≤ q ≤ ∞,

(1.40) ∥et∆∥Lp→Lq ≤ 1

(4πt)
n
2 ( 1

p−
1
q )
.

Moreover, by (1.36),

(1.41) ∥∇Net∆∥Lp→Lq ≲N t−
N
2

1

(4πt)
n
2 ( 1

p−
1
q )
.

2. Semigroups

Definition 1 (Semigroup). If V is a Banach space, a one–parameter semigroup of operators on V
is a set of bounded operators

(2.1) P (t) : V → V, t ∈ [0,∞),

satisfying

(2.2) P (s+ t) = P (s)P (t), for all s, t ∈ R+,

and

(2.3) P (0) = I.

We also require strong continuity, that is,

(2.4) tj → t, P (tj)v → P (t)v, for each v ∈ V.

If P (t) is defined for all t ∈ R and satisfies the former conditions, we say that P (t) is a one–
parameter group of operators.

For example, consider the translation group

(2.5) Tp(t) : L
p(R) → Lp(R), 1 ≤ p < ∞,

defined by

(2.6) Tp(t)f(x) = f(x− t).

It is clear that (2.1)–(2.3) hold for each t. Indeed, ∥Tp(t
′)∥ = 1 for each t, and ∥Tp(t)−Tp(t

′)∥ = 2 if

t ̸= t′. Indeed, apply the difference to a function supported on an interval of length |t−t′|
2 . To verify

strong continuity, observe that the space C0(R) is dense in Lp(R) for 1 ≤ p < ∞. If f ∈ C0(R),
then Tp(tj)f(x) = f(x− tj) has support in a fixed compact set and converges uniformly to f(x− t),
which implies convergence in Lp norm. Convergence in a dense set implies convergence in V .
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Lemma 2. Let Tj ∈ L(V,W ) be uniformly bounded. Let L be a dense, linear subspace of V , and
suppose

(2.7) Tjv → T0v, as j → ∞,

in the W -norm, for each v ∈ L. Then (2.7) holds for each v ∈ V .

Proof. Given v ∈ V and ϵ > 0. Choose w ∈ L such that ∥v − w∥ < ϵ. Suppose ∥Tj∥ ≤ M for all j.
Then,

(2.8) ∥Tjv − T0v∥ ≤ ∥Tjv − Tjw∥+ ∥Tjw − T0w∥+ ∥T0w − T0v∥ ≤ ∥Tjw − T0w∥+ 2M∥v − w∥.
Therefore,

(2.9) lim sup
j→∞

∥Tjv − T0v∥ ≤ 2Mϵ.

Since ϵ > 0 is arbitrary, the proof is complete. □

Definition 2 (Infinitesimal generator). A one parameter semigroup P (t) of operators on V has an
infinitesimal generator A, which is an operator on V , often unbounded, which is defined by

(2.10) Av = lim
h↘0

1

h
(P (h)v − v),

on the domain

(2.11) D(A) = {v ∈ V : lim
h↘0

1

h
(P (h)v − v) exists in V }.

For example, let Ap be the infinitesimal generator of the group Tp(t) given by (2.5). By definition,
f ∈ Lp(R) belongs to D(Ap) if and only if

(2.12) lim
h↘0

1

h
(f(x− h)− f(x)),

converges in Lp–norm as h → 0. The limit (2.12) always exists in C∞
0 (R), and the limit is equal to

− d
dxu. In fact, we have the following.

Proposition 2. For 1 ≤ p < ∞, the group Tp(t) given by (2.5)–(2.7) has infinitesimal generator
Ap given by

(2.13) Apf = − df

dx
,

for f ∈ D(Ap), with

(2.14) D(Ap) = {f ∈ Lp(R) : f ′ ∈ Lp(R)},

where f ′ = df
dx is considered a priori as a distribution.

Proof. The argument above shows that D(Ap) is contained in the right hand side of (2.14). The
reverse containment is derived as a consequence of the following result, with L = C∞

0 (R).

Proposition 3. Let P (t) be a one–parameter semigroup on B, with infinitesimal generator A. Let
L be a weak∗ dense, linear subspace of B′, and suppose P (t)′L ⊂ L. Suppose that u, v ∈ B and that

(2.15) lim
h→0

1

h
⟨P (h)u− u,w⟩ = ⟨v, w⟩, ∀w ∈ L.

Then w ∈ D(A) and Au = v.
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Proof. The hypothesis (2.15) implies that ⟨P (t)u,w⟩ is differentiable, and that for any w ∈ L,

(2.16)
d

dt
⟨P (t)u,w⟩ = d

ds
⟨P (t)P (s)u,w⟩|s=0 =

d

ds
⟨P (s)u, P (t)′w⟩|s=0 = ⟨v, P (t)′w⟩ = ⟨P (t)v, w⟩.

Therefore,

(2.17) ⟨P (t)u− u,w⟩ =
∫ t

0

⟨P (s)v, w⟩ds,

for all w ∈ L. The weak∗ denseness of L implies that P (t)u−u =
∫ t

0
P (s)vds, and the convergence

in the B-norm of

(2.18)
1

h
(P (h)u− u) =

1

h

∫ h

0

P (s)vds,

to v as h → 0 follows. □

Now then, it is clear that the right hand side of (2.14) is contained in D(Ap). □

Proposition 4. The infinitesimal generator A of P (t) is a closed, densely defined operator. We
have

(2.19) P (t)D(A) ⊂ D(A),

for all t ∈ R+, and

(2.20) AP (t)v = P (t)Av =
d

dt
P (t)v, for v ∈ D(A).

Proof. Suppose v ∈ D(A). Then for t ≥ 0,

(2.21) h−1(P (h)P (t)v − P (t)v) = P (t)
1

h
(P (h)v − v),

which gives (2.19), as well as

(2.22) AP (t)v = P (t)Av.

Furthermore, as h ↘ 0,

(2.23) h−1[P (t+ h)v − P (t)v] = P (t)h−1[P (h)v − v] → P (t)Av.

For h ↗ 0, observe that for 0 < h < t,

(2.24) h−1[P (t)v − P (t− h)v] = P (t− h)h−1(P (h)v − v) → P (t)Av.

The last equality uses the fact that w(h) → w in V norm implies P (t− h)w(h) → P (t)w.
To show that D(A) is dense in V , let v ∈ V and let

(2.25) vϵ = ϵ−1

∫ ϵ

0

P (t)vdt.

Then,
(2.26)

h−1(P (h)vϵ − vϵ) = ϵ−1[h−1

∫ ϵ+h

ϵ

P (t)vdt− h−1

∫ h

0

P (t)vdt] → ϵ−1(P (ϵ)v − v), as h → 0.

□
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Now then, by the uniform boundedness principle,

(2.27) ∥P (t)∥ ≤ M, for |t| ≤ 1.

Therefore, (2.27) and (2.2) imply that

(2.28) ∥P (t)∥ ≤ MeKt.

The infinitesimal generator determines the one–parameter semigroup uniquely, so we are justified
in saying that A generates P (t).

Proposition 5. If P (t) and Q(t) are one–parameter semigroups with the same infinitesimal gen-
erator, then P (t) = Q(t) for all t ≥ 0.

Proof. If (2.28) holds and Re(ζ) > K, then ζ belongs to the resolvent set of A, and

(2.29) (ζ −A)−1v =

∫ ∞

0

e−ζtP (t)vdt.

Let Rζ denote the right hand side of (2.29), which is clearly a bounded operator on V . First, show
that Rζ(ζ −A)v = v for v ∈ D(A). Indeed,

(2.30)

Rζ(ζ −A)v =

∫ ∞

0

e−ζtP (t)(ζv −Av)dt =

∫ ∞

0

ζe−ζtP (t)vdt−
∫ ∞

0

e−ζt d

dt
P (t)vdt

= −
∫ ∞

0

d

dt
(e−ζtP (t)v)dt = v.

