A COURSE ON PARABOLIC PDE

BENJAMIN DODSON

Contents

1.	Fundamental solution to the heat equation	2
2.	Semigroups	5
3.	Semilinear parabolic equations	9
4.	The L^p spectral theory of the Laplace operator	15
5.	Galerkin's method	17
6.	Navier–Stokes equation	19
7.	Harmonic maps	24
8.	Reaction–diffusion equations	28
9.	A nonlinear Trotter product formula	28
10.	The Stefan problem	28
11.	Quasilinear parabolic equations 1	28
12.	Quasilinear parabolic equations 2, sharper estimates	28
13.	Quasilinear parabolic equations 3, Nash–Moser estimates	28
References		28

1. Fundamental solution to the heat equation

Let $\overline{\mathcal{M}}$ be a compact, Riemannian manifold with boundary. The heat equation is given by

(1.1)
$$\frac{\partial u}{\partial t} = \Delta u, \qquad u(0,x) = f(x).$$

If $\partial \mathcal{M} \neq \emptyset$, then impose the Dirichlet condition,

(1.2)
$$u(t,x) = 0, \quad x \in \partial \mathcal{M}.$$

We could also impose the Neumann boundary condition $\frac{\partial u}{\partial \nu} = 0$ for $x \in \partial \mathcal{M}$. It is possible to construct solutions to (1.1)–(1.2) using eigenfunctions of Δ . Indeed, let $\{u_j\}$ be the orthonormal basis of Δ in $L^2(\mathcal{M})$,

(1.3)
$$u_j \in H^1_0(\mathcal{M}) \cap C^{\infty}(\bar{\mathcal{M}}), \qquad \Delta u_j = -\lambda_j u_j, \qquad 0 \le \lambda_j < \infty.$$

Given $f \in L^2(\mathcal{M})$, we can write

(1.4)
$$f = \sum_{j} \hat{f}(j) u_j, \qquad \hat{f}(j) = (f, u_j)$$

Then set

(1.5)
$$u(t,x) = \sum_{j} \hat{f}(j)e^{-t\lambda_j}u_j(x)$$

Define the function space

(1.6)
$$\mathcal{D}_{s} = \{ v \in L^{2}(\mathcal{M}) : \sum_{j \ge 0} |\hat{v}(j)|^{2} \lambda_{j}^{s} < \infty \} = \{ v \in L^{2}(\mathcal{M}) : \sum_{j \ge 0} \hat{v}(j) \lambda_{j}^{s/2} u_{j} \in L^{2}(\mathcal{M}) \}.$$

Now then, since

(1.7)
$$u_j \in H^1_0(\mathcal{M}) \cap C^{\infty}(\bar{\mathcal{M}}), \quad Tu_j = -\mu_j u_j, \quad \Delta u_j = -\lambda_j u_j, \quad \lambda_j = \frac{1}{\mu_j},$$

so an equivalent characterization of \mathcal{D}_s is

(1.8)
$$\mathcal{D}_s = (-T)^{s/2} L^2(\mathcal{M}).$$

Clearly, $\mathcal{D}_0 = L^2(\mathcal{M})$ and $\mathcal{D}_2 = TL^2(\mathcal{M})$. By the elliptic regularity theorem,

(1.9)
$$\mathcal{D}_2 = H^2(\mathcal{M}) \cap H^1_0(\mathcal{M}).$$

In general, $\mathcal{D}_{s+2} = T\mathcal{D}_s$, so by induction,

$$\mathcal{D}_{2k} \subset H^{2k}(\mathcal{M}), \qquad k = 1, 2, 3,$$

Lemma 1.

(1.10)

$$(1.11) \qquad \qquad \mathcal{D}_1 = H^1_0(\mathcal{M})$$

Proof. Observe that \mathcal{D}_s is the completion of the space of finite linear combinations of eigenfunctions $\{u_i\}$, call it \mathcal{F} , with respect to the \mathcal{D}_s norm, defined by

...

(1.12)
$$||v||_{\mathcal{D}_s}^2 = \sum_j |\hat{v}(j)|^2 \lambda_j^s.$$

Now then, if $v \in \mathcal{F}$,

(1.13)
$$(dv, dv) = (v, -\Delta v) = \sum_{j} (v, u_j)(u_j, -\Delta v) = \sum_{j} |\hat{v}(j)|^2 \lambda_j.$$

Therefore, for $v \in \mathcal{F}$,

(1.14)
$$\|v\|_{\mathcal{D}_1}^2 = \|dv\|_{L^2(\mathcal{M})}^2$$

In fact, \mathcal{D}_s is the completion of \mathcal{D}_{σ} for any $\sigma > s$. Since (1.14) holds for all $v \in \mathcal{D}_2$ and $\mathcal{D}_2 = H^2(\mathcal{M}) \cap H^1_0(\mathcal{M})$, which implies (1.11).

Now then, by (1.5),

(1.15)
$$f \in \mathcal{D}_s \Rightarrow u \in C(\mathbb{R}^+, \mathcal{D}_s); \qquad \partial_t^j u \in C(\mathbb{R}^+, \mathcal{D}_{s-2j}).$$

It is clear from (1.5) that $\partial_t u = \Delta u$ for t > 0. If $f \in \mathcal{D}_s$ with $s > \frac{n}{2}$, then $u \in C([0, \infty) \times \overline{\mathcal{M}})$ and u satisfies (1.1) and (1.2) in the ordinary sense.

Uniqueness for solutions to (1.1) and (1.2) within the class

(1.16)
$$C(\mathbb{R}^+, \mathcal{D}_s) \cap C^1(\mathbb{R}^+, \mathcal{D}_{s-2})$$

follows from the simple energy estimate

(1.17)
$$\frac{d}{dt} \|u(t)\|_{\mathcal{D}_{s-2}}^2 = 2Re(\frac{\partial u}{\partial t}, u(t))_{\mathcal{D}_{s-2}} = -2\|u(t)\|_{\mathcal{D}_{s-1}}^2 \le 0$$

Denote the solution to (1.1)-(1.2) by

(1.18)
$$u(t,x) = e^{t\Delta} f(x).$$

Now, by (1.5),

(1.19) $u \in C^{\infty}((0,\infty), \mathcal{D}_{\sigma}), \quad \text{for all} \quad \sigma \in \mathbb{R}.$

In particular, for any $f \in \mathcal{D}_s$,

(1.20)
$$u \in C^{\infty}((0,\infty) \times \overline{\mathcal{M}}).$$

The heat equation satisfies the maximum principle.

Proposition 1. If $u \in C([0, a) \times \overline{\mathcal{M}}) \cap C^2((0, a) \times \mathcal{M})$ and u solves (1.1) in $(0, a) \times \mathcal{M}$, then

(1.21)
$$\sup_{[0,a)\times\bar{\mathcal{M}}} u(t,x) = \max\{\sup_{x\in\overline{\mathcal{M}}} u(0,x), \sup_{x\in\partial\mathcal{M}, t\in[0,a)} u(t,x)\}$$

In particular, if (1.2) and (1.3) hold, then

(1.22)
$$\sup_{[0,a)\times\overline{\mathcal{M}}} u(t,x) = \sup_{\overline{\mathcal{M}}} f(x).$$

Proof. Since u solves (1.1) if and only if -u solves (1.1), to prove (1.21), it suffices to show that

(1.23)
$$u > 0$$
 on $\{0\} \times \overline{\mathcal{M}} \cup [0, a) \times \partial \mathcal{M}$ implies $u \ge 0$, on $[0, a) \times \mathcal{M}$.

Indeed, u solves (1.1) if and only if -u solves (1.1), and (1.23) certainly implies that (1.21) holds for -u.

Set $u_{\epsilon}(t,x) = u(t,x) + \epsilon t$. For any $\epsilon > 0$, $u_{\epsilon} > 0$ on $[0,a) \times \mathcal{M}$. Indeed, if this implication is false, then since $\overline{\mathcal{M}}$ is compact, there is a smallest $t_0 \in (0,a)$ such that $u_{\epsilon}(t_0,x_0) = 0$ for some $x_0 \in \mathcal{M}$. Therefore, $\partial_t u_{\epsilon}(t_0,x_0) \leq 0$ and $\Delta u_{\epsilon}(t_0,x_0) \geq 0$. However, since $\partial_t u_{\epsilon} = \Delta u_{\epsilon} + \epsilon$, there is a contradiction.

Corollary 1. For any $f \in C_0(\mathcal{M}), u \in C([0,\infty) \times \overline{\mathcal{M}})$.

For $\delta_p \in \mathcal{D}_{-n/2-\epsilon}$ for all $\epsilon > 0$, the fundamental solution to the heat equation is

(1.24)
$$H(t,x,p) = e^{t\Delta}\delta_p(x)$$

By (1.20), H(t, x, p) is smooth in (t, x) for $t \ge 0$. Since δ_p is a limit in $\mathcal{D}_{-n/2-\epsilon}$ of elements of $C_0^{\infty}(\mathcal{M})$ that are ≥ 0 , it follows that

(1.25)
$$H(t, x, p) \ge 0, \quad \text{for} \quad t \in (0, \infty), \quad x \in \overline{\mathcal{M}}, \quad p \in \mathcal{M}.$$

In fact, there is a variant of the strong maximum principle. that strengthens (1.25) to H(t, x, p) > 0 for $t > 0, x, p \in \mathcal{M}$.

For the heat equation on \mathbb{R}^n , then by the Fourier inversion formula,

(1.26)
$$e^{t\Delta}f = (2\pi)^{-n/2} \int e^{-t|\xi|^2} e^{ix\cdot\xi} \hat{f}(\xi) d\xi = (2\pi)^{-n} \int e^{-t|\xi|^2} e^{ix\cdot\xi} \int e^{-iy\cdot\xi} f(y) dy d\xi$$

By Fubini's theorem, for t > 0 and $f \in L^1(\mathbb{R}^n)$,

(1.27)
$$e^{t\Delta}f = (2\pi)^{-n} \int f(y) \int e^{-t|\xi|^2} e^{i(x-y)\cdot\xi} d\xi dy$$

Completing the square,

(1.28)
$$-t|\xi|^2 + i(x-y)\cdot\xi = -t|\xi - \frac{i}{2t}(x-y)|^2 - \frac{|x-y|^2}{4t}.$$

Now then, computing an integral in radial coordinates and making a change of variables,

(1.29)
$$\int e^{-|x|^2} dx = A_{n-1} \int_0^\infty e^{-r^2} r^{n-1} dr = \frac{A_{n-1}}{2} \int_0^\infty e^{-u} u^{\frac{n-2}{2}} du = \frac{A_{n-1}}{2} \Gamma(\frac{n}{2}).$$

Using the identity that

(1.30)
$$\pi^{n/2} = \int e^{-|x|^2} dx = \frac{A_{n-1}}{2} \Gamma(\frac{n}{2}),$$

which gives the identity,

(1.31)
$$A_{n-1} = \frac{2\pi^{n/2}}{\Gamma(\frac{n}{2})}$$

Using (1.28) and contour integration,

(1.32)
$$\int e^{-t|\xi|^2} e^{i(x-y)\cdot\xi} d\xi = \frac{\pi^{n/2}}{t^{n/2}}$$

Plugging (1.32) into (1.27),

(1.33)
$$e^{t\Delta}f = \frac{1}{(4\pi t)^{n/2}} \int e^{-\frac{|x-y|^2}{4t}} f(y) dy$$

Remark 1. Since $e^{-\frac{|x-y|^2}{4t}} > 0$ for all $x, y \in \mathbb{R}^n$, $e^{t\Delta}f > 0$ for all $x \in \mathbb{R}^n$ and t > 0.

It is straightforward to verify that

(1.34)
$$\frac{1}{(4\pi t)^{n/2}} \int e^{-\frac{|x-y|^2}{4t}} dy = 1$$

Therefore,

(1.35)
$$e^{t\Delta}: L^p \to L^p, \quad 1 \le p \le \infty.$$

Next, since $|x|^N e^{-|x|^2} \lesssim_N e^{\frac{|x|^2}{2}}$,

(1.36)

 $\|\nabla^N e^{\frac{|x|^2}{4t}}\|_{L^1} \lesssim_N t^{-\frac{N}{2}}.$

Therefore,

(1.37)
$$\|\nabla^N e^{t\Delta}\|_{L^p \to L^p} \lesssim_N t^{-\frac{N}{2}}$$

Furthermore, since

(1.38)
$$\|\frac{1}{(4\pi t)^{n/2}}e^{-\frac{|x-y|^2}{4t}}\|_{L^{\infty}} \le \frac{1}{(4\pi t)^{n/2}},$$

(1.39)
$$\|e^{t\Delta}\|_{L^1 \to L^\infty} \le \frac{1}{(4\pi t)^{n/2}}.$$

Interpolating (1.35) and (1.39), for $1 \le p \le q \le \infty$,

(1.40)
$$\|e^{t\Delta}\|_{L^p \to L^q} \le \frac{1}{(4\pi t)^{\frac{n}{2}(\frac{1}{p} - \frac{1}{q})}}.$$

Moreover, by (1.36),

(1.41)
$$\|\nabla^N e^{t\Delta}\|_{L^p \to L^q} \lesssim_N t^{-\frac{N}{2}} \frac{1}{(4\pi t)^{\frac{n}{2}(\frac{1}{p} - \frac{1}{q})}}.$$

2. Semigroups

Definition 1 (Semigroup). If V is a Banach space, a one-parameter semigroup of operators on V is a set of bounded operators

(2.1)
$$P(t): V \to V, \qquad t \in [0, \infty),$$

satisfying

(2.2)
$$P(s+t) = P(s)P(t), \quad \text{for all} \quad s, t \in \mathbb{R}^+,$$

and

$$(2.3) P(0) = I$$

We also require strong continuity, that is,

(2.4)
$$t_j \to t, \qquad P(t_j)v \to P(t)v, \qquad for \ each \qquad v \in V.$$

If P(t) is defined for all $t \in \mathbb{R}$ and satisfies the former conditions, we say that P(t) is a one-parameter group of operators.

For example, consider the translation group

(2.5)
$$T_p(t): L^p(\mathbb{R}) \to L^p(\mathbb{R}), \qquad 1 \le p < \infty,$$

defined by

(2.6)
$$T_p(t)f(x) = f(x-t).$$

It is clear that (2.1)–(2.3) hold for each t. Indeed, $||T_p(t')|| = 1$ for each t, and $||T_p(t) - T_p(t')|| = 2$ if $t \neq t'$. Indeed, apply the difference to a function supported on an interval of length $\frac{|t-t'|}{2}$. To verify strong continuity, observe that the space $C_0(\mathbb{R})$ is dense in $L^p(\mathbb{R})$ for $1 \leq p < \infty$. If $f \in C_0(\mathbb{R})$, then $T_p(t_j)f(x) = f(x-t_j)$ has support in a fixed compact set and converges uniformly to f(x-t), which implies convergence in L^p norm. Convergence in a dense set implies convergence in V.

Lemma 2. Let $T_j \in \mathcal{L}(V, W)$ be uniformly bounded. Let L be a dense, linear subspace of V, and suppose

(2.7)
$$T_j v \to T_0 v, \qquad as \qquad j \to \infty,$$

in the W-norm, for each $v \in L$. Then (2.7) holds for each $v \in V$.

Proof. Given $v \in V$ and $\epsilon > 0$. Choose $w \in L$ such that $||v - w|| < \epsilon$. Suppose $||T_j|| \le M$ for all j. Then,

(2.8)
$$||T_jv - T_0v|| \le ||T_jv - T_jw|| + ||T_jw - T_0w|| + ||T_0w - T_0v|| \le ||T_jw - T_0w|| + 2M||v - w||.$$

Therefore,

(2.9)
$$\limsup_{j \to \infty} \|T_j v - T_0 v\| \le 2M\epsilon$$

Since $\epsilon > 0$ is arbitrary, the proof is complete.

Definition 2 (Infinitesimal generator). A one parameter semigroup P(t) of operators on V has an infinitesimal generator A, which is an operator on V, often unbounded, which is defined by

(2.10)
$$Av = \lim_{h \searrow 0} \frac{1}{h} (P(h)v - v),$$

on the domain

(2.11)
$$\mathcal{D}(A) = \{ v \in V : \lim_{h \searrow 0} \frac{1}{h} (P(h)v - v) \quad exists in \quad V \}$$

For example, let A_p be the infinitesimal generator of the group $T_p(t)$ given by (2.5). By definition, $f \in L^p(\mathbb{R})$ belongs to $\mathcal{D}(A_p)$ if and only if

(2.12)
$$\lim_{h \searrow 0} \frac{1}{h} (f(x-h) - f(x)),$$

converges in L^p -norm as $h \to 0$. The limit (2.12) always exists in $C_0^{\infty}(\mathbb{R})$, and the limit is equal to $-\frac{d}{dx}u$. In fact, we have the following.

Proposition 2. For $1 \le p < \infty$, the group $T_p(t)$ given by (2.5)–(2.7) has infinitesimal generator A_p given by

for $f \in \mathcal{D}(A_p)$, with

(2.14)
$$\mathcal{D}(A_p) = \{ f \in L^p(\mathbb{R}) : f' \in L^p(\mathbb{R}) \}$$

where $f' = \frac{df}{dx}$ is considered a priori as a distribution.

Proof. The argument above shows that $\mathcal{D}(A_p)$ is contained in the right hand side of (2.14). The reverse containment is derived as a consequence of the following result, with $\mathcal{L} = C_0^{\infty}(\mathbb{R})$.

Proposition 3. Let P(t) be a one-parameter semigroup on B, with infinitesimal generator A. Let \mathcal{L} be a weak* dense, linear subspace of B', and suppose $P(t)'\mathcal{L} \subset L$. Suppose that $u, v \in B$ and that

(2.15)
$$\lim_{h \to 0} \frac{1}{h} \langle P(h)u - u, w \rangle = \langle v, w \rangle, \qquad \forall w \in \mathcal{L}.$$

Then $w \in \mathcal{D}(A)$ and Au = v.

 $\mathbf{6}$

7

Proof. The hypothesis (2.15) implies that $\langle P(t)u, w \rangle$ is differentiable, and that for any $w \in \mathcal{L}$, (2.16) $\frac{d}{dt} \langle P(t)u, w \rangle = \frac{d}{ds} \langle P(t)P(s)u, w \rangle|_{s=0} = \frac{d}{ds} \langle P(s)u, P(t)'w \rangle|_{s=0} = \langle v, P(t)'w \rangle = \langle P(t)v, w \rangle$. Therefore,

(2.17)
$$\langle P(t)u - u, w \rangle = \int_0^t \langle P(s)v, w \rangle ds,$$

for all $w \in \mathcal{L}$. The weak* denseness of \mathcal{L} implies that $P(t)u - u = \int_0^t P(s)v ds$, and the convergence in the *B*-norm of

(2.18)
$$\frac{1}{h}(P(h)u - u) = \frac{1}{h} \int_0^h P(s)v ds,$$

to v as $h \to 0$ follows.

Now then, it is clear that the right hand side of (2.14) is contained in $\mathcal{D}(A_p)$.

Proposition 4. The infinitesimal generator A of P(t) is a closed, densely defined operator. We have

$$(2.19) P(t)\mathcal{D}(A) \subset \mathcal{D}(A),$$

for all $t \in \mathbb{R}^+$, and

(2.20)
$$AP(t)v = P(t)Av = \frac{d}{dt}P(t)v, \quad for \quad v \in \mathcal{D}(A).$$

Proof. Suppose $v \in \mathcal{D}(A)$. Then for $t \geq 0$,

(2.21)
$$h^{-1}(P(h)P(t)v - P(t)v) = P(t)\frac{1}{h}(P(h)v - v),$$

which gives (2.19), as well as

Furthermore, as $h \searrow 0$,

(2.23)
$$h^{-1}[P(t+h)v - P(t)v] = P(t)h^{-1}[P(h)v - v] \to P(t)Av$$

For $h \nearrow 0$, observe that for 0 < h < t,

(2.24)
$$h^{-1}[P(t)v - P(t-h)v] = P(t-h)h^{-1}(P(h)v - v) \to P(t)Av.$$

The last equality uses the fact that $w(h) \to w$ in V norm implies $P(t-h)w(h) \to P(t)w$. To show that $\mathcal{D}(A)$ is dense in V, let $v \in V$ and let

(2.25)
$$v_{\epsilon} = \epsilon^{-1} \int_{0}^{\epsilon} P(t) v dt$$

$$h^{-1}(P(h)v_{\epsilon} - v_{\epsilon}) = \epsilon^{-1}[h^{-1}\int_{\epsilon}^{\epsilon+h} P(t)vdt - h^{-1}\int_{0}^{h} P(t)vdt] \to \epsilon^{-1}(P(\epsilon)v - v), \quad \text{as} \quad h \to 0.$$

Now then, by the uniform boundedness principle,

(2.27)
$$||P(t)|| \le M$$
, for $|t| \le 1$.

Therefore, (2.27) and (2.2) imply that

8

$$(2.28) ||P(t)|| \le M e^{Kt}.$$

The infinitesimal generator determines the one-parameter semigroup uniquely, so we are justified in saying that A generates P(t).

Proposition 5. If P(t) and Q(t) are one-parameter semigroups with the same infinitesimal generator, then P(t) = Q(t) for all $t \ge 0$.

Proof. If (2.28) holds and $Re(\zeta) > K$, then ζ belongs to the resolvent set of A, and

(2.29)
$$(\zeta - A)^{-1}v = \int_0^\infty e^{-\zeta t} P(t)v dt$$

Let R_{ζ} denote the right hand side of (2.29), which is clearly a bounded operator on V. First, show that $R_{\zeta}(\zeta - A)v = v$ for $v \in \mathcal{D}(A)$. Indeed,

(2.30)
$$R_{\zeta}(\zeta - A)v = \int_0^\infty e^{-\zeta t} P(t)(\zeta v - Av)dt = \int_0^\infty \zeta e^{-\zeta t} P(t)vdt - \int_0^\infty e^{-\zeta t} \frac{d}{dt} P(t)vdt$$
$$= -\int_0^\infty \frac{d}{dt} (e^{-\zeta t} P(t)v)dt = v.$$

A similar argument shows that $(\zeta - A)R_{\zeta}$ is bounded on V and $(\zeta - A)R_{\zeta}v = v$ for $v \in \mathcal{D}(A)$. Since $(\zeta - A)R_{\zeta}$ is bounded on V and $\mathcal{D}(A)$ is dense in V,

(2.31)
$$(\zeta - A)R_{\zeta}v = R_{\zeta}(\zeta - A)v = v, \quad \text{for all} \quad v \in V.$$

Finally, since $(\zeta - A)^{-1}$ is continuous and everywhere defined, $(\zeta - A)^{-1}$ is closed. If an operator is closed and injective, then its inverse is closed, so in particular A is also closed.

Now let $v \in V$ and $w \in V'$. Then for $Re(\zeta)$ sufficiently large,

(2.32)
$$\int_0^\infty e^{-\zeta t} \langle P(t)v, w \rangle dt = \langle (\zeta - A)^{-1}v, w \rangle = \int_0^\infty e^{-\zeta t} \langle Q(t)v, w \rangle dt.$$

Uniqueness of the Laplace transform implies that $\langle P(t)v, w \rangle = \langle Q(t)v, w \rangle$ for any $v \in V$ and $w \in V'$. By the Hahn–Banach theorem, P(t)v = Q(t)v.

Therefore, it makes sense to write

$$(2.33) P(t) = e^{tA}.$$

Proposition 6. Let A be the infinitesimal generator of a semigroup. If a function $u \in C([0,T), \mathcal{D}(A)) \cap C^1([0,T), V)$ satisfies

(2.34)
$$\frac{du}{dt} = Au, \qquad u(0) = f,$$

then $u(t) = e^{tA}f$ for $t \in [0, T)$.