A similar argument shows that (ζ−A)Rζ is bounded on V and (ζ−A)Rζv = v for v ∈ D(A). Since
(ζ −A)Rζ is bounded on V and D(A) is dense in V ,

(2.31) (ζ −A)Rζv = Rζ(ζ −A)v = v, for all v ∈ V.

Finally, since (ζ − A)−1 is continuous and everywhere defined, (ζ − A)−1 is closed. If an operator
is closed and injective, then its inverse is closed, so in particular A is also closed.

Now let v ∈ V and w ∈ V ′. Then for Re(ζ) sufficiently large,

(2.32)

∫ ∞

0

e−ζt⟨P (t)v, w⟩dt = ⟨(ζ −A)−1v, w⟩ =
∫ ∞

0

e−ζt⟨Q(t)v, w⟩dt.

Uniqueness of the Laplace transform implies that ⟨P (t)v, w⟩ = ⟨Q(t)v, w⟩ for any v ∈ V and w ∈ V ′.
By the Hahn–Banach theorem, P (t)v = Q(t)v. □

Therefore, it makes sense to write

(2.33) P (t) = etA.

Proposition 6. Let A be the infinitesimal generator of a semigroup. If a function u ∈ C([0, T ),D(A))∩
C1([0, T ), V ) satisfies

(2.34)
du

dt
= Au, u(0) = f,

then u(t) = etAf for t ∈ [0, T ).

Proof. We have that e(t−s)Au(s) is differentiable in s ∈ (0, t), and

(2.35)
∂

∂s
e(t−s)Au(s) = −e(t−s)AAu(s) + e(t−s)AAu(s) = 0.

Therefore, e(t−s)Au(s) has the same value at s = t and s = 0, so u(t) = etAf . □
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Given g ∈ C([0, T ),D(A)), f ∈ D(A), the equation

(2.36)
∂u

∂t
= Au+ g(t), u(0) = f,

has a unique solution u ∈ C([0, T ),D(A)) ∩ C1([0, T ), V ), and it is given by

(2.37) u(t) = etAf +

∫ t

0

e(t−s)Ag(s)ds.

Indeed,

(2.38)
∂

∂s
e(t−s)Au(s) = e(t−s)Ag(s), 0 ≤ s ≤ t.

Therefore,

(2.39) u(t)− etAf =

∫ t

0

e(t−s)Ag(s)ds.

3. Semilinear parabolic equations

Consider semilinear equations of the form

(3.1)
∂u

∂t
= Lu+ F (t, x, u,∇u), u(0) = f,

where u(t, x) is a function on [0, T ]×M. For the moment, suppose that M has no boundary. Also
suppose that L = ν∆, for some ν > 0.

When F (t, x, u,∇u) = F (t, x), the solution to (3.1) is given by

(3.2) u(t, x) = etLf +

∫ t

0

e(t−s)LF (s, ·)ds.

Indeed, formally computing (3.2),

(3.3)
∂u

∂t
= Lu+ F (t, x).

It is possible to establish that (3.1) has a solution via the contraction mapping principle.

Proposition 7. Suppose X and Y are Banach spaces for which

(3.4) etL : X → X is a strongly continuous semigroup, for t ≥ 0,

(3.5) Φ : X → Y, is Lipschitz, uniformly on bounded sets,

(3.6) etL : Y → X, for t > 0,

and for some γ < 1,

(3.7) ∥etL∥L(Y,X) ≤ Ct−γ , for t ∈ (0, 1].

Then the parabolic equation (3.1) with f ∈ X has a unique solution u ∈ C([0, T ], X), where
T > 0 is estimable from below in terms of ∥f∥X .

Definition 3. A semigroup P (t) is called strongly continuous if tj → t implies P (tj)v → P (t)v for
each v ∈ X.
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Proof. Convert (3.1) to the integral equation,

(3.8) u(t) = etLf +

∫ t

0

e(t−s)LΦ(u(s))ds = Ψu(t).

Fix α > 0 and set

(3.9) Z = {u ∈ C([0, T ], X) : u(0) = f, ∥u(t)− f∥X ≤ α}.

We want to choose T sufficiently small so that Ψ : Z → Z is a contraction. First, observe that by
(3.4), for T1 > 0 sufficiently small,

(3.10) ∥etLf − f∥X ≤ α

2
, for t ∈ [0, T1].

Next, by (3.5), for u ∈ X, then by (3.5), we have the estimate

(3.11) ∥Φ(u(s))∥Y ≤ K1, for s ∈ [0, T1].

Then by (3.7),

(3.12) ∥
∫ t

0

e(t−s)LΦ(u(s))ds∥X ≤ Cγt
1−γK1.

For T2 ≤ T1 sufficiently small, (3.12) ≤ α
2 for t ∈ [0, T2]. Therefore,

(3.13) Ψ : Z → Z, provided T ≤ T2.

To arrange that Ψ is a contraction, (3.5) implies that for u, v ∈ Z, there exists K < ∞ such that

(3.14) ∥Φ(u(s))− Φ(v(s))∥Y ≤ K∥u(s)− v(s)∥X .

Therefore, for t ∈ [0, T2],
(3.15)

∥Ψ(u)(t)−Ψ(v)(t)∥X = ∥
∫ t

0

e(t−s)L[Φ(u(s))− Φ(v(s))]ds∥X ≤ Cγt
1−γK sup

s∈[0,t]

∥u(s)− v(s)∥X .

Therefore, for T ≤ T2 sufficiently small, CγT
1−γK < 1, which makes Ψ a contraction mapping on

Z. Therefore, Ψ has a unique fixed point. □

There are a number of function spaces X and Y which satisfy (3.4)–(3.7). For example, suppose
M is a compact Riemannian manifold and let

(3.16) X = C1(M), Y = C(M).

By the maximum principle, (3.4) clearly holds. Since Φ(u) = F (u,∇u), (3.5) also holds. Finally,
since

(3.17) ∥et∆∥L(C,C1) ≤ Ct−1/2, for t ∈ (0, 1],

so we have short–time solutions to (3.1) with f ∈ C1(M). In fact, we have

Proposition 8. Given f ∈ C1(M), L = ∆, the equation has, for some (3.1), a unique solution

(3.18) u ∈ C([0, T ], C1(M)) ∩ C∞((0, T ]×M).
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It is possible to weaken the hypothesis (3.4). Suppose X and Z are Banach spaces such that

(3.19) C∞
0 (M) ⊂ X ⊂ Z ⊂ D′(M).

We say that u(t) taking values in X, for t ∈ I, belongs to C(I,X) provided u(t) is locally bounded
in X and u ∈ C(I, Z). Then we say that etL is an almost continuous semigroup on X provided
etL is uniformly bounded on X for t ∈ [0, T ], given T < ∞, e(s+t)Lu = esLetLu for each u ∈ X,
s, t ∈ [0,∞), and

(3.20) u ∈ X, implies etLu ∈ C([0,∞), X).

For example, if M is compact, we can take X = L∞(M) and Z = Lp(M) with p < ∞. We can
also choose et∆ on L∞(M) and on the Hölder spaces Cr(M), r ∈ R+ \ Z+.

Proposition 9. Let X and Y be Banach spaces for which (3.5)–(3.7) hold. In place of (3.4),
suppose that etL is an almost continuous semigroup on X. Also, augment (3.5) with the condition
that Φ : C(I,X) → C(I, Y ). Then the initial value problem (3.1), given f ∈ X, has a unique
solution u ∈ C([0, T ], X), where T > 0 is estimable from below in terms of ∥f∥X .