Proof. We have that $e^{(t-s)A}u(s)$ is differentiable in $s \in (0, t)$, and

(2.35)
$$\frac{\partial}{\partial s}e^{(t-s)A}u(s) = -e^{(t-s)A}Au(s) + e^{(t-s)A}Au(s) = 0.$$

Therefore, $e^{(t-s)A}u(s)$ has the same value at s = t and s = 0, so $u(t) = e^{tA}f$.

Given $g \in C([0,T), \mathcal{D}(A)), f \in \mathcal{D}(A)$, the equation

(2.36)
$$\frac{\partial u}{\partial t} = Au + g(t), \qquad u(0) = f,$$

has a unique solution $u \in C([0,T), \mathcal{D}(A)) \cap C^1([0,T), V)$, and it is given by

(2.37)
$$u(t) = e^{tA}f + \int_0^t e^{(t-s)A}g(s)ds.$$

Indeed,

(2.38)
$$\frac{\partial}{\partial s}e^{(t-s)A}u(s) = e^{(t-s)A}g(s), \qquad 0 \le s \le t.$$

Therefore,

(2.39)
$$u(t) - e^{tA}f = \int_0^t e^{(t-s)A}g(s)ds.$$

3. Semilinear parabolic equations

Consider semilinear equations of the form

(3.1)
$$\frac{\partial u}{\partial t} = Lu + F(t, x, u, \nabla u), \qquad u(0) = f,$$

where u(t, x) is a function on $[0, T] \times \mathcal{M}$. For the moment, suppose that \mathcal{M} has no boundary. Also suppose that $L = \nu \Delta$, for some $\nu > 0$.

When $F(t, x, u, \nabla u) = F(t, x)$, the solution to (3.1) is given by

(3.2)
$$u(t,x) = e^{tL}f + \int_0^t e^{(t-s)L}F(s,\cdot)ds$$

Indeed, formally computing (3.2),

(3.3)
$$\frac{\partial u}{\partial t} = Lu + F(t, x).$$

It is possible to establish that (3.1) has a solution via the contraction mapping principle.

Proposition 7. Suppose X and Y are Banach spaces for which

 $(3.4) e^{tL}: X \to X is a strongly continuous semigroup, for t \ge 0,$

(3.5) $\Phi: X \to Y$, is Lipschitz, uniformly on bounded sets,

$$(3.6) e^{tL}: Y \to X, for t > 0,$$

and for some $\gamma < 1$,

(3.7)
$$\|e^{tL}\|_{\mathcal{L}(Y,X)} \le Ct^{-\gamma}, \quad for \quad t \in (0,1].$$

Then the parabolic equation (3.1) with $f \in X$ has a unique solution $u \in C([0,T],X)$, where T > 0 is estimable from below in terms of $||f||_X$.

Definition 3. A semigroup P(t) is called strongly continuous if $t_j \to t$ implies $P(t_j)v \to P(t)v$ for each $v \in X$.

Proof. Convert (3.1) to the integral equation,

(3.8)
$$u(t) = e^{tL}f + \int_0^t e^{(t-s)L}\Phi(u(s))ds = \Psi u(t).$$

Fix $\alpha > 0$ and set

(3.9)
$$\mathcal{Z} = \{ u \in C([0,T], X) : u(0) = f, \|u(t) - f\|_X \le \alpha \}.$$

We want to choose T sufficiently small so that $\Psi : \mathbb{Z} \to \mathbb{Z}$ is a contraction. First, observe that by (3.4), for $T_1 > 0$ sufficiently small,

(3.10)
$$||e^{tL}f - f||_X \le \frac{\alpha}{2}, \quad \text{for} \quad t \in [0, T_1].$$

Next, by (3.5), for $u \in X$, then by (3.5), we have the estimate

(3.11)
$$\|\Phi(u(s))\|_{Y} \le K_{1}, \quad \text{for} \quad s \in [0, T_{1}].$$

Then by (3.7),

(3.12)
$$\|\int_0^t e^{(t-s)L} \Phi(u(s)) ds\|_X \le C_\gamma t^{1-\gamma} K_1$$

For $T_2 \leq T_1$ sufficiently small, $(3.12) \leq \frac{\alpha}{2}$ for $t \in [0, T_2]$. Therefore,

(3.13)
$$\Psi: \mathcal{Z} \to \mathcal{Z}, \quad \text{provided} \quad T \leq T_2$$

To arrange that Ψ is a contraction, (3.5) implies that for $u, v \in \mathbb{Z}$, there exists $K < \infty$ such that

(3.14)
$$\|\Phi(u(s)) - \Phi(v(s))\|_{Y} \le K \|u(s) - v(s)\|_{X}.$$

Therefore, for $t \in [0, T_2]$, (3.15)

$$\|\Psi(u)(t) - \Psi(v)(t)\|_X = \|\int_0^t e^{(t-s)L} [\Phi(u(s)) - \Phi(v(s))] ds\|_X \le C_{\gamma} t^{1-\gamma} K \sup_{s \in [0,t]} \|u(s) - v(s)\|_X.$$

Therefore, for $T \leq T_2$ sufficiently small, $C_{\gamma}T^{1-\gamma}K < 1$, which makes Ψ a contraction mapping on \mathcal{Z} . Therefore, Ψ has a unique fixed point.

There are a number of function spaces X and Y which satisfy (3.4)–(3.7). For example, suppose \mathcal{M} is a compact Riemannian manifold and let

(3.16)
$$X = C^{1}(\mathcal{M}), \qquad Y = C(\mathcal{M}).$$

By the maximum principle, (3.4) clearly holds. Since $\Phi(u) = F(u, \nabla u)$, (3.5) also holds. Finally, since

(3.17)
$$\|e^{t\Delta}\|_{\mathcal{L}(C,C^1)} \le Ct^{-1/2}, \quad \text{for} \quad t \in (0,1],$$

so we have short-time solutions to (3.1) with $f \in C^1(\mathcal{M})$. In fact, we have

Proposition 8. Given $f \in C^1(\mathcal{M})$, $L = \Delta$, the equation has, for some (3.1), a unique solution

(3.18) $u \in C([0,T], C^1(\mathcal{M})) \cap C^{\infty}((0,T] \times \mathcal{M}).$

It is possible to weaken the hypothesis (3.4). Suppose X and Z are Banach spaces such that

(3.19)
$$C_0^{\infty}(\mathcal{M}) \subset X \subset Z \subset \mathcal{D}'(\mathcal{M}).$$

We say that u(t) taking values in X, for $t \in I$, belongs to C(I, X) provided u(t) is locally bounded in X and $u \in C(I, Z)$. Then we say that e^{tL} is an almost continuous semigroup on X provided e^{tL} is uniformly bounded on X for $t \in [0, T]$, given $T < \infty$, $e^{(s+t)L}u = e^{sL}e^{tL}u$ for each $u \in X$, $s, t \in [0, \infty)$, and

(3.20)
$$u \in X$$
, implies $e^{tL}u \in C([0,\infty), X)$.

For example, if \mathcal{M} is compact, we can take $X = L^{\infty}(\mathcal{M})$ and $Z = L^{p}(\mathcal{M})$ with $p < \infty$. We can also choose $e^{t\Delta}$ on $L^{\infty}(\mathcal{M})$ and on the Hölder spaces $C^{r}(\mathcal{M}), r \in \mathbb{R}^{+} \setminus \mathbb{Z}^{+}$.

Proposition 9. Let X and Y be Banach spaces for which (3.5)-(3.7) hold. In place of (3.4), suppose that e^{tL} is an almost continuous semigroup on X. Also, augment (3.5) with the condition that $\Phi : C(I, X) \to C(I, Y)$. Then the initial value problem (3.1), given $f \in X$, has a unique solution $u \in C([0, T], X)$, where T > 0 is estimable from below in terms of $||f||_X$.

For example, consider $X = C^{r+1}(\mathcal{M})$ and $Y = C^r(\mathcal{M})$, $r \ge 0$. If r is not an integer, these are Hölder spaces. Then, for any s > 0,

(3.21)
$$\|e^{t\Delta}\|_{\mathcal{L}(C^r, C^{r+s})} \le C_s t^{-s/2}, \quad 0 < t \le 1$$

If $f \in C^{r+1}$, one has a solution $u \in C([0,T], C^{r+1})$, and for each t > 0, $u(t) \in C^{r+s}$ for every s < 2.

Proposition 10. Given $f \in C^1(\mathcal{M})$, $L = \Delta$, the equation (3.1) has, for some T > 0, a unique solution

(3.22)
$$u \in C([0,T], C^1(\mathcal{M})) \cap C^{\infty}((0,T] \times \mathcal{M}).$$

Using the estimates in (1.35)–(1.41), it is possible to take the sets Y and X and the bound on $\|e^{t\Delta}\|_{\mathcal{L}(Y,X)}$.

(3.23)
$$Y = L^{q}(\mathcal{M}), \qquad X = L^{p}(\mathcal{M}), \qquad ||e^{t\Delta}||_{\mathcal{L}(Y,X)} \le Ct^{-\frac{n}{2}(\frac{1}{q} - \frac{1}{p})},$$

(3.24)
$$Y = H^{r,p}(\mathcal{M}), \qquad X = H^{s,p}(\mathcal{M}), \qquad \|e^{t\Delta}\|_{\mathcal{L}(Y,X)} \le Ct^{-\frac{1}{2}(s-r)},$$

and

(3.25)
$$Y = H^{r,q}(\mathcal{M}), \qquad X = H^{s,p}(\mathcal{M}), \qquad \|e^{t\Delta}\|_{\mathcal{L}(Y,X)} \le Ct^{-\frac{n}{2}(\frac{1}{q} - \frac{1}{p}) - \frac{1}{2}(s-r)}.$$

Take the case $F(u, \nabla u) = \sum_j \partial_j F_j(u)$ with $L = \nu \Delta$,

(3.26)
$$\frac{\partial u}{\partial t} = \nu \Delta u + \sum_{j} \partial_{j} F(u), \qquad u(0) = f$$

For example, take $\mathcal{M} = \mathbb{T}^n$. Now then, suppose

(3.27)
$$|F_j(u)| \le C \langle u \rangle^p, \qquad |\nabla F_j(u)| \le C \langle u \rangle^{p-1}.$$

Proposition 11. Under the hypotheses in (3.27), if $f \in L^q(\mathcal{M})$, the partial differential equation (3.26) has a unique solution $u \in C([0,T], L^q(\mathcal{M}))$, provided

$$(3.28) q \ge p, and q > n(p-1).$$

Furthermore, $u \in C^{\infty}((0,T] \times \mathcal{M})$.

Proof. Take the Banach spaces

(3.29)
$$X = L^q(\mathcal{M}), \qquad H^{-1,\frac{q}{p}}(\mathcal{M}).$$

We need $q \ge p$, so that $\frac{q}{p} \ge 1$, and $F_j : L^q \to L^{q/p}$ is locally Lipschitz. Indeed,

(3.30)
$$F_j(u) - F_j(v) = G_j(u, v)(u - v), \qquad G_j(u, v) = \int_0^1 F'_j(su + (1 - s)v)ds.$$

By the generalized Hölder inequality,

(3.31)
$$\|F_j(u) - F_j(v)\|_{L^{q/p}} \le \|G_j\|_{L^{q/(p-1)}} \|u - v\|_{L^q}$$

so we have (3.5). Next,

(3.32)
$$\|e^{t\Delta}\|_{\mathcal{L}(H^{-1,q/p},L^q)} \le Ct^{-\frac{n}{2}(\frac{p}{q}-\frac{1}{p})-\frac{1}{2}}.$$

Therefore, we have (3.7) when $\frac{n(p-1)}{q} < 1$. It suffices to establish smoothness. First, replacing L^q by L^{q_1} in (3.2), for any $t \in (0,T]$, $u(t) \in L^{q_1}$ for all $q_1 < \frac{q}{p-q/n}$. Since $p - \frac{q}{n} < 1$, this means that q_1 exceeds q by a factor > 1. Iterating, $u(t) \in L^{q_j}$, where q_j exceeds q_{j-1} by a factor > 1. When $q_j > np$, the next iteration gives $u(t) \in C^r(\mathcal{M})$.