For example, consider X = Cr+1(M) and Y = Cr(M), r ≥ 0. If r is not an integer, these are
Hölder spaces. Then, for any s > 0,

(3.21) ∥et∆∥L(Cr,Cr+s) ≤ Cst
−s/2, 0 < t ≤ 1.

If f ∈ Cr+1, one has a solution u ∈ C([0, T ], Cr+1), and for each t > 0, u(t) ∈ Cr+s for every s < 2.

Proposition 10. Given f ∈ C1(M), L = ∆, the equation (3.1) has, for some T > 0, a unique
solution

(3.22) u ∈ C([0, T ], C1(M)) ∩ C∞((0, T ]×M).

Using the estimates in (1.35)–(1.41), it is possible to take the sets Y and X and the bound on
∥et∆∥L(Y,X).

(3.23) Y = Lq(M), X = Lp(M), ∥et∆∥L(Y,X) ≤ Ct−
n
2 ( 1

q−
1
p ),

(3.24) Y = Hr,p(M), X = Hs,p(M), ∥et∆∥L(Y,X) ≤ Ct−
1
2 (s−r),

and

(3.25) Y = Hr,q(M), X = Hs,p(M), ∥et∆∥L(Y,X) ≤ Ct−
n
2 ( 1

q−
1
p )−

1
2 (s−r).

Take the case F (u,∇u) =
∑

j ∂jFj(u) with L = ν∆,

(3.26)
∂u

∂t
= ν∆u+

∑
j

∂jF (u), u(0) = f.

For example, take M = Tn. Now then, suppose

(3.27) |Fj(u)| ≤ C⟨u⟩p, |∇Fj(u)| ≤ C⟨u⟩p−1.

Proposition 11. Under the hypotheses in (3.27), if f ∈ Lq(M), the partial differential equation
(3.26) has a unique solution u ∈ C([0, T ], Lq(M)), provided

(3.28) q ≥ p, and q > n(p− 1).

Furthermore, u ∈ C∞((0, T ]×M).
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Proof. Take the Banach spaces

(3.29) X = Lq(M), H−1, qp (M).

We need q ≥ p, so that q
p ≥ 1, and Fj : L

q → Lq/p is locally Lipschitz. Indeed,

(3.30) Fj(u)− Fj(v) = Gj(u, v)(u− v), Gj(u, v) =

∫ 1

0

F ′
j(su+ (1− s)v)ds.

By the generalized Hölder inequality,

(3.31) ∥Fj(u)− Fj(v)∥Lq/p ≤ ∥Gj∥Lq/(p−1)∥u− v∥Lq ,

so we have (3.5). Next,

(3.32) ∥et∆∥L(H−1,q/p,Lq) ≤ Ct−
n
2 ( p

q−
1
p )−

1
2 .

Therefore, we have (3.7) when n(p−1)
q < 1.

It suffices to establish smoothness. First, replacing Lq by Lq1 in (3.2), for any t ∈ (0, T ],
u(t) ∈ Lq1 for all q1 < q

p−q/n . Since p − q
n < 1, this means that q1 exceeds q by a factor > 1.

Iterating, u(t) ∈ Lqj , where qj exceeds qj−1 by a factor > 1. When qj > np, the next iteration
gives u(t) ∈ Cr(M).

Now consider the spaces

(3.33) X = Cr(M), Y = Hr−1−ϵ,q(M),

for some ϵ > 0 very small and q very large. Then, u 7→ Fj(u) is locally Lipschitz from Cr(M) to
Cr(M), hence to Hr−ϵ,p(M). Then by (3.25), for any t > 0, u(t) ∈ Cr1(M), r1 − r > 0, which is
estimable from below. Making a finite number of iterations, u ∈ C1(M), and then by Proposition
8, the proof is complete. □

We can establish a global existence theorem for solutions to (3.26).

Proposition 12. Suppose Fj satisfy (3.27) with p = 1. Then given f ∈ L2(M), the equation (3.26)
has a unique solution

(3.34) u ∈ C([0,∞), L2(M)) ∩ C∞((0,∞)×M),

provided when u takes values in RK , Fj(u) = (F 1
j (u), ..., F

K
j (u)), that

(3.35)
∂F k

j

∂ui
=

∂F i
j

∂uk
, 1 ≤ i, k ≤ K.

Proof. When p = 1, we can take q = 2 and n(p−1)/q < 1, q > n(p−1). Therefore, a local solution
exists,

(3.36) u ∈ C([0, T ], L2) ∩ C∞((0, T )×M).

To get global existence, it suffices to bound ∥u(t)∥L2 . Indeed,

(3.37)
d

dt
∥u(t)∥2L2 = 2(u(t),

∑
j

∂jFj(u(t)))− 2ν∥∇u(t)∥2L2 ≤ 2(u(t),
∑
j

∂jFj(u)).

By (3.35), there exist smooth Gj such that F k
j =

∂Gj

∂uk
. Therefore, the right hand side of (3.37) is

given by

(3.38) −2
∑∫

∂jGj(u)dx = 0.
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□

For a scalar equation, it is possible to eliminate the restriction p = 1 for bounded initial data.

Proposition 13. If (3.26) is scalar and f ∈ L∞(M), then there is a unique solution

(3.39) u ∈ L∞([0,∞)×M) ∩ C∞((0,∞)×M),

such that, as t ↘ 0, u(t) → f in Lp(M) for all p < ∞.

Proof. Suppose ∥f∥L∞ ≤ M , and alter Fj(u) on |u| ≥ M+ 1
2 so that F̃j(u) is constant on u ≤ −M−1

and on u ≥ M +1. Then by Proposition 12, this modified PDE has a global solution. This u solves

(3.40)
∂u

∂t
= ν∆u+

∑
j

aj(t, x)∂ju, aj(t, x) = F̃ ′
j(u(t, x)).

Furthermore, the maximum principle for linear parabolic equations holds, so ∥u(t)∥L∞ ≤ M for all
t, so u solves the original PDE. □

Now suppose that x ∈ M̄, a compact region with a boundary, and that F is smooth in its
arguments. Specifically, take the Dirichlet problem

(3.41) u = 0 on R+ × ∂M,

and suppose

(3.42)
∂u

∂t
= ∆u+ F (t, x, u,∇u), u(0) = f.

Since Propositions 7 and 9 were phrased on a very general level, a number of short–time existence
results follow simply by verifying that (3.4)–(3.7) hold for appropriate Banach spaces X and Y on
M̄. For example, suppose X = C1

b (M) and Y = C(M̄), where for j ≥ 0,

(3.43) Cj
b (M̄) = {f ∈ Cj(M̄) : f = 0 on ∂M}.

We have the following estimate

(3.44) ∥et∆f∥C1(Ω̄) ≤ Ct−1/2∥f∥L∞(Ω), 0 < t ≤ 1,

as well as the proposition.

Proposition 14. If Ω̄ is a compact Riemannian manifold with boundary, on which the Dirichlet
condition is placed, then et∆ defines a strongly continuous semigroup on the Banach space

(3.45) C1
b (Ω̄) = {f ∈ C1(Ω̄) : f |∂Ω = 0}.

Therefore, we have the following.

Proposition 15. If f ∈ C1
b (M̄), then (3.41)–(3.42) has a unique solution

(3.46) u ∈ C([0, T ), C1(M̄)),

for some T > 0, estimable from below in terms of ∥f∥C1 .

Now suppose that F is independent of ∇u, that is,

(3.47)
∂u

∂t
= ∆u+ F (t, x, u), u(0) = f,

so we can take X = Cb(M̄), Y = C(M̄), and by the above arguments obtain
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Proposition 16. If f ∈ Cb(M̄), then (3.47), (3.41) has a unique solution

(3.48) u ∈ C([0, T ), C(M̄)),

for some T > 0, estimable from below in terms of ∥f∥L∞ .