Now consider the spaces

(3.33)
$$X = C^{r}(\mathcal{M}), \qquad Y = H^{r-1-\epsilon,q}(\mathcal{M}),$$

for some $\epsilon > 0$ very small and q very large. Then, $u \mapsto F_j(u)$ is locally Lipschitz from $C^r(\mathcal{M})$ to $C^r(\mathcal{M})$, hence to $H^{r-\epsilon,p}(\mathcal{M})$. Then by (3.25), for any t > 0, $u(t) \in C^{r_1}(\mathcal{M})$, $r_1 - r > 0$, which is estimable from below. Making a finite number of iterations, $u \in C^1(\mathcal{M})$, and then by Proposition 8, the proof is complete.

We can establish a global existence theorem for solutions to (3.26).

Proposition 12. Suppose F_j satisfy (3.27) with p = 1. Then given $f \in L^2(\mathcal{M})$, the equation (3.26) has a unique solution

(3.34)
$$u \in C([0,\infty), L^2(\mathcal{M})) \cap C^{\infty}((0,\infty) \times \mathcal{M}),$$

provided when u takes values in \mathbb{R}^K , $F_j(u) = (F_j^1(u), ..., F_j^K(u))$, that

(3.35)
$$\frac{\partial F_j^k}{\partial u_i} = \frac{\partial F_j^i}{\partial u_k}, \qquad 1 \le i, k \le K.$$

Proof. When p = 1, we can take q = 2 and n(p-1)/q < 1, q > n(p-1). Therefore, a local solution exists,

(3.36)
$$u \in C([0,T], L^2) \cap C^{\infty}((0,T) \times \mathcal{M}).$$

To get global existence, it suffices to bound $||u(t)||_{L^2}$. Indeed,

(3.37)
$$\frac{d}{dt} \|u(t)\|_{L^2}^2 = 2(u(t), \sum_j \partial_j F_j(u(t))) - 2\nu \|\nabla u(t)\|_{L^2}^2 \le 2(u(t), \sum_j \partial_j F_j(u)).$$

By (3.35), there exist smooth G_j such that $F_j^k = \frac{\partial G_j}{\partial u_k}$. Therefore, the right hand side of (3.37) is given by

(3.38)
$$-2\sum \int \partial_j G_j(u)dx = 0.$$

For a scalar equation, it is possible to eliminate the restriction p = 1 for bounded initial data.

Proposition 13. If (3.26) is scalar and $f \in L^{\infty}(\mathcal{M})$, then there is a unique solution

(3.39)
$$u \in L^{\infty}([0,\infty) \times \mathcal{M}) \cap C^{\infty}((0,\infty) \times \mathcal{M}),$$

such that, as $t \searrow 0$, $u(t) \to f$ in $L^p(\mathcal{M})$ for all $p < \infty$.

Proof. Suppose $||f||_{L^{\infty}} \leq M$, and alter $F_j(u)$ on $|u| \geq M + \frac{1}{2}$ so that $\tilde{F}_j(u)$ is constant on $u \leq -M - 1$ and on $u \geq M + 1$. Then by Proposition 12, this modified PDE has a global solution. This u solves

(3.40)
$$\frac{\partial u}{\partial t} = \nu \Delta u + \sum_{j} a_{j}(t, x) \partial_{j} u, \qquad a_{j}(t, x) = \tilde{F}'_{j}(u(t, x)).$$

Furthermore, the maximum principle for linear parabolic equations holds, so $||u(t)||_{L^{\infty}} \leq M$ for all t, so u solves the original PDE.

Now suppose that $x \in \overline{\mathcal{M}}$, a compact region with a boundary, and that F is smooth in its arguments. Specifically, take the Dirichlet problem

(3.41)
$$u = 0$$
 on $\mathbb{R}^+ \times \partial \mathcal{M}_2$

and suppose

(3.42)
$$\frac{\partial u}{\partial t} = \Delta u + F(t, x, u, \nabla u), \qquad u(0) = f.$$

Since Propositions 7 and 9 were phrased on a very general level, a number of short-time existence results follow simply by verifying that (3.4)–(3.7) hold for appropriate Banach spaces X and Y on $\overline{\mathcal{M}}$. For example, suppose $X = C_b^1(\overline{\mathcal{M}})$ and $Y = C(\overline{\mathcal{M}})$, where for $j \ge 0$,

(3.43)
$$C_b^j(\bar{\mathcal{M}}) = \{ f \in C^j(\bar{\mathcal{M}}) : f = 0 \quad \text{on} \quad \partial \mathcal{M} \}.$$

We have the following estimate

(3.44)
$$||e^{t\Delta}f||_{C^1(\bar{\Omega})} \le Ct^{-1/2} ||f||_{L^{\infty}(\Omega)}, \quad 0 < t \le 1,$$

as well as the proposition.

Proposition 14. If $\overline{\Omega}$ is a compact Riemannian manifold with boundary, on which the Dirichlet condition is placed, then $e^{t\Delta}$ defines a strongly continuous semigroup on the Banach space

$$(3.45) C_b^1(\bar{\Omega}) = \{ f \in C^1(\bar{\Omega}) : f|_{\partial\Omega} = 0 \}.$$

Therefore, we have the following.

Proposition 15. If $f \in C_b^1(\overline{\mathcal{M}})$, then (3.41)–(3.42) has a unique solution

(3.46)
$$u \in C([0,T), C^1(\bar{\mathcal{M}})),$$

for some T > 0, estimable from below in terms of $||f||_{C^1}$.

Now suppose that F is independent of ∇u , that is,

(3.47)
$$\frac{\partial u}{\partial t} = \Delta u + F(t, x, u), \qquad u(0) = f,$$

so we can take $X = C_b(\bar{\mathcal{M}}), Y = C(\bar{\mathcal{M}})$, and by the above arguments obtain

Proposition 16. If $f \in C_b(\overline{\mathcal{M}})$, then (3.47), (3.41) has a unique solution

$$(3.48) u \in C([0,T), C(\overline{\mathcal{M}})),$$

for some T > 0, estimable from below in terms of $||f||_{L^{\infty}}$.

We can obtain further regularity results on solutions to (3.42) and (3.47) with boundary condition (3.41) by making use of the regularity results for

(3.49)
$$\frac{\partial u}{\partial t} = \Delta u + g(t, x), \qquad u(t, x) = 0, \qquad \text{for} \qquad x \in \partial \mathcal{M}.$$

For any $k \in \mathbb{Z}^+$ define the set

(3.50)
$$\mathcal{H}^k(I \times \mathcal{M}) = \{ u \in L^2(I \times \mathcal{M}) : \partial_t^j u \in L^2(I, H^{2k-2j}(\mathcal{M})), \quad 0 \le j \le k \}.$$

Then if (3.49) holds on $I \times \mathcal{M}$ with $I = [0, T_0]$, then

(3.51)
$$g \in \mathcal{H}^k(I \times \mathcal{M}) \Rightarrow u \in \mathcal{H}^{k+1}(I' \times \mathcal{M}),$$

for $I' = [\epsilon, T_0]$, $\epsilon > 0$. Therefore, if $g = F(t, x, u, \nabla u)$ for Proposition 15 and g = F(t, x, u) for Proposition 18, $g \in \mathcal{H}^0(I \times \mathcal{M})$ whenever $T_0 < T$. Therefore,

$$(3.52) u \in \mathcal{H}^1(I' \times \mathcal{M}).$$

Therefore, one also has higher order regularity. Therefore, we have proved

Proposition 17. Assume F is smooth in its arguments. The solution (3.46) of (3.49), (3.41) has the property

(3.53)
$$u \in C^{\infty}((0,T) \times \overline{\mathcal{M}}).$$

Proof. We begin with the implication

$$(3.54) u \in C(I \times \overline{\mathcal{M}}) \cap \mathcal{H}^1(I' \times \mathcal{M}) \Rightarrow F(t, x, u) \in \mathcal{H}^1(I' \times \mathcal{M}).$$

Then by (3.51), $u \in \mathcal{H}^2(I' \times \mathcal{M})$. More generally,

$$(3.55) u \in C(I \times \bar{\mathcal{M}}) \cap \mathcal{H}^k(I' \times \mathcal{M}) \Rightarrow F(t, x, u) \in \mathcal{H}^k(I' \times \mathcal{M})$$

Arguing by induction proves the Proposition.

The estimates in (3.54) and (3.55) utilize the Moser estimate.

Proposition 18. Let F be smooth and suppose F(0) = 0. Then, for $u \in H^k \cap L^{\infty}$,

(3.56)
$$||F(u)||_{H^k} \le C_k(||u||_{L^{\infty}})(1+||u||_{H^k}).$$

Proof. By the chain rule,

(3.57)
$$D^{\alpha}F(u) = \sum_{\beta_1 + \dots + \beta_{\mu} = \alpha} C_{\beta} u^{(\beta_1)} \cdots u^{(\beta_{\mu})} F^{(\mu)}(u).$$

Therefore,

(3.58)
$$\|D^{\alpha}F(u)\|_{L^{2}} \leq C_{k}(\|u\|_{L^{\infty}}) \sum_{\beta_{1}+\ldots+\beta_{\mu}=\alpha} \|u^{(\beta_{1})}\cdots u^{(\beta_{\mu})}\|_{L^{2}}.$$

Then by $u \in L^{\infty} \cap H^k$ and interpolation, the proof is complete.

4. The L^p spectral theory of the Laplace operator

Suppose Δ is the Laplace operator on the manifold \mathcal{M} , where \mathcal{M} is a compact Riemannian manifold without boundary. For any $\lambda > 0$, $(\lambda - \Delta)^{-1}$ is a bijective operator between $L^p(\mathcal{M})$ and $H^{2,p}(\mathcal{M})$ for 1 .

Proof of claim. To see this in the case when p = 2, observe that (1.17) implies that

(4.1)
$$\|e^{t\Delta}f\|_{L^2(\mathcal{M})} \le \|f\|_{L^2(\mathcal{M})},$$

and therefore by (2.29), $(\lambda - \Delta)^{-1}$ is bijective from $L^2(\mathcal{M})$ to $H^2(\mathcal{M})$. Meanwhile, by the maximum principle,

(4.2)
$$\|e^{t\Delta}f\|_{L^{\infty}(\mathcal{M})} \leq \|f\|_{L^{\infty}(\mathcal{M})}.$$

By interpolation, for any $2 \le p \le \infty$,

(4.3)
$$\|e^{t\Delta}f\|_{L^p(\mathcal{M})} \le \|f\|_{L^p(\mathcal{M})}.$$

Now then, by duality, (4.3) implies that for 1 ,

Taking the adjoint of the action of $e^{t\Delta}$ on $C(\mathcal{M})$ implies that $e^{t\Delta}$ acts on finite Borel measures on \mathcal{M} , so $e^{t\Delta}$ preserves $L^1(\mathcal{M})$. Since $C_0^{\infty}(\mathcal{M})$ is dense in $L^p(\mathcal{M})$ for $1 \leq p < \infty$, $e^{t\Delta}$ defines a strongly continuous semigroup on $L^p(\mathcal{M})$. Thus, define Δ_p on $L^p(\mathcal{M})$ to be the operator Δ acting on $H^{2,p}(\mathcal{M})$. Therefore, Δ_p is a closed operator with finite-dimensional eigenspaces consisting of functions in $C^{\infty}(\mathcal{M})$. Each of these functions are actual eigenfunctions, so the L^p spectrum of Δ coincides with its L^2 spectrum.

Now define a holomorphic semigroup. Let \mathcal{K} be a closed cone in the right hand plane of \mathbb{C} with vertex at 0. If $P(z) : X \to X$ is a family of bounded operators on a Banach space X, we say that it is a holomorphic semigroup if it satisfies $P(z_1)P(z_2) = P(z_1 + z_2)$ for $z_j \in \mathcal{K}$, is strongly continuous in $z \in \mathcal{K}$, and is holomorphic in the interior of \mathcal{K} .

Remark 2. Strong continuity implies that $||e^{z\Delta}||$ is locally uniformly bounded on \mathcal{K} .

The operator $e^{z\Delta}f$ defines a holomorphic semigroup on $L^2(\mathcal{M})$. Indeed, by the spectral decomposition of $L^p(\mathcal{M})$,

(4.5)
$$||e^{z\Delta}f||_{L^2(\mathcal{M})} \le ||f||_{L^2(\mathcal{M})}.$$

Also, $e^{z\Delta}$ is holomorphic in $L^2(\mathcal{M})$ since $\frac{d}{dz}e^{z\Delta} = \Delta e^{z\Delta}$. In fact, we can prove

Proposition 19. $e^{z\Delta}$ defines a holomorphic semigroup $H_p(z)$ on $L^p(\mathcal{M})$, for each $p \in [1, \infty)$.

Proof. This follows from the parametrix construction. We do not do this in the general case here, but rather refer the interested reader to Chapter 7, section 13 of [Taya]. However, observe that in the computations in (1.26)-(1.32),

(4.6)
$$e^{at\Delta}f = \frac{1}{(4\pi at)^{n/2}} \int e^{-\frac{|x-y|^2}{4at}} f(y)dy.$$

Therefore, when Re(a) > 0, the operator $e^{at\Delta}$ retains the properties in (1.34)–(1.41).

Here is a useful property of semigroups.

Proposition 20. Let P(z) be a holomorphic semigroup on a Banach space X with generator A. Then,

(4.7)
$$t > 0, f \in X \to P(t)f \in \mathcal{D}(A),$$

and

(4.8)
$$||AP(t)f||_X \le \frac{C}{t} ||f||_X, \quad for \quad 0 < t < 1.$$

Proof. Using the holomorphicity of P(z) and the structure of \mathcal{K} , there exists a > 0 such that there exists a circle $\gamma(t)$ of radius a|t| such that $\gamma(t) \in \mathcal{K}$, for all $t \in (0, \infty)$. Thus,

(4.9)
$$AP(t)f = P'(t)f = -\frac{1}{2\pi i} \int_{\gamma(t)} (t-\zeta)^{-2} P(\zeta) f d\zeta.$$

Since $||P(\zeta)f|| \le C_2 ||f||$ for $\zeta \in \mathcal{K}$, $|\zeta| \le 1 + a$, we have (4.8).

In particular, for $1 , <math>0 < t \le 1$,

(4.10)
$$f \in L^{p}(\mathcal{M}) \Rightarrow \|e^{t\Delta}f\|_{H^{2,p}(\mathcal{M})} \leq \frac{C}{t} \|f\|_{L^{p}(\mathcal{M})}$$

Then by interpolation,

(4.11)
$$||e^{t\Delta}f||_{H^{s,p}(\mathcal{M})} \le Ct^{-s/2}||f||_{L^p(\mathcal{M})}, \quad \text{for} \quad 0 \le s \le 2, \quad 0 < t \le 1.$$

Now let $\overline{\Omega}$ be a compact Riemannian manifold with smooth boundary and let Δ be the Laplacian on $\overline{\Omega}$ with Dirichlet boundary condition. Assume that $\overline{\Omega}$ is connected and $\partial \Omega \neq \emptyset$. For $\lambda \geq 0$,

(4.12)
$$R_{\lambda} = (\lambda - \Delta)^{-1} : L^{2}(\Omega) \to L^{2}(\Omega),$$

with range $H^2(\Omega) \cap H^1_0(\Omega)$. For $f \in L^{\infty}(\Omega)$, we can analyze $R_{\lambda}f$ by noting that R_{λ} is positivity preserving,

$$(4.13) \qquad \lambda \ge 0, \qquad g \ge 0, \qquad \text{on} \qquad \Omega \quad \Rightarrow \quad R_{\lambda}g \ge 0, \qquad \text{on} \qquad \Omega.$$

This follows from the maximum principle. We can also prove this using the the positivity principle of $e^{t\Delta}$ combined with the resolvent formula. Combining positivity preserving with regularity estimates and estimates on $R_{\lambda}1$, if $0 \le f \le 1$, $R_{\lambda}(1-f) \ge 0$ and $R_{\lambda}f \ge 0$, so $0 \le R_{\lambda}f \le R_{\lambda}1$, so

(4.14)
$$R_{\lambda}: C(\bar{\Omega}) \to C(\bar{\Omega}), \qquad R_{\lambda}: L^{\infty}(\Omega) \to L^{\infty}(\Omega).$$

Taking the adjoint of R_{λ} acting on $C(\bar{\Omega})$, we have R_{λ} acting on the finite Borel measures on $\bar{\Omega}$. Since the closure of $L^2(\Omega)$ in the set of finite Borel measures is $L^1(\Omega)$,

$$(4.15) R_{\lambda}: L^1(\Omega) \to L^1(\Omega)$$

Then by interpolation,

(4.16)
$$R_{\lambda}: L^{p}(\Omega) \to L^{p}(\Omega), \quad 1 \le p \le \infty.$$

By a similar argument, we can show that

(4.17)
$$e^{t\Delta}: L^2(\mathcal{M}) \to L^2(\mathcal{M}),$$

and by the maximum principle,

(4.18)
$$e^{t\Delta}: L^{\infty}(\mathcal{M}) \to L^{\infty}(\mathcal{M})$$

Then by interpolation and duality,

(4.19)
$$e^{t\Delta}: L^p(\Omega) \to L^p(\Omega), \quad 1 \le p \le \infty.$$

Proposition 21. For $1 , <math>e^{z\Delta}$ defines a holomorphic semigroup on $L^p(\Omega)$, on any symmetric cone \mathcal{K} about \mathbb{R}^+ of angle $< \pi$.

Proof. The remaining parts of the proof are in [Tayb].

Making use of Proposition 20, which we know applies to $e^{t\Delta}$ on $L^p(\mathcal{M})$ gives the bound

(4.20)
$$\|v(t)\|_{H^{1,p}(\mathcal{M})} \le C|t|^{-1/2} \|f\|_{L^p(\Omega)}.$$

5. Galerkin's method

Returning to the parabolic PDE

(5.1)
$$\frac{\partial u}{\partial t} = \nu \Delta u + \sum_{j} \partial_{j} F_{j}(u), \qquad u(0) = f,$$

suppose that

(5.2)
$$|F_j(u)| \le C \langle u \rangle^p, \qquad |\nabla F_j(u)| \le C \langle u \rangle^{p-1},$$

holds with p = 2 and that

(5.3)
$$\frac{\partial F_j^k}{\partial u_i} = \frac{\partial F_j^i}{\partial u_k}.$$

Take $\mathcal{M} = \mathbb{T}^n$, and we can use the Galerkin method to produce a sequence of approximations, converging to a solution to (5.1).

Now then, for any $\epsilon > 0$, define the projection P_{ϵ} on $L^{2}(\mathcal{M})$ by

(5.4)
$$P_{\epsilon}f(x) = \sum_{|k| \le \frac{1}{\epsilon}} \hat{f}(k)e^{ik \cdot x}.$$

Consider the initial value problem

(5.5)
$$\frac{\partial u_{\epsilon}}{\partial t} = \nu P_{\epsilon} \Delta P_{\epsilon} u_{\epsilon} + P_{\epsilon} \sum \partial_j F_j(P_{\epsilon} u_{\epsilon}), \qquad u_{\epsilon}(0) = P_{\epsilon} f.$$

Now take $f \in L^2(\mathcal{M})$. For each $0 < \epsilon \leq 1$, ODE theory gives a unique, short-time solution to (5.5), satisfying $u_{\epsilon}(t) = P_{\epsilon}u_{\epsilon}(t)$. Furthermore,

(5.6)
$$\frac{d}{dt} \|u_{\epsilon}(t)\|_{L^2}^2 = 2\nu (P_{\epsilon}\Delta P_{\epsilon}u_{\epsilon}, u_{\epsilon}) + 2\sum (P_{\epsilon}\partial_j F_j(P_{\epsilon}u_{\epsilon}), u_{\epsilon}).$$

Integrating by parts, the first term on the right hand side is equal to

(5.7)
$$-2\nu \|\nabla P_{\epsilon} u_{\epsilon}(t)\|_{L^{2}}^{2} \leq 0.$$

The second term is equal to

(5.8)
$$2\sum(\partial_j F_j(P_\epsilon u_\epsilon), P_\epsilon u_\epsilon) = -2\sum(F_j(P_\epsilon u_\epsilon), \partial_j P_\epsilon u_\epsilon) = -2\sum\int\partial_j [G_j(P_\epsilon u_\epsilon)]dx = 0.$$

Therefore,

(5.9)
$$\|u_{\epsilon}(t)\|_{L^{2}} \le \|f\|_{L^{2}}$$

Hence, for each $\epsilon > 0$, (5.5) is solvable for all t > 0 and

$$\{u_{\epsilon}: 0 < \epsilon \le 1, \}$$

is bounded in $L^{\infty}(\mathbb{R}^+, L^2(\mathcal{M}))$. Furthermore, by (5.6)–(5.9), for any $0 < T < \infty$,

(5.11)
$$2\nu \int_0^T \|\nabla P_{\epsilon} u_{\epsilon}(t)\|_{L^2}^2 dt = \|P_{\epsilon}f\|_{L^2}^2 - \|u_{\epsilon}(T)\|_{L^2}^2.$$

Therefore, for each bounded interval I = [0, T], since $P_{\epsilon}u_{\epsilon} = u_{\epsilon}$,

(5.12)
$$\{u_{\epsilon}\}$$
 is bounded in $L^2(I, H^1(\mathcal{M}))$

Given that $|F_j(u)| \leq C\langle u \rangle^2$, since u_{ϵ} is bounded in $L^{\infty}(\mathbb{R}^+, L^2(\mathcal{M}))$, $\{F_j(P_{\epsilon}u_{\epsilon})\}$ is bounded in $L^{\infty}(\mathbb{R}^+, L^1(\mathcal{M})) \subset L^{\infty}(\mathbb{R}^+, H^{-n/2-\delta}(\mathcal{M}))$, for each $\delta > 0$.

Using the evolution equation (5.5),

(5.13)
$$\left\{\frac{\partial u_{\epsilon}}{\partial t}\right\}$$
 is bounded in $L^{2}(I, H^{-n/2-1-\delta}(\mathcal{M})).$

Therefore,

(5.14)
$$\{u_{\epsilon}\} \text{ is bounded in } H^1(I, H^{-n/2-1-\delta}(\mathcal{M})).$$

Interpolating (5.12) and (5.14),

(5.15)
$$\{u_{\epsilon}\}$$
 is bounded in $H^{s}(I, H^{1-s(n/2+1+\delta)})$

for each $0 \le s \le 1$. Choosing s > 0 sufficiently small, Rellich's theorem implies

(5.16)
$$\{u_{\epsilon}: 0 < \epsilon \leq 1\} \text{ is compact in } L^2(I, H^{1-\gamma}(\mathcal{M})),$$

for any $\gamma > 0$.