We can obtain further regularity results on solutions to (3.42) and (3.47) with boundary condition
(3.41) by making use of the regularity results for

(3.49)
∂u

∂t
= ∆u+ g(t, x), u(t, x) = 0, for x ∈ ∂M.

For any k ∈ Z+ define the set

(3.50) Hk(I ×M) = {u ∈ L2(I ×M) : ∂j
t u ∈ L2(I,H2k−2j(M)), 0 ≤ j ≤ k}.

Then if (3.49) holds on I ×M with I = [0, T0], then

(3.51) g ∈ Hk(I ×M) ⇒ u ∈ Hk+1(I ′ ×M),

for I ′ = [ϵ, T0], ϵ > 0. Therefore, if g = F (t, x, u,∇u) for Proposition 15 and g = F (t, x, u) for
Proposition 18, g ∈ H0(I ×M) whenever T0 < T . Therefore,

(3.52) u ∈ H1(I ′ ×M).

Therefore, one also has higher order regularity. Therefore, we have proved

Proposition 17. Assume F is smooth in its arguments. The solution (3.46) of (3.49), (3.41) has
the property

(3.53) u ∈ C∞((0, T )× M̄).

Proof. We begin with the implication

(3.54) u ∈ C(I × M̄) ∩H1(I ′ ×M) ⇒ F (t, x, u) ∈ H1(I ′ ×M).

Then by (3.51), u ∈ H2(I ′ ×M). More generally,

(3.55) u ∈ C(I × M̄) ∩Hk(I ′ ×M) ⇒ F (t, x, u) ∈ Hk(I ′ ×M).

Arguing by induction proves the Proposition. □

The estimates in (3.54) and (3.55) utilize the Moser estimate.

Proposition 18. Let F be smooth and suppose F (0) = 0. Then, for u ∈ Hk ∩ L∞,

(3.56) ∥F (u)∥Hk ≤ Ck(∥u∥L∞)(1 + ∥u∥Hk).

Proof. By the chain rule,

(3.57) DαF (u) =
∑

β1+...+βµ=α

Cβu
(β1) · · ·u(βµ)F (µ)(u).

Therefore,

(3.58) ∥DαF (u)∥L2 ≤ Ck(∥u∥L∞)
∑

β1+...+βµ=α

∥u(β1) · · ·u(βµ)∥L2 .

Then by u ∈ L∞ ∩Hk and interpolation, the proof is complete. □
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4. The Lp spectral theory of the Laplace operator

Suppose ∆ is the Laplace operator on the manifold M, where M is a compact Riemannian
manifold without boundary. For any λ > 0, (λ−∆)−1 is a bijective operator between Lp(M) and
H2,p(M) for 1 < p < ∞.

Proof of claim. To see this in the case when p = 2, observe that (1.17) implies that

(4.1) ∥et∆f∥L2(M) ≤ ∥f∥L2(M),

and therefore by (2.29), (λ−∆)−1 is bijective from L2(M) to H2(M). Meanwhile, by the maximum
principle,

(4.2) ∥et∆f∥L∞(M) ≤ ∥f∥L∞(M).

By interpolation, for any 2 ≤ p ≤ ∞,

(4.3) ∥et∆f∥Lp(M) ≤ ∥f∥Lp(M).

Now then, by duality, (4.3) implies that for 1 < p < 2,

(4.4) ∥et∆f∥Lp(M) ≤ ∥f∥Lp(M).

Taking the adjoint of the action of et∆ on C(M) implies that et∆ acts on finite Borel measures
on M, so et∆ preserves L1(M). Since C∞

0 (M) is dense in Lp(M) for 1 ≤ p < ∞, et∆ defines a
strongly continuous semigroup on Lp(M). Thus, define ∆p on Lp(M) to be the operator ∆ acting
on H2,p(M). Therefore, ∆p is a closed operator with finite–dimensional eigenspaces consisting of
functions in C∞(M). Each of these functions are actual eigenfunctions, so the Lp spectrum of ∆
coincides with its L2 spectrum. □

Now define a holomorphic semigroup. Let K be a closed cone in the right hand plane of C with
vertex at 0. If P (z) : X → X is a family of bounded operators on a Banach space X, we say that it
is a holomorphic semigroup if it satisfies P (z1)P (z2) = P (z1+z2) for zj ∈ K, is strongly continuous
in z ∈ K, and is holomorphic in the interior of K.

Remark 2. Strong continuity implies that ∥ez∆∥ is locally uniformly bounded on K.

The operator ez∆f defines a holomorphic semigroup on L2(M). Indeed, by the spectral decom-
position of Lp(M),

(4.5) ∥ez∆f∥L2(M) ≤ ∥f∥L2(M).

Also, ez∆ is holomorphic in L2(M) since d
dz e

z∆ = ∆ez∆. In fact, we can prove

Proposition 19. ez∆ defines a holomorphic semigroup Hp(z) on Lp(M), for each p ∈ [1,∞).

Proof. This follows from the parametrix construction. We do not do this in the general case here,
but rather refer the interested reader to Chapter 7, section 13 of [Taya]. However, observe that in
the computations in (1.26)–(1.32),

(4.6) eat∆f =
1

(4πat)n/2

∫
e−

|x−y|2
4at f(y)dy.

Therefore, when Re(a) > 0, the operator eat∆ retains the properties in (1.34)–(1.41). □

Here is a useful property of semigroups.
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Proposition 20. Let P (z) be a holomorphic semigroup on a Banach space X with generator A.
Then,

(4.7) t > 0, f ∈ X → P (t)f ∈ D(A),

and

(4.8) ∥AP (t)f∥X ≤ C

t
∥f∥X , for 0 < t < 1.

Proof. Using the holomorphicity of P (z) and the structure of K, there exists a > 0 such that there
exists a circle γ(t) of radius a|t| such that γ(t) ∈ K, for all t ∈ (0,∞). Thus,

(4.9) AP (t)f = P ′(t)f = − 1

2πi

∫
γ(t)

(t− ζ)−2P (ζ)fdζ.

Since ∥P (ζ)f∥ ≤ C2∥f∥ for ζ ∈ K, |ζ| ≤ 1 + a, we have (4.8). □

In particular, for 1 < p < ∞, 0 < t ≤ 1,

(4.10) f ∈ Lp(M) ⇒ ∥et∆f∥H2,p(M) ≤
C

t
∥f∥Lp(M).

Then by interpolation,

(4.11) ∥et∆f∥Hs,p(M) ≤ Ct−s/2∥f∥Lp(M), for 0 ≤ s ≤ 2, 0 < t ≤ 1.

Now let Ω̄ be a compact Riemannian manifold with smooth boundary and let ∆ be the Laplacian
on Ω̄ with Dirichlet boundary condition. Assume that Ω̄ is connected and ∂Ω ̸= ∅. For λ ≥ 0,

(4.12) Rλ = (λ−∆)−1 : L2(Ω) → L2(Ω),

with range H2(Ω) ∩H1
0 (Ω). For f ∈ L∞(Ω), we can analyze Rλf by noting that Rλ is positivity

preserving,

(4.13) λ ≥ 0, g ≥ 0, on Ω ⇒ Rλg ≥ 0, on Ω.

This follows from the maximum principle. We can also prove this using the the positivity principle of
et∆ combined with the resolvent formula. Combining positivity preserving with regularity estimates
and estimates on Rλ1, if 0 ≤ f ≤ 1, Rλ(1− f) ≥ 0 and Rλf ≥ 0, so 0 ≤ Rλf ≤ Rλ1, so

(4.14) Rλ : C(Ω̄) → C(Ω̄), Rλ : L∞(Ω) → L∞(Ω).