For any $T < \infty$, we can choose a sequence $u_k = u_{\epsilon_k}$, $\epsilon_k \searrow 0$, such that

(5.17)
$$u_k \to u \text{ in } L^2([0,T], H^{1-\gamma}), \text{ in norm.}$$

Making a diagonal argument, it is possible to arrange that (5.17) holds for all $T < \infty$. We can also assume that u_k is weakly convergent in each space specified by (5.10), (5.12), and that $\frac{\partial u_k}{\partial t}$ is weakly convergent in the space (5.13). Furthermore, from (5.17),

(5.18)
$$F_j(P_{\epsilon_k}u_{\epsilon_k}) \to F_j(u), \text{ in } L^1([0,T], L^1(\mathcal{M})), \text{ in norm},$$

as $k \to \infty$. Therefore,

(5.19)
$$\partial_j F_j(P_{\epsilon}u_{\epsilon}) \to \partial_j F_j(u) \text{ in } L^1([0,T], H^{-1,1}(\mathcal{M}))$$

Since $H^{-1,1}(\mathcal{M}) \subset H^{-n/2-1-\delta}(\mathcal{M})$, each term in (5.5) converges as $\epsilon_k \searrow 0$. Therefore, we have proved

Proposition 22. If $|F_j(u)| \leq C\langle u \rangle^2$ and $|\nabla F_j(u)| \leq C\langle u \rangle$, then for each $f \in L^2(\mathcal{M})$, a $K \times K$ system of the form (5.1) satisfying the symmetry hypothesis (5.3) possesses a global weak solution, (5.20) $u \in L^{\infty}(\mathbb{R}^+, L^2(\mathcal{M})) \cap L^2_{loc}(\mathbb{R}^+, H^1(\mathcal{M})) \cap Lip_{loc}(\mathbb{R}^+, H^{-2}(\mathcal{M}) + H^{-n/2-1-\delta}(\mathcal{M})).$

This argument can be generalized to the case when U is a bounded domain. In this case, we need smooth functions $w_k(x)$,

(5.21)
$$\{w_k\}_{k=1}^{\infty}$$
 is an orthonormal basis of $H_0^1(U)$,

and

(5.22)
$$\{w_k\}_{k=1}^{\infty}$$
 is an orthonormal basis of $L^2(U)$

For example, we can take $\{w_k\}_{k=1}^{\infty}$ to be the complete set of appropriately normalized eigenfunctions for $L = -\Delta$ in $H_0^1(U)$.

Now we prove an important L^1 -contractive property for a scalar equation.

Proposition 23. Let u_j be solutions to the equation (5.1) with initial data $u_j(0) = f_j \in L^{\infty}(\mathcal{M})$. Then for each t > 0,

(5.23)
$$\|u_1(t) - u_2(t)\|_{L^1(\mathcal{M})} \le \|f_1 - f_2\|_{L^1(\mathcal{M})}.$$

Proof. Set $v = u_1 - u_2$. Then v solves

(5.24)
$$\frac{\partial v}{\partial t} = \nu \Delta v + \sum \partial_j [\Phi_j(u_1, u_2)v],$$

where

(5.25)
$$\Phi_j(u_1, u_2) = \int_0^1 F'_j(su_1 + (1-s)u_2)ds.$$

Now set $G_j(t,x) = \Phi_j(u_1, u_2)$. Given T > 0, let w solve the backward heat equation

(5.26)
$$\frac{\partial w}{\partial t} = -\nu \Delta w + \sum G_j(t, x) \partial_j w, \qquad w(T) = w_0 \in C^{\infty}(\mathcal{M}).$$

Now then, w(t) is well-defined for $t \leq T$, and the maximum principle implies

(5.27)
$$||w(t)||_{L^{\infty}} \le ||w_0||_{L^{\infty}}, \quad \text{for} \quad t \le T.$$

Now then, for 0 < t < T,

(5.28)
$$\frac{d}{dt}(v,w) = (\nu\Delta v,w) + \sum (\partial_j(G_jv),w) - (v,\nu\Delta w) + \sum (v,G_j\partial_jw) = 0.$$

Since $(v(0), w(0)) \le ||v(0)||_{L^1} ||w(0)||_{L^{\infty}}$, the proof of (5.23) is complete.

6. NAVIER-STOKES EQUATION

Consider the Navier–Stokes equation for the viscous incompressible flow of a fluid. Now the Euler equation has the form

(6.1)
$$\frac{\partial u}{\partial t} + P\nabla_u u = 0, \qquad u(0) = u_0,$$

where P is the orthogonal projection of $L^2(\mathcal{M}, T\mathcal{M})$ onto the space of divergence–free vector fields, and the divergence of u_0 is equal to zero. On \mathbb{R}^n , the Leray projection P is defined by

(6.2)
$$P(u) = u - \nabla \Delta^{-1} (\nabla \cdot u).$$

Then the Navier–Stokes equation has the form

(6.3)
$$\frac{\partial u}{\partial t} + P\nabla_u u = \nu \Delta u, \qquad u(0) = u_0.$$

Define the Friedrichs mollifier,

(6.4)
$$j_{\epsilon}(x) = \epsilon^{-n} j(\epsilon^{-1} x), \qquad \int j(x) dx = 1, \qquad j \in \mathcal{S}(\mathbb{R}^n),$$

and let

(6.5)
$$J_{\epsilon}u(x) = j_{\epsilon} * u(x).$$

Now define the approximating equation

(6.6)
$$\frac{\partial u_{\epsilon}}{\partial t} + P J_{\epsilon} \nabla_{u_{\epsilon}} J_{\epsilon} u_{\epsilon} = \nu J_{\epsilon} \Delta J_{\epsilon} u_{\epsilon}, \qquad u_{\epsilon}(0) = u_0.$$

Then by direct computation,

(6.7)
$$\frac{d}{dt} \|u_{\epsilon}\|_{L^{2}}^{2} = -2\nu \|\nabla J_{\epsilon} u_{\epsilon}\|_{L^{2}}^{2},$$

and therefore,

(6.8)
$$\|u_{\epsilon}(t)\|_{L^{2}} \leq \|u_{0}\|_{L^{2}}.$$

Therefore, (6.6) is solvable for all $t \in \mathbb{R}$ whenever $\nu \ge 0$ and $\epsilon > 0$. Now let $\mathcal{M} = \mathbb{T}^n$ and compute

(6.9)
$$\frac{d}{dt} \|u_{\epsilon}(t)\|_{H^{k}}^{2} \leq C \|u_{\epsilon}(t)\|_{C^{1}} \|u_{\epsilon}(t)\|_{H^{k}}^{2} - 4\nu \|\nabla J_{\epsilon}u_{\epsilon}\|_{L^{2}}^{2}.$$

Observe that the constant C in (6.9) is independent of $\nu \ge 0$. The estimate (6.9) is sufficient to establish a local existence theorem for a limit point of u_{ϵ} as $\epsilon \searrow 0$, which we denote u_{ν} .

Theorem 1. Given $u_0 \in H^k(\mathcal{M})$, $k > \frac{n}{2} + 1$, with $div(u_0) = 0$, there is a solution u_{ν} on an interval I = [0, A) to (6.3) satisfying

(6.10)
$$u_{\nu} \in L^{\infty}(I, H^{k}(\mathcal{M})) \cap Lip(I, H^{k-2}(\mathcal{M})).$$

The interval I and the estimate of u_{ν} in $L^{\infty}(I, H^{k}(\mathcal{M}))$ can be taken independent of $\nu \geq 0$.

We can establish the uniqueness and treat the stability and rate of convergence of u_{ϵ} to $u = u_{\nu}$ as before. For $\epsilon \in [0, 1]$, compare a solution $u = u_{\nu}$ to a solution $u_{\nu\epsilon} = w$ to

(6.11)
$$\frac{\partial w}{\partial t} + P J_{\epsilon} \nabla_{w} J_{\epsilon} w = \nu J_{\epsilon} \Delta J_{\epsilon} w, \qquad w(0) = w_{0}.$$

Setting $v = u_{\nu} - u_{\nu\epsilon}$, we have an estimate.

Proposition 24. Given $k > \frac{n}{2} + 1$, solutions to (6.3) satisfying (6.10) are unique. They are limits of solutions $u_{\nu\epsilon}$ to (6.3), and for $t \in I$,

(6.12)
$$\frac{d}{dt} \|v\|_{L^2}^2 = -2\nu \|\nabla v\|_{L^2}^2 + K_1(t)\|I - J_{\epsilon}\|_{\mathcal{L}(H^{k-1}, L^2)}.$$

Next, we can deduce

(6.13)
$$\frac{d}{dt} \|D^{\alpha} J_{\epsilon} u_{\nu}(t)\|_{L^{2}}^{2} = -2(D^{\alpha} J_{\epsilon} L(u_{\nu}, D)u_{\nu}, D^{\alpha} J_{\epsilon} u_{\nu}) - 2\nu \|\nabla J_{\epsilon} u_{\nu}(t)\|_{L^{2}}^{2}$$

Therefore,

(6.14)
$$\frac{d}{dt} \|u_{\nu}(t)\|_{H^{k}}^{2} \leq C \|u_{\nu}(t)\|_{C^{1}} \|u_{\nu}(t)\|_{H^{k}}^{2}.$$

Thus, u_{ν} is continuous in t with values in $H^{k}(\mathcal{M})$ at t = 0. At other points $t \in I$, u_{ν} is right continuous. u_{ν} is not left continuous, since the evolution equation is not well-posed backward in time.

Now we prove a local well–posedness result for (6.3).

Proposition 25. If $div(u_0) = 0$ and $u_0 \in L^p(\mathcal{M})$, with $p > n = dim(\mathcal{M})$, and if $\nu > 0$, then (6.3) has a unique short-time solution on an interval I = [0, T],

(6.15)
$$u = u_{\nu} = C(I, L^{p}(\mathcal{M})) \cap C^{\infty}((0, T) \times \mathcal{M}).$$

Proof. It is useful to rewrite ((6.3) as

(6.16)
$$\frac{\partial u}{\partial t} + P div(u \otimes u) = \nu \Delta u, \qquad u(0) = u_0.$$

Indeed, since u is divergence free,

(6.17)
$$\nabla_u u = u_j \nabla_j u_i = \nabla_j (u_j u_i) = div(u \otimes u)$$

Now then, rewrite (6.16) as an integral equation,

(6.18)
$$u(t) = e^{t\nu\Delta}u_0 - \int_0^t e^{(t-s)\nu\Delta}Pdiv(u(s)\otimes u(s))ds = \Psi u(t).$$

Then we look for a fixed point,

(6.19)
$$\Psi: C(I,X) \to C(I,X), \qquad X = L^p(\mathcal{M}) \cap kerdiv.$$

Then by Proposition 7, fix $\alpha > 0$ and set

(6.20)
$$X = \{ u \in C([0,T], X) : u(0) = u_0, \qquad ||u(t) - u_0||_X \le \alpha \},$$

and show that if T > 0 is sufficiently small, then $\Psi : Z \to Z$ is a contraction map.

Then we need a Banach space such that (6.21)

 $\Phi: X \to Y$, is Lipschitz, uniformly on bounded sets, $e^{t\nu\Delta}: Y \to X$, for t > 0, and for some $\gamma < 1$,

(6.22)
$$\|e^{t\nu\Delta}\|_{\mathcal{L}(Y,X)} \le Ct^{-\gamma}, \quad \text{for} \quad t \in (0,1].$$

The map Φ in (6.21) is

(6.23)
$$\Phi(u) = Pdiv(u \otimes u),$$

and then set

(6.24)
$$Y = H^{-1,p/2}(\mathcal{M}) \cap kerdiv.$$

These conditions hold if p > n. Thus, we have the solution u_{ν} to (6.16) belonging to

(6.25)
$$u_{\nu} \in C([0,T], L^{p}(\mathcal{M})).$$

The proof of smoothness from Proposition 8) applies essentially verbatim.

Thus, we can get global well-posedness if we can bound $||u(t)||_{L^p(\mathcal{M})}$ for some p > n.

Proposition 26. Given $\nu > 0$, p > n, if $u \in C([0,T), L^p(\mathcal{M}))$ solves (6.3), and if the vorticity ω satisfies

(6.26)
$$\sup_{t \in [0,T)} \|\omega(t)\|_{L^q} \le K < \infty, \qquad q = \frac{np}{n+p}$$

then the solution u continues to an interval [0, T'), for some T' > T,

(6.27)
$$u \in C([0,T'), L^p(\mathcal{M})) \cap C^{\infty}((0,T') \times \mathcal{M}),$$

solving (6.3).