Taking the adjoint of Rλ acting on C(Ω̄), we have Rλ acting on the finite Borel measures on Ω̄.
Since the closure of L2(Ω) in the set of finite Borel measures is L1(Ω),

(4.15) Rλ : L1(Ω) → L1(Ω).

Then by interpolation,

(4.16) Rλ : Lp(Ω) → Lp(Ω), 1 ≤ p ≤ ∞.

By a similar argument, we can show that

(4.17) et∆ : L2(M) → L2(M),

and by the maximum principle,

(4.18) et∆ : L∞(M) → L∞(M).

Then by interpolation and duality,

(4.19) et∆ : Lp(Ω) → Lp(Ω), 1 ≤ p ≤ ∞.
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Proposition 21. For 1 < p < ∞, ez∆ defines a holomorphic semigroup on Lp(Ω), on any sym-
metric cone K about R+ of angle < π.

Proof. The remaining parts of the proof are in [Tayb]. □

Making use of Proposition 20, which we know applies to et∆ on Lp(M) gives the bound

(4.20) ∥v(t)∥H1,p(M) ≤ C|t|−1/2∥f∥Lp(Ω).

5. Galerkin’s method

Returning to the parabolic PDE

(5.1)
∂u

∂t
= ν∆u+

∑
j

∂jFj(u), u(0) = f,

suppose that

(5.2) |Fj(u)| ≤ C⟨u⟩p, |∇Fj(u)| ≤ C⟨u⟩p−1,

holds with p = 2 and that

(5.3)
∂F k

j

∂ui
=

∂F i
j

∂uk
.

Take M = Tn, and we can use the Galerkin method to produce a sequence of approximations,
converging to a solution to (5.1).

Now then, for any ϵ > 0, define the projection Pϵ on L2(M) by

(5.4) Pϵf(x) =
∑
|k|≤ 1

ϵ

f̂(k)eik·x.

Consider the initial value problem

(5.5)
∂uϵ

∂t
= νPϵ∆Pϵuϵ + Pϵ

∑
∂jFj(Pϵuϵ), uϵ(0) = Pϵf.

Now take f ∈ L2(M). For each 0 < ϵ ≤ 1, ODE theory gives a unique, short–time solution to (5.5),
satisfying uϵ(t) = Pϵuϵ(t). Furthermore,

(5.6)
d

dt
∥uϵ(t)∥2L2 = 2ν(Pϵ∆Pϵuϵ, uϵ) + 2

∑
(Pϵ∂jFj(Pϵuϵ), uϵ).

Integrating by parts, the first term on the right hand side is equal to

(5.7) −2ν∥∇Pϵuϵ(t)∥2L2 ≤ 0.

The second term is equal to

(5.8) 2
∑

(∂jFj(Pϵuϵ), Pϵuϵ) = −2
∑

(Fj(Pϵuϵ), ∂jPϵuϵ) = −2
∑∫

∂j [Gj(Pϵuϵ)]dx = 0.

Therefore,

(5.9) ∥uϵ(t)∥L2 ≤ ∥f∥L2 .

Hence, for each ϵ > 0, (5.5) is solvable for all t > 0 and

(5.10) {uϵ : 0 < ϵ ≤ 1, }
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is bounded in L∞(R+, L2(M)). Furthermore, by (5.6)–(5.9), for any 0 < T < ∞,

(5.11) 2ν

∫ T

0

∥∇Pϵuϵ(t)∥2L2dt = ∥Pϵf∥2L2 − ∥uϵ(T )∥2L2 .

Therefore, for each bounded interval I = [0, T ], since Pϵuϵ = uϵ,

(5.12) {uϵ} is bounded in L2(I,H1(M)).

Given that |Fj(u)| ≤ C⟨u⟩2, since uϵ is bounded in L∞(R+, L2(M)), {Fj(Pϵuϵ)} is bounded in

L∞(R+, L1(M)) ⊂ L∞(R+, H−n/2−δ(M)), for each δ > 0.
Using the evolution equation (5.5),

(5.13) {∂uϵ

∂t
} is bounded in L2(I,H−n/2−1−δ(M)).

Therefore,

(5.14) {uϵ} is bounded in H1(I,H−n/2−1−δ(M)).

Interpolating (5.12) and (5.14),

(5.15) {uϵ} is bounded in Hs(I,H1−s(n/2+1+δ)),

for each 0 ≤ s ≤ 1. Choosing s > 0 sufficiently small, Rellich’s theorem implies

(5.16) {uϵ : 0 < ϵ ≤ 1} is compact in L2(I,H1−γ(M)),

for any γ > 0.
For any T < ∞, we can choose a sequence uk = uϵk , ϵk ↘ 0, such that

(5.17) uk → u in L2([0, T ], H1−γ), in norm.

Making a diagonal argument, it is possible to arrange that (5.17) holds for all T < ∞. We can

also assume that uk is weakly convergent in each space specified by (5.10), (5.12), and that ∂uk

∂t is
weakly convergent in the space (5.13). Furthermore, from (5.17),

(5.18) Fj(Pϵkuϵk) → Fj(u), in L1([0, T ], L1(M)), in norm,

as k → ∞. Therefore,

(5.19) ∂jFj(Pϵuϵ) → ∂jFj(u) in L1([0, T ], H−1,1(M)).

Since H−1,1(M) ⊂ H−n/2−1−δ(M), each term in (5.5) converges as ϵk ↘ 0. Therefore, we have
proved

Proposition 22. If |Fj(u)| ≤ C⟨u⟩2 and |∇Fj(u)| ≤ C⟨u⟩, then for each f ∈ L2(M), a K × K
system of the form (5.1) satisfying the symmetry hypothesis (5.3) possesses a global weak solution,

(5.20) u ∈ L∞(R+, L2(M)) ∩ L2
loc(R+, H1(M)) ∩ Liploc(R+, H−2(M) +H−n/2−1−δ(M)).

This argument can be generalized to the case when U is a bounded domain. In this case, we
need smooth functions wk(x),

(5.21) {wk}∞k=1 is an orthonormal basis of H1
0 (U),

and

(5.22) {wk}∞k=1 is an orthonormal basis of L2(U).

For example, we can take {wk}∞k=1 to be the complete set of appropriately normalized eigenfunctions
for L = −∆ in H1

0 (U).
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Now we prove an important L1–contractive property for a scalar equation.

Proposition 23. Let uj be solutions to the equation (5.1) with initial data uj(0) = fj ∈ L∞(M).
Then for each t > 0,

(5.23) ∥u1(t)− u2(t)∥L1(M) ≤ ∥f1 − f2∥L1(M).

Proof. Set v = u1 − u2. Then v solves

(5.24)
∂v

∂t
= ν∆v +

∑
∂j [Φj(u1, u2)v],

where

(5.25) Φj(u1, u2) =

∫ 1

0

F ′
j(su1 + (1− s)u2)ds.

Now set Gj(t, x) = Φj(u1, u2). Given T > 0, let w solve the backward heat equation

(5.26)
∂w

∂t
= −ν∆w +

∑
Gj(t, x)∂jw, w(T ) = w0 ∈ C∞(M).

Now then, w(t) is well–defined for t ≤ T , and the maximum principle implies

(5.27) ∥w(t)∥L∞ ≤ ∥w0∥L∞ , for t ≤ T.

Now then, for 0 < t < T ,

(5.28)
d

dt
(v, w) = (ν∆v, w) +

∑
(∂j(Gjv), w)− (v, ν∆w) +

∑
(v,Gj∂jw) = 0.