Proof. We have

$$(6.28) u = Aw + P_0u,$$

where $A \in OPS^{-1}(\mathcal{M})$ and P_0 is a projection onto a finite-dimensional space of smooth fields. Then by the Sobolev embedding theorem,

(6.29)
$$A: L^q(\mathcal{M}) \to L^p(\mathcal{M}).$$

Now then, when $\dim \mathcal{M} = 2$, the vorticity $\omega = \partial_1 u_2 - \partial_2 u_1$ is a scalar and satisfies the PDE

(6.30)
$$\frac{\partial \omega}{\partial t} + \nabla_u \omega = \nu (\Delta + c_0) \omega,$$

Then by the maximum principle,

(6.31)
$$\|\omega(t)\|_{L^{\infty}} \le e^{\nu c_0 t} \|\omega(0)\|_{L^{\infty}}.$$

When $\mathcal{M} = \mathbb{R}^2$, $c_0 = 0$. When $\dim \mathcal{M} = 3$, $\omega = curl(u)$ is a vector field, and then

(6.32)
$$\frac{\partial\omega}{\partial t} + \nabla_u \omega - \nabla_\omega u = \nu \Delta \omega.$$

In this case we cannot use the maximum principle to control ω , and the Navier–Stokes equation remains an open problem. We can prove a global result for small data.

Proposition 27. Let $k > \frac{n}{2} + 1$, $\nu > 0$. If $||u_0||_{H^k}$ is sufficiently small, then (6.3) has a global solution in $C([0,\infty), H^k) \cap C^{\infty}((0,\infty) \times \mathcal{M})$.

Proof. If $\mathcal{M} = \mathbb{R}^n$, we can choose constants A and B such that

(6.33)
$$\|\nabla u\|_{H^k}^2 \ge A \|u\|_{H^k}^2 - B \|u\|_{L^2}^2.$$

Therefore, (6.13) yields

(6.34)
$$\frac{d}{dt} \|u(t)\|_{H^k}^2 \le \{C\|u(t)\|_{C^1} - 2\nu A\} \|u\|_{H^k}^2 + 2\nu B \|u(t)\|_{L^2}^2.$$

Now suppose

(6.35)
$$||u_0||_{L^2}^2 \le \delta$$
, and $||u_0||_{H^k}^2 \le L\delta$,

where L is specified below. For $L\delta$ sufficiently small,

(6.36)
$$\|v\|_{H^k}^2 \le 2L\delta \quad \text{implies} \quad \|v\|_{C^1} \le \frac{\nu A}{C}$$

Recall that $||u(t)||_{L^2} \le ||u_0||_{L^2}$. Therefore, if $||u(t)||^2_{H^k} \le 2L\delta$,

(6.37)
$$\frac{dy}{dt} \le -\nu A y + 2\nu B \delta, \qquad y(t) = \|u(t)\|_{H^k}^2$$

Therefore, (6.37) implies

(6.38)
$$y(t) \le \max\{y(t_0), 2BA^{-1}\delta\}, \quad \text{for} \quad t \ge t_0.$$

Therefore, if we take $L = \frac{2B}{A}$ and $\delta > 0$ sufficiently small so that (6.36) holds, we have a global bound $||u(t)||^2_{H^k} \leq L\delta$, which gives global existence.

Now we prove the Hopf theorem proving global weak solutions exist for $\nu > 0$. Suppose $c_0 = 0$, which corresponds to Ric = 0.

(6.39)
$$u \in L^{\infty}(\mathbb{R}^+, L^2(\mathcal{M})) \cap L^2_{loc}(\mathbb{R}^+, H^1(\mathcal{M})) \cap Lip_{loc}(\mathbb{R}^+, H^{-2}(\mathcal{M}) + H^{-1,1}(\mathcal{M})).$$

Proof. We produce u as a limit point of solutions u_{ϵ} to a slight modification of (6.6), namely we require J_{ϵ} to be a projection, $J_{\epsilon} = \chi(\epsilon \Delta)$, where $\chi(\lambda)$ is the characteristic function of [-1, 1]. Then J_{ϵ} commutes with Δ and with P. We also require $u_{\epsilon}(0) = J_{\epsilon}u_{0}$ and then $u_{\epsilon}(t) = J_{\epsilon}u_{\epsilon}(t)$. Now, by (6.7),

(6.40) $\{u_{\epsilon}: \epsilon \in (0,1]\} \text{ is bounded in } L^{\infty}(\mathbb{R}^+, L^2).$

Furthermore, for $\mathcal{M} = \mathbb{R}^n$,

(6.41)
$$2\nu \int_0^T \|\nabla u_{\epsilon}(t)\|_{L^2}^2 dt = \|J_{\epsilon}u_0\|_{L^2}^2 - \|u_{\epsilon}(T)\|_{L^2}^2.$$

Therefore, for each bounded interval I = [0, T],

(6.42) $\{u_{\epsilon}\}$ is bounded in $L^{2}(I, H^{1}(\mathcal{M})).$

Now then, since $J_{\epsilon}\Delta J_{\epsilon}u_{\epsilon} = \Delta u_{\epsilon}$.

(6.43)
$$\frac{\partial u_{\epsilon}}{\partial t} + P J_{\epsilon} div(u_{\epsilon} \otimes u_{\epsilon}) = \nu \Delta u_{\epsilon}.$$

Now by (6.40),

(6.44)
$$\{u_{\epsilon} \otimes u_{\epsilon} : \epsilon \in (0,1]\}$$
 is bounded in $L^{\infty}(\mathbb{R}^+, L^1(\mathcal{M})).$
Since $L^1(\mathcal{M}) \subset H^{-n/2-\delta}(\mathcal{M})$, for each $\delta > 0$,

(6.45)
$$\{\partial_t u_\epsilon\}$$
 is bounded in $L^2(I, H^{-n/2-1-\delta}(\mathcal{M})),$
so

(6.46)
$$\{u_{\epsilon}\}$$
 is bounded in $H^1(I, H^{-n/2-1-\delta}(\mathcal{M})).$

Interpolating between (6.46) and (6.42),

(6.47)
$$\{u_{\epsilon}\} \text{ is bounded in } H^{s}(I, H^{1-s-s(\frac{n}{2}+1+\delta)}(\mathcal{M})),$$

and therefore,

(6.48)
$$\{u_{\epsilon}\}$$
 is compact in $L^{2}(I, H^{1-\gamma}(\mathcal{M})),$

for all $\gamma > 0$. Therefore, we can pick a sequence $u_k = u_{\epsilon_k}$ such that

(6.49)
$$u_k \to u, \quad \text{in} \quad L^2([0,T], H^{1-\gamma}(\mathcal{M})), \quad \text{in norm.}$$

Therefore, u is the desired weak solution of (6.3).

Solutions of (6.3) that are obtained as limits of u_{ϵ} are called Leray–Hopf solutions to the Navier Stokes equations. Uniqueness and smoothness of a Leray–Hopf solution remain open problems if $\dim(\mathcal{M}) \geq 3$.

Proposition 29. If $dim(\mathcal{M}) = 3$ and u is a Leray-Hopf solution of (6.3), then there is an open dense subset \mathcal{J} of $(0, \infty)$ such that $\mathbb{R}^+ \setminus \mathcal{J}$ has Lebesgue measure zero and

$$(6.50) u \in C^{\infty}(\mathcal{J} \times \mathcal{M}).$$

Proof. Fix T > 0 arbitrary, I = [0, T]. Passing to a subsequence, $u_k = u_{\epsilon_k}$, with

(6.51)
$$||u_{k+1} - u_k||_E \le 2^{-k}, \quad E = L^2(I, H^{1-\gamma}(\mathcal{M})).$$

Now set $\Gamma(t) = \sup_k ||u_k(t)||_{H^{1-\gamma}}$. Then

(6.52)
$$\Gamma(t) \le \|u_1(t)\|_{H^{1-\gamma}} + \sum_{k=1}^{\infty} \|u_{k+1}(t) - u_k(t)\|_{H^{1-\gamma}}.$$

Therefore, $\Gamma \in L^2(I)$. Therefore, $\Gamma(t)$ is finite almost everywhere. Let

$$(6.53) S = \{t \in I : \Gamma(t) < \infty\}.$$

For $\gamma > 0$ small, $H^{1-\gamma}(\mathcal{M}) \subset L^p(\mathcal{M})$, with p close to 6 when $dim(\mathcal{M}) = 3$. Therefore, the product of two elements in $H^{1-\gamma}$ belongs to $H^{1/2-\gamma'}$ for $\gamma' > 0$. Applying the local well–posedness result, for each $t_0 \in S$, there exists $T(\Gamma(t_0)) > 0$ such that, for $\gamma' > 0$,

(6.54)
$$\{u_k\}$$
 bounded in $C([t_0, t_0 + T(t_0)], H^{1-\gamma}) \cap C^{\infty}((t_0, t_0 + T(t_0)) \times \mathcal{M})$

Therefore, in the set

(6.55)
$$\mathcal{J}_T = \cup_{t_0 \in S} (t_0, t_0 + T(t_0))$$

and the weak limit u has the property $u \in C^{\infty}(\mathcal{J}_T \times \mathcal{M})$.

It remains to show that $I \setminus \mathcal{J}_T$ has Lebesgue measure zero. Fix $\delta_1 > 0$. Since $meas(I \setminus S) = 0$, there exists $\delta_2 > 0$ such that if $S_{\delta_2} = \{t \in S : T(t) \ge \delta_2\}$, then $meas(I \setminus S_{\delta_2}) < \delta_1$. Now then, if $T(t_0) \ge \delta_2$ then $t_0 + \frac{\delta_2}{2} \in \mathcal{J}_T$. Therefore, $meas(I \setminus \mathcal{J}_T) \le \delta_1 + \frac{\delta_2}{2}$. This completes the proof. \Box

7. HARMONIC MAPS

Let \mathcal{M} and \mathcal{N} be compact Riemannian manifolds. Using the Nash embedding result, we can take $\mathcal{N} \subset \mathbb{R}^k$. A harmonic map is a critical point for the energy functional

(7.1)
$$E(u) = \frac{1}{2} \int_{\mathcal{M}} |\nabla u(x)|^2 dV(x).$$

Remark 3. Recall that an isometric embedding f is an embedding that preserves the metric. That is, for $v, w \in T_x \mathcal{M}$, if g and h are the metrics,

(7.2)
$$g(v,w) = h(df(v), df(w)).$$

Therefore, the quantity (7.1) only depends on the metrics of \mathcal{M} and \mathcal{N} , not on the embedding.