Since (v(0), w(0)) ≤ ∥v(0)∥L1∥w(0)∥L∞ , the proof of (5.23) is complete. □

6. Navier–Stokes equation

Consider the Navier–Stokes equation for the viscous incompressible flow of a fluid. Now the
Euler equation has the form

(6.1)
∂u

∂t
+ P∇uu = 0, u(0) = u0,

where P is the orthogonal projection of L2(M, TM) onto the space of divergence–free vector fields,
and the divergence of u0 is equal to zero. On Rn, the Leray projection P is defined by

(6.2) P (u) = u−∇∆−1(∇ · u).
Then the Navier–Stokes equation has the form

(6.3)
∂u

∂t
+ P∇uu = ν∆u, u(0) = u0.

Define the Friedrichs mollifier,

(6.4) jϵ(x) = ϵ−nj(ϵ−1x),

∫
j(x)dx = 1, j ∈ S(Rn),

and let

(6.5) Jϵu(x) = jϵ ∗ u(x).
Now define the approximating equation

(6.6)
∂uϵ

∂t
+ PJϵ∇uϵJϵuϵ = νJϵ∆Jϵuϵ, uϵ(0) = u0.



20 BENJAMIN DODSON

Then by direct computation,

(6.7)
d

dt
∥uϵ∥2L2 = −2ν∥∇Jϵuϵ∥2L2 ,

and therefore,

(6.8) ∥uϵ(t)∥L2 ≤ ∥u0∥L2 .

Therefore, (6.6) is solvable for all t ∈ R whenever ν ≥ 0 and ϵ > 0.
Now let M = Tn and compute

(6.9)
d

dt
∥uϵ(t)∥2Hk ≤ C∥uϵ(t)∥C1∥uϵ(t)∥2Hk − 4ν∥∇Jϵuϵ∥2L2 .

Observe that the constant C in (6.9) is independent of ν ≥ 0. The estimate (6.9) is sufficient to
establish a local existence theorem for a limit point of uϵ as ϵ ↘ 0, which we denote uν .

Theorem 1. Given u0 ∈ Hk(M), k > n
2 +1, with div(u0) = 0, there is a solution uν on an interval

I = [0, A) to (6.3) satisfying

(6.10) uν ∈ L∞(I,Hk(M)) ∩ Lip(I,Hk−2(M)).

The interval I and the estimate of uν in L∞(I,Hk(M)) can be taken independent of ν ≥ 0.

We can establish the uniqueness and treat the stability and rate of convergence of uϵ to u = uν

as before. For ϵ ∈ [0, 1], compare a solution u = uν to a solution uνϵ = w to

(6.11)
∂w

∂t
+ PJϵ∇wJϵw = νJϵ∆Jϵw, w(0) = w0.

Setting v = uν − uνϵ, we have an estimate.

Proposition 24. Given k > n
2 +1, solutions to (6.3) satisfying (6.10) are unique. They are limits

of solutions uνϵ to (6.3), and for t ∈ I,

(6.12)
d

dt
∥v∥2L2 = −2ν∥∇v∥2L2 +K1(t)∥I − Jϵ∥L(Hk−1,L2).

Next, we can deduce

(6.13)
d

dt
∥DαJϵuν(t)∥2L2 = −2(DαJϵL(uν , D)uν , D

αJϵuν)− 2ν∥∇Jϵuν(t)∥2L2 .

Therefore,

(6.14)
d

dt
∥uν(t)∥2Hk ≤ C∥uν(t)∥C1∥uν(t)∥2Hk .

Thus, uν is continuous in t with values in Hk(M) at t = 0. At other points t ∈ I, uν is right
continuous. uν is not left continuous, since the evolution equation is not well–posed backward in
time.

Now we prove a local well–posedness result for (6.3).

Proposition 25. If div(u0) = 0 and u0 ∈ Lp(M), with p > n = dim(M), and if ν > 0, then (6.3)
has a unique short–time solution on an interval I = [0, T ],

(6.15) u = uν = C(I, Lp(M)) ∩ C∞((0, T )×M).
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Proof. It is useful to rewrite ((6.3) as

(6.16)
∂u

∂t
+ Pdiv(u⊗ u) = ν∆u, u(0) = u0.

Indeed, since u is divergence free,

(6.17) ∇uu = uj∇jui = ∇j(ujui) = div(u⊗ u).

Now then, rewrite (6.16) as an integral equation,

(6.18) u(t) = etν∆u0 −
∫ t

0

e(t−s)ν∆Pdiv(u(s)⊗ u(s))ds = Ψu(t).

Then we look for a fixed point,

(6.19) Ψ : C(I,X) → C(I,X), X = Lp(M) ∩ kerdiv.

Then by Proposition 7, fix α > 0 and set

(6.20) X = {u ∈ C([0, T ], X) : u(0) = u0, ∥u(t)− u0∥X ≤ α},

and show that if T > 0 is sufficiently small, then Ψ : Z → Z is a contraction map.
Then we need a Banach space such that

(6.21)
Φ : X → Y, is Lipschitz, uniformly on bounded sets, etν∆ : Y → X, for t > 0,

and for some γ < 1,

(6.22) ∥etν∆∥L(Y,X) ≤ Ct−γ , for t ∈ (0, 1].

The map Φ in (6.21) is

(6.23) Φ(u) = Pdiv(u⊗ u),

and then set

(6.24) Y = H−1,p/2(M) ∩ kerdiv.

These conditions hold if p > n. Thus, we have the solution uν to (6.16) belonging to

(6.25) uν ∈ C([0, T ], Lp(M)).

The proof of smoothness from Proposition 8) applies essentially verbatim. □

Thus, we can get global well–posedness if we can bound ∥u(t)∥Lp(M) for some p > n.

Proposition 26. Given ν > 0, p > n, if u ∈ C([0, T ), Lp(M)) solves (6.3), and if the vorticity ω
satisfies

(6.26) sup
t∈[0,T )

∥ω(t)∥Lq ≤ K < ∞, q =
np

n+ p
,

then the solution u continues to an interval [0, T ′), for some T ′ > T ,

(6.27) u ∈ C([0, T ′), Lp(M)) ∩ C∞((0, T ′)×M),

solving (6.3).
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Proof. We have

(6.28) u = Aw + P0u,

where A ∈ OPS−1(M) and P0 is a projection onto a finite–dimensional space of smooth fields.
Then by the Sobolev embedding theorem,

(6.29) A : Lq(M) → Lp(M).

□

Now then, when dimM = 2, the vorticity ω = ∂1u2 − ∂2u1 is a scalar and satisfies the PDE

(6.30)
∂ω

∂t
+∇uω = ν(∆ + c0)ω,

Then by the maximum principle,

(6.31) ∥ω(t)∥L∞ ≤ eνc0t∥ω(0)∥L∞ .

When M = R2, c0 = 0. When dimM = 3, ω = curl(u) is a vector field, and then

(6.32)
∂ω

∂t
+∇uω −∇ωu = ν∆ω.

In this case we cannot use the maximum principle to control ω, and the Navier–Stokes equation
remains an open problem. We can prove a global result for small data.

Proposition 27. Let k > n
2 + 1, ν > 0. If ∥u0∥Hk is sufficiently small, then (6.3) has a global

solution in C([0,∞), Hk) ∩ C∞((0,∞)×M).

Proof. If M = Rn, we can choose constants A and B such that

(6.33) ∥∇u∥2Hk ≥ A∥u∥2Hk −B∥u∥2L2 .

Therefore, (6.13) yields

(6.34)
d

dt
∥u(t)∥2Hk ≤ {C∥u(t)∥C1 − 2νA}∥u∥2Hk + 2νB∥u(t)∥2L2 .