Suppose u_s is a smooth family of maps from \mathcal{M} to \mathcal{N} . Then,

(7.3)
$$\frac{d}{ds}E(u_s)|_{s=0} = -\int v(x)\Delta u(x)dV(x)$$

where $u = u_0$ and $v(x) = \frac{\partial}{\partial s} u_s(x) \in T_{u(x)} \mathcal{N}$. It is possible to vary u_0 so that v is any map $\mathcal{M} \to \mathbb{R}^k$ that satisfies $v(x) \in T_{u(x)} \mathcal{N}$. Therefore, the stationary condition is that

(7.4)
$$\Delta u(x) \perp T_{u(x)}\mathcal{N}, \quad \text{for all} \quad x \in \mathcal{M}.$$

It is possible to rewrite the stationary condition (7.4). Suppose that near a point $z \in \mathcal{N} \subset \mathbb{R}^k$, N is given by

(7.5)
$$f_l(y) = 0, \quad 1 \le l \le L,$$

where $L = k - dim\mathcal{N}$, and with $\nabla f_l(y)$ linearly independent in \mathbb{R}^k for each y near z. Now then, if $u : \mathcal{M} \to \mathcal{N}$ is smooth and u(x) is close to z, then we have

(7.6)
$$\sum_{\nu} \frac{\partial f_l}{\partial u_{\nu}} \frac{\partial u_{\nu}}{\partial x_j} = 0, \qquad 1 \le l \le L, \qquad 1 \le j \le m,$$

where $(x_1, ..., x_m)$ is a local coordinate system on \mathcal{M} . Multiplying (7.6) by g^{jk} and differentiating with respect to x_k ,

(7.7)
$$\sum_{\nu} \frac{\partial f_l}{\partial u_{\nu}} \Delta u_{\nu} = -\sum_{\mu,\nu,j,k} g^{jk} \frac{\partial^2 f_l}{\partial u_{\mu} \partial u_{\nu}} \frac{\partial u_{\mu}}{\partial x_k} \frac{\partial u_{\nu}}{\partial x_j}.$$

Since $\{\nabla_y f_l(y) : 1 \leq l \leq L\}$ is a basis for the orthogonal complement in \mathbb{R}^k of $T_y \mathcal{N}$, the normal component of Δu depends only on the first order derivatives of u and is quadratic in ∇u . That is,

(7.8)
$$(\Delta u)^N = \Gamma(u)(\nabla u, \nabla u).$$

Thus, the stationary solution for (7.4) is equivalent to

(7.9)
$$\Delta u - \Gamma(u)(\nabla u, \nabla u) = 0.$$

Let $\tau(u)$ denote the left hand side of (7.9). Then by (7.8), given $u \in C^2(\mathcal{M}, \mathcal{N})$, $\tau(u)$ is tangent to \mathcal{N} at u(x). There is a result of Eells and Sampson.

Theorem 2. Suppose \mathcal{N} has negative sectional curvature everywhere. Then, given $v \in C^{\infty}(\mathcal{M}, \mathcal{N})$, there exists a harmonic map $w \in C^{\infty}(\mathcal{M}, \mathcal{N})$ that is homotopic to v.

The existence of w is established by solving the PDE,

(7.10)
$$\frac{\partial u}{\partial t} = \Delta u - \Gamma(u)(\nabla u, \nabla u), \qquad u(0) = v.$$

Under the hypothesis of negative sectional curvature on \mathcal{N} , there is a smooth solution to (7.10) for all $t \geq 0$, and that, for a sequence $t_k \to \infty$, $u(t_k)$ tends to the desired w. By Proposition 8, equation (7.10) is locally solvable on some interval [0, T). Since $\tau(u)$ is tangent to \mathcal{N} for $u \in C^{\infty}(\mathcal{M}, \mathcal{N})$, it follows that $u(t) : \mathcal{M} \to \mathcal{N}$ for each $t \in [0, T)$. To show that $T = \infty$, it suffices to estimate $\|u(t)\|_{C^1}$.

Let e(t, x) denote the energy density,

(7.11)
$$e(t,x) = \frac{1}{2} |\nabla_x u(t,x)|^2.$$

Now then, we have the identity

$$(7.12) \quad \frac{\partial e}{\partial t} - \Delta e = -|^N \nabla^2 u|^2 - \frac{1}{2} \langle du \cdot Ric^{\mathcal{M}}(e_j), du \cdot e_j \rangle + \frac{1}{2} \langle R^N(du \cdot e_j, du \cdot e_k) du \cdot e_k, du \cdot e_j \rangle.$$

Since \mathcal{N} has negative sectional curvature, we have the identity

(7.13)
$$\frac{\partial e}{\partial t} - \Delta e \le ce$$

Now then, if $f(t, x) = e^{-ct}e(t, x)$,

(7.14)
$$\frac{\partial f}{\partial t} - \Delta f \le 0,$$

which by the maximum principle, $f(t, x) \leq ||f(0, \cdot)||_{L^{\infty}}$. Therefore,

(7.15) $e(t,x) \le e^{ct} \|\nabla v\|_{L^{\infty}}^2.$

This C^1 estimate implies global existence of a solution by Proposition 7.

Now then, for the total energy,

(7.16)
$$E(t) = \int_{\mathcal{M}} e(t, x) dV(x) = \frac{1}{2} \int_{\mathcal{M}} |\nabla u|^2 dV(x).$$

Then by (7.3),

(7.17)
$$E'(t) = -\int_{\mathcal{M}} |u_t|^2 dV(x)$$

Indeed, by (7.3),

(7.18)
$$E'(t) = \int_{\mathcal{M}} \langle u_t, \Delta u \rangle dV(x).$$

Since u_t is tangent to \mathcal{N} and $\Gamma(u)(\nabla u, \nabla u)$ is normal to \mathcal{N} , (7.17) follows.

Lemma 3. Let $e(t, x) \ge 0$ satisfy the differential inequality (7.12). Assume that

(7.19)
$$E(t) = \int e(t, x) dV(x) \le E_0,$$

is bounded. Then there exists a uniform estimate

$$(7.20) e(t,x) \le e^c K E_0, t \ge 1,$$

where K depends on the geometry of \mathcal{M} .

Proof. Let $\frac{\partial e}{\partial t} - \Delta e = ce - g$, $g(t, x) \ge 0$. Then for $0 \le s \le 1$,

(7.21)
$$e(t+s,x) = e^{s(\Delta+c)}e(t,x) - \int_0^s e^{(s-\tau)(\Delta+c)}g(\tau,x)d\tau \le e^{s(\Delta+c)}e(t,x).$$

Since $e^{s(\Delta+c)}$ is uniformly bounded from $L^1(\mathcal{M})$ to $L^{\infty}(\mathcal{M})$ for $s \in [\frac{1}{2}, 1]$, the bound (7.20) for $t \in [\frac{1}{2}, \infty)$ follows from the hypothesized $L^1(\mathcal{M})$ bound on e(t).

Now then, Lemma 3 applies to $e(t, x) = |\nabla u|^2$ when u solves (7.10) satisfy

(7.22) $||u(t)||_{C^1} \le K_1 ||v||_{C^1}, \quad \text{for all} \quad t \ge 0.$

Then by the regularity estimates in Proposition 11,

(7.23)
$$\|u(t)\|_{C^{l}} \le K_{l} \|v\|_{C^{1}}, \qquad t \ge 1.$$

Now by (7.17), E(t) is positive and monotonically decreasing. Therefore, $\int_{\mathcal{M}} |u_t(t,x)|^2 dV(x)$ is an integrable function of t, so there exists a sequence $t_j \to \infty$ such that

(7.24)
$$||u_t(t_j, \cdot)||_{L^2} \to 0.$$

Also by (7.23) and the PDE (7.10), we have the bounds

(7.25)
$$||u_t(t,\cdot)||_{H^k} \le C_k$$

and interpolating with (7.24) gives

(7.26)
$$||u_t(t_j, \cdot)||_{L^2} \to 0$$

Therefore, by (7.10), for $u_j(x) = u(t_j, x)$,

(7.27)
$$\Delta u_j - \Gamma(u_j)(\nabla u_j, \nabla u_j) \to 0, \quad \text{in} \quad H^l(\mathcal{M}).$$

Therefore, the subsequence converges in a strong norm to an element $w \in C^{\infty}(\mathcal{M}, \mathcal{N})$ solving (7.9) and homotopic to v.

Theorem 3. If we are given $v \in C^{\infty}(\mathcal{M}, \mathcal{N})$ there exists a smooth map $w : \mathcal{M} \to \mathcal{N}$ that is harmonic and homotopic to v and such that $E(w) \leq E(\tilde{v})$ for any $\tilde{v} \in C^{\infty}(\mathcal{M}, \mathcal{N})$, homotopic to v.

Proof. Let α be the infimum of the energy of smooth maps homotopic to v. Choose a sequence v_{ν} homotopic to v such that $E(v_{\nu}) \searrow \alpha$. Then solve (7.10) with $u_{\nu}(0) = v_{\nu}$. Then we have a sequence $u_{\nu}(t_{\nu j}) \rightarrow w_{\nu} \in C^{\infty}(\mathcal{M}, \mathcal{N})$, harmonic, $E(w_{\nu}) \leq E(v_{\nu})$ so that

(7.28)
$$E(w_{\nu}) \searrow \alpha.$$

Also, we have uniform C^l bounds of w_{ν} for all l. Thus, the limit point has all the desired properties.

Now let

(7.29)
$$F(x, D_x^1 u) = B(u)(\nabla u, \nabla u),$$

a quadratic form in ∇u . In this case, take

(7.30)
$$X = H^{1,p}, \quad Y = L^q, \quad q = \frac{p}{2}, \quad p > n.$$

Then

(7.31)
$$H^{s,p} \subset L^{\frac{np}{n-sp}}, \qquad p < \frac{n}{s}.$$

Proposition 30. If (7.29) is a quadratic form in ∇u , then the PDE

(7.32)
$$\frac{\partial u}{\partial t} = \Delta u + B(u)(\nabla u, \nabla u), \qquad u(0) = f,$$

has a solution in $C([0,T], H^{1,p}) \cap C^{\infty}((0,T) \times \mathcal{M})$, provided $f \in H^{1,p}(\mathcal{M})$, p > n.

8. REACTION-DIFFUSION EQUATIONS

A reaction diffusion equation is an $l \times l$ system of the form,

(8.1)
$$\frac{\partial u}{\partial t} = Lu + X(u), \qquad u(0) = f,$$

where u = u(t, x) takes values in \mathbb{R}^l , X is a real vector field on \mathbb{R}^l , and L is a second order differential operator that is a negative semi-definite, self-adjoint operator on $L^2(\mathcal{M})$. The manifold \mathcal{M} is complete, either \mathbb{R}^n or a compact manifold. The operator L need not be elliptic.

One example is the Fitzhugh–Nagumo system,

(8.2)
$$\begin{aligned} \frac{\partial v}{\partial t} &= D \frac{\partial^2 v}{\partial x^2} + f(v) - w\\ \frac{\partial w}{\partial t} &= \epsilon (v - \gamma w), \end{aligned}$$

with

(8.3)
$$f(v) = v(a - v)(v - 1).$$

In this case,

(8.4)
$$L = \begin{pmatrix} D\partial_x^2 & 0\\ 0 & 0 \end{pmatrix}, \qquad D > 0.$$

The operator L has the following generalization of the maximum principle.

Proposition 31 (Invariance property). There is a compact, convex neighborhood K of the origin in \mathbb{R}^l such that if $f \in L^2(\mathcal{M})$, then for all $t \ge 0$,

(8.5)
$$f(x) \in K$$
, for all x implies $e^{tL}f(x) \in K$, for all x .

Therefore, if $f, g \in L^2(\mathcal{M})$ have compact support,

(8.6)
$$\|e^{tL}f\|_{L^{\infty}} \le \kappa \|f\|_{L^{\infty}},$$

where κ is independent of $t \ge 0$. If we define a norm on \mathbb{R}^l so that $K \cap (-K)$ is the unit ball, then we have $\kappa = 1$. For such f and g, we have

(8.7)
$$|(e^{tL}f,g)| = |(f,e^{tL}g)| \le \kappa ||f||_{L^1} ||g||_{L^{\infty}}$$

so then $\|e^{tL}f\|_{L^1} \leq \kappa \|f\|_{L^1}$. Therefore, e^{tL} has a unique extension to the linear map

8.8)
$$e^{tL}: L^p(\mathcal{M}) \to L^p(\mathcal{M}), \qquad ||e^{tL}|| \le \kappa_p,$$

for $1 \le p \le 2$, by interpolation. Then by duality (8.8) holds for $2 \le p \le \infty$.

9. A NONLINEAR TROTTER PRODUCT FORMULA

10. The Stefan problem

11. QUASILINEAR PARABOLIC EQUATIONS 1

12. QUASILINEAR PARABOLIC EQUATIONS 2, SHARPER ESTIMATES

13. QUASILINEAR PARABOLIC EQUATIONS 3, NASH-MOSER ESTIMATES

References

[Taya] Michael E Taylor. *Partial differential equations*, volume 2. Springer. [Tayb] Michael E Taylor. *Partial differential equations*, volume 3. Springer.