Now suppose

(6.35) ∥u0∥2L2 ≤ δ, and ∥u0∥2Hk ≤ Lδ,

where L is specified below. For Lδ sufficiently small,

(6.36) ∥v∥2Hk ≤ 2Lδ implies ∥v∥C1 ≤ νA

C
.

Recall that ∥u(t)∥L2 ≤ ∥u0∥L2 . Therefore, if ∥u(t)∥2Hk ≤ 2Lδ,

(6.37)
dy

dt
≤ −νAy + 2νBδ, y(t) = ∥u(t)∥2Hk .

Therefore, (6.37) implies

(6.38) y(t) ≤ max{y(t0), 2BA−1δ}, for t ≥ t0.

Therefore, if we take L = 2B
A and δ > 0 sufficiently small so that (6.36) holds, we have a global

bound ∥u(t)∥2Hk ≤ Lδ, which gives global existence. □

Now we prove the Hopf theorem proving global weak solutions exist for ν > 0. Suppose c0 = 0,
which corresponds to Ric = 0.
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Proposition 28. Given u0 ∈ L2(M), div(u0) = 0, ν > 0, (6.3) has a weak solution for t ∈ (0,∞),

(6.39) u ∈ L∞(R+, L2(M)) ∩ L2
loc(R+, H1(M)) ∩ Liploc(R+, H−2(M) +H−1,1(M)).

Proof. We produce u as a limit point of solutions uϵ to a slight modification of (6.6), namely we
require Jϵ to be a projection, Jϵ = χ(ϵ∆), where χ(λ) is the characteristic function of [−1, 1]. Then
Jϵ commutes with ∆ and with P . We also require uϵ(0) = Jϵu0 and then uϵ(t) = Jϵuϵ(t). Now, by
(6.7),

(6.40) {uϵ : ϵ ∈ (0, 1]} is bounded in L∞(R+, L2).

Furthermore, for M = Rn,

(6.41) 2ν

∫ T

0

∥∇uϵ(t)∥2L2dt = ∥Jϵu0∥2L2 − ∥uϵ(T )∥2L2 .

Therefore, for each bounded interval I = [0, T ],

(6.42) {uϵ} is bounded in L2(I,H1(M)).

Now then, since Jϵ∆Jϵuϵ = ∆uϵ.

(6.43)
∂uϵ

∂t
+ PJϵdiv(uϵ ⊗ uϵ) = ν∆uϵ.

Now by (6.40),

(6.44) {uϵ ⊗ uϵ : ϵ ∈ (0, 1]} is bounded in L∞(R+, L1(M)).

Since L1(M) ⊂ H−n/2−δ(M), for each δ > 0,

(6.45) {∂tuϵ} is bounded in L2(I,H−n/2−1−δ(M)),

so

(6.46) {uϵ} is bounded in H1(I,H−n/2−1−δ(M)).

Interpolating between (6.46) and (6.42),

(6.47) {uϵ} is bounded in Hs(I,H1−s−s(n
2 +1+δ)(M)),

and therefore,

(6.48) {uϵ} is compact in L2(I,H1−γ(M)),

for all γ > 0. Therefore, we can pick a sequence uk = uϵk such that

(6.49) uk → u, in L2([0, T ], H1−γ(M)), in norm.

Therefore, u is the desired weak solution of (6.3). □

Solutions of (6.3) that are obtained as limits of uϵ are called Leray–Hopf solutions to the Navier
Stokes equations. Uniqueness and smoothness of a Leray–Hopf solution remain open problems if
dim(M) ≥ 3.

Proposition 29. If dim(M) = 3 and u is a Leray–Hopf solution of (6.3), then there is an open
dense subset J of (0,∞) such that R+ \ J has Lebesgue measure zero and

(6.50) u ∈ C∞(J ×M).
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Proof. Fix T > 0 arbitrary, I = [0, T ]. Passing to a subsequence, uk = uϵk , with

(6.51) ∥uk+1 − uk∥E ≤ 2−k, E = L2(I,H1−γ(M)).

Now set Γ(t) = supk ∥uk(t)∥H1−γ . Then

(6.52) Γ(t) ≤ ∥u1(t)∥H1−γ +

∞∑
k=1

∥uk+1(t)− uk(t)∥H1−γ .

Therefore, Γ ∈ L2(I). Therefore, Γ(t) is finite almost everywhere. Let

(6.53) S = {t ∈ I : Γ(t) < ∞}.

For γ > 0 small, H1−γ(M) ⊂ Lp(M), with p close to 6 when dim(M) = 3. Therefore, the product

of two elements in H1−γ belongs to H1/2−γ′
for γ′ > 0. Applying the local well–posedness result,

for each t0 ∈ S, there exists T (Γ(t0)) > 0 such that, for γ′ > 0,

(6.54) {uk} bounded in C([t0, t0 + T (t0)], H
1−γ) ∩ C∞((t0, t0 + T (t0))×M).

Therefore, in the set

(6.55) JT = ∪t0∈S(t0, t0 + T (t0)),

and the weak limit u has the property u ∈ C∞(JT ×M).
It remains to show that I \ JT has Lebesgue measure zero. Fix δ1 > 0. Since meas(I \ S) = 0,

there exists δ2 > 0 such that if Sδ2 = {t ∈ S : T (t) ≥ δ2}, then meas(I \ Sδ2) < δ1. Now then, if
T (t0) ≥ δ2 then t0 +

δ2
2 ∈ JT . Therefore, meas(I \ JT ) ≤ δ1 +

δ2
2 . This completes the proof. □

7. Harmonic maps

Let M and N be compact Riemannian manifolds. Using the Nash embedding result, we can
take N ⊂ Rk. A harmonic map is a critical point for the energy functional

(7.1) E(u) =
1

2

∫
M

|∇u(x)|2dV (x).

Remark 3. Recall that an isometric embedding f is an embedding that preserves the metric. That
is, for v, w ∈ TxM, if g and h are the metrics,

(7.2) g(v, w) = h(df(v), df(w)).

Therefore, the quantity (7.1) only depends on the metrics of M and N , not on the embedding.

Suppose us is a smooth family of maps from M to N . Then,

(7.3)
d

ds
E(us)|s=0 = −

∫
v(x)∆u(x)dV (x),

where u = u0 and v(x) = ∂
∂sus(x) ∈ Tu(x)N . It is possible to vary u0 so that v is any map M → Rk

that satisfies v(x) ∈ Tu(x)N . Therefore, the stationary condition is that

(7.4) ∆u(x) ⊥ Tu(x)N , for all x ∈ M.

It is possible to rewrite the stationary condition (7.4). Suppose that near a point z ∈ N ⊂ Rk,
N is given by

(7.5) fl(y) = 0, 1 ≤ l ≤ L,
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where L = k − dimN , and with ∇fl(y) linearly independent in Rk for each y near z. Now then, if
u : M → N is smooth and u(x) is close to z, then we have

(7.6)
∑
ν

∂fl
∂uν

∂uν

∂xj
= 0, 1 ≤ l ≤ L, 1 ≤ j ≤ m,

where (x1, ..., xm) is a local coordinate system on M. Multiplying (7.6) by gjk and differentiating
with respect to xk,

(7.7)
∑
ν

∂fl
∂uν

∆uν = −
∑

µ,ν,j,k

gjk
∂2fl

∂uµ∂uν

∂uµ

∂xk

∂uν

∂xj
.

Since {∇yfl(y) : 1 ≤ l ≤ L} is a basis for the orthogonal complement in Rk of TyN , the normal
component of ∆u depends only on the first order derivatives of u and is quadratic in ∇u. That is,

(7.8) (∆u)N = Γ(u)(∇u,∇u).

Thus, the stationary solution for (7.4) is equivalent to

(7.9) ∆u− Γ(u)(∇u,∇u) = 0.

Let τ(u) denote the left hand side of (7.9). Then by (7.8), given u ∈ C2(M,N ), τ(u) is tangent to
N at u(x). There is a result of Eells and Sampson.

Theorem 2. Suppose N has negative sectional curvature everywhere. Then, given v ∈ C∞(M,N ),
there exists a harmonic map w ∈ C∞(M,N ) that is homotopic to v.

The existence of w is established by solving the PDE,

(7.10)
∂u

∂t
= ∆u− Γ(u)(∇u,∇u), u(0) = v.

Under the hypothesis of negative sectional curvature on N , there is a smooth solution to (7.10) for
all t ≥ 0, and that, for a sequence tk → ∞, u(tk) tends to the desired w. By Proposition 8, equation
(7.10) is locally solvable on some interval [0, T ). Since τ(u) is tangent to N for u ∈ C∞(M,N ),
it follows that u(t) : M → N for each t ∈ [0, T ). To show that T = ∞, it suffices to estimate
∥u(t)∥C1 .

Let e(t, x) denote the energy density,

(7.11) e(t, x) =
1

2
|∇xu(t, x)|2.

Now then, we have the identity

(7.12)
∂e

∂t
−∆e = −|N∇2u|2 − 1

2
⟨du ·RicM(ej), du · ej⟩+

1

2
⟨RN (du · ej , du · ek)du · ek, du · ej⟩.

Since N has negative sectional curvature, we have the identity

(7.13)
∂e

∂t
−∆e ≤ ce.

Now then, if f(t, x) = e−cte(t, x),

(7.14)
∂f

∂t
−∆f ≤ 0,

which by the maximum principle, f(t, x) ≤ ∥f(0, ·)∥L∞ . Therefore,

(7.15) e(t, x) ≤ ect∥∇v∥2L∞ .
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This C1 estimate implies global existence of a solution by Proposition 7.

Now then, for the total energy,

(7.16) E(t) =

∫
M

e(t, x)dV (x) =
1

2

∫
M

|∇u|2dV (x).

Then by (7.3),

(7.17) E′(t) = −
∫
M

|ut|2dV (x).

Indeed, by (7.3),

(7.18) E′(t) =

∫
M
⟨ut,∆u⟩dV (x).

Since ut is tangent to N and Γ(u)(∇u,∇u) is normal to N , (7.17) follows.

Lemma 3. Let e(t, x) ≥ 0 satisfy the differential inequality (7.12). Assume that

(7.19) E(t) =

∫
e(t, x)dV (x) ≤ E0,

is bounded. Then there exists a uniform estimate

(7.20) e(t, x) ≤ ecKE0, t ≥ 1,

where K depends on the geometry of M.

Proof. Let ∂e
∂t −∆e = ce− g, g(t, x) ≥ 0. Then for 0 ≤ s ≤ 1,

(7.21) e(t+ s, x) = es(∆+c)e(t, x)−
∫ s

0

e(s−τ)(∆+c)g(τ, x)dτ ≤ es(∆+c)e(t, x).

Since es(∆+c) is uniformly bounded from L1(M) to L∞(M) for s ∈ [ 12 , 1], the bound (7.20) for

t ∈ [ 12 ,∞) follows from the hypothesized L1(M) bound on e(t). □

Now then, Lemma 3 applies to e(t, x) = |∇u|2 when u solves (7.10) satisfy

(7.22) ∥u(t)∥C1 ≤ K1∥v∥C1 , for all t ≥ 0.

Then by the regularity estimates in Proposition 11,

(7.23) ∥u(t)∥Cl ≤ Kl∥v∥C1 , t ≥ 1.

Now by (7.17), E(t) is positive and monotonically decreasing. Therefore,
∫
M |ut(t, x)|2dV (x) is

an integrable function of t, so there exists a sequence tj → ∞ such that

(7.24) ∥ut(tj , ·)∥L2 → 0.

Also by (7.23) and the PDE (7.10), we have the bounds

(7.25) ∥ut(t, ·)∥Hk ≤ Ck,

and interpolating with (7.24) gives

(7.26) ∥ut(tj , ·)∥L2 → 0.

Therefore, by (7.10), for uj(x) = u(tj , x),

(7.27) ∆uj − Γ(uj)(∇uj ,∇uj) → 0, in H l(M).
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Therefore, the subsequence converges in a strong norm to an element w ∈ C∞(M,N ) solving (7.9)
and homotopic to v.

Theorem 3. If we are given v ∈ C∞(M,N ) there exists a smooth map w : M → N that is
harmonic and homotopic to v and such that E(w) ≤ E(ṽ) for any ṽ ∈ C∞(M,N ), homotopic to v.

Proof. Let α be the infimum of the energy of smooth maps homotopic to v. Choose a sequence vν
homotopic to v such that E(vν) ↘ α. Then solve (7.10) with uν(0) = vν . Then we have a sequence
uν(tνj) → wν ∈ C∞(M,N ), harmonic, E(wν) ≤ E(vν) so that

(7.28) E(wν) ↘ α.

Also, we have uniform Cl bounds of wν for all l. Thus, the limit point has all the desired properties.
□

Now let

(7.29) F (x,D1
xu) = B(u)(∇u,∇u),

a quadratic form in ∇u. In this case, take

(7.30) X = H1,p, Y = Lq, q =
p

2
, p > n.

Then

(7.31) Hs,p ⊂ L
np

n−sp , p <
n

s
.

Proposition 30. If (7.29) is a quadratic form in ∇u, then the PDE

(7.32)
∂u

∂t
= ∆u+B(u)(∇u,∇u), u(0) = f,

has a solution in C([0, T ], H1,p) ∩ C∞((0, T )×M), provided f ∈ H1,p(M), p > n.
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8. Reaction–diffusion equations

A reaction diffusion equation is an l × l system of the form,

(8.1)
∂u

∂t
= Lu+X(u), u(0) = f,

where u = u(t, x) takes values in Rl, X is a real vector field on Rl, and L is a second order
differential operator that is a negative semi-definite, self-adjoint operator on L2(M). The manifold
M is complete, either Rn or a compact manifold. The operator L need not be elliptic.

One example is the Fitzhugh–Nagumo system,

(8.2)

∂v

∂t
= D

∂2v

∂x2
+ f(v)− w,

∂w

∂t
= ϵ(v − γw),

with

(8.3) f(v) = v(a− v)(v − 1).

In this case,

(8.4) L =

(
D∂2

x 0
0 0

)
, D > 0.

The operator L has the following generalization of the maximum principle.

Proposition 31 (Invariance property). There is a compact, convex neighborhood K of the origin
in Rl such that if f ∈ L2(M), then for all t ≥ 0,

(8.5) f(x) ∈ K, for all x implies etLf(x) ∈ K, for all x.

Therefore, if f, g ∈ L2(M) have compact support,

(8.6) ∥etLf∥L∞ ≤ κ∥f∥L∞ ,

where κ is independent of t ≥ 0. If we define a norm on Rl so that K ∩ (−K) is the unit ball, then
we have κ = 1. For such f and g, we have

(8.7) |(etLf, g)| = |(f, etLg)| ≤ κ∥f∥L1∥g∥L∞ ,

so then ∥etLf∥L1 ≤ κ∥f∥L1 . Therefore, etL has a unique extension to the linear map

(8.8) etL : Lp(M) → Lp(M), ∥etL∥ ≤ κp,

for 1 ≤ p ≤ 2, by interpolation. Then by duality (8.8) holds for 2 ≤ p ≤ ∞.

9. A nonlinear Trotter product formula

10. The Stefan problem

11. Quasilinear parabolic equations 1

12. Quasilinear parabolic equations 2, sharper estimates

13. Quasilinear parabolic equations 3, Nash–Moser estimates
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