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1. The Dirichlet problem on the ball in Rn

The study of elliptic partial differential equations begins with harmonic functions on a disc,

(1.1)

{
∆u = 0 : on D,
u = f : on S1.

Suppose for now that f ∈ C(S1). Then define the Fourier transform for any k ∈ Z,

(1.2) f̂(k) = Ff(k) = 1

2π

∫ 2π

0

e−ikθf(θ)dθ.

For f ∈ L1(S1), F : L1(S1) → l∞(Z). Then for any r ∈ [0, 1), the sum

(1.3) Jrf(θ) =

∞∑
k=−∞

f̂(k)r|k|eikθ,

converges absolutely.

Furthermore, taking z = reiθ,

(1.4)

∞∑
k=0

f̂(k)rkeikθ =

∞∑
k=0

f̂(k)zk,

is holomorphic on D = {z : |z| < 1}, while the sum

(1.5)

−1∑
k=−∞

f̂(k)r−keikθ =

∞∑
k=1

f̂(−k)z̄k,

is anti-holomorphic on D = {z : |z| < 1}. Therefore,

(1.6) u = (PIf)(z) =

∞∑
k=0

f̂(k)zk +

∞∑
k=1

f̂(−k)z̄k = (PI+f)(z) + (PI−f)(z),

is the sum of a holomorphic function and an anti-holomorphic function on D. A holomorphic
function v satisfies

(1.7)
∂v

∂z̄
=

1

2
(
∂

∂x
+ i

∂

∂y
)v = 0,

while an anti-holomorphic function satisfies

(1.8)
∂v

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
)v = 0.

Therefore, u defined by (1.6) is a harmonic function.

Next, we show that

Proposition 1. If f ∈ C(S1), u ∈ C(D̄) and u|S1 = f |S1 .

Proof. Rewriting Jrf in (1.3), for any r ∈ [0, 1),

(1.9) Jrf(θ) =
∑
k

f̂(k)r|k|eikθ =
1

2π

∫
S1

f(θ′)
∑
k

r|k|eik(θ−θ′)dθ′ =
1

2π

∫
S1

f(θ′)p(r, θ − θ′)dθ′,



3

where

(1.10) p(r, θ) =

∞∑
k=−∞

r|k|eikθ = 1 +

∞∑
k=1

(rkeikθ + rke−ikθ) =
1− r2

1− 2r cos θ + r2
.

It is straightforward to verify that p(r, θ) > 0 for any r ∈ [0, 1) and θ ∈ [0, 2π). Furthermore, for
any r ∈ [0, 1),

(1.11)
1

2π

∫
p(r, θ)dθ = 1,

and p(r, θ) → 0 as r ↗ 1 uniformly for θ in a compact subset of S1 that does not contain θ = 0.
Therefore, 1

2πp(r, θ) is a kernel.

Now then, if f is continuous on S1, then f is uniformly continuous on S1. Fix θ ∈ S1. Then,

(1.12) f(θ)− 1

2π

∫
S1

p(r, θ − θ′)f(θ′)dθ′ =
1

2π

∫
S1

p(r, θ − θ′)[f(θ)− f(θ′)]dθ′ → 0,

as r ↗ 1. This proves the proposition. □

Now we generalize this computation to n dimensions.

Proposition 2. If f ∈ C(Sn−1), then the solution to (1.1) is given by

(1.13) u(x) =
1− |x|2

An−1

∫
Sn−1

f(x′)

|x− x′|n
dS(x′),

where An−1 is the area of the unit sphere Sn−1 ⊂ Rn.

Proof. We first prove that u given by (1.13) is harmonic on D.

Lemma 1. For a given x′ ∈ Sn−1, set

(1.14) v(x) = (1− |x|2)|x− x′|−n.

Then v is harmonic on Rn \ {x′}.

It is straightforward to see that Lemma 1 implies that (1.13) is harmonic on D.

Proof of Lemma 1. Shifting x 7→ x+ x′, we show that

(1.15) v(x) = (1− |x+ x′|2)|x|−n,

is harmonic on Rn \ {0}. Expanding,

(1.16) (1− |x+ x′|2) = 1− (1 + |x|2 + 2x · x′) = −2x · x′ − |x|2.

When n ≥ 3, r > 0,

(1.17) ∆|x|2−n = (∂2r +
n− 1

r
∂r)r

2−n = (2− n)(1− n)r−n +
(n− 1)

r
(2− n)r1−n = 0.

Meanwhile, for n > 2,

(1.18) −2x′ · x|x|−n = − 2x′

2− n
· ∇(|x|2−n),

so using the fact that ∆∇f = ∇∆f , ∆(−2x′ · x|x|−n) = 0 for n > 2.
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Remark 1. When n = 1, the harmonic functions and linear functions are identical. Plugging f
into (1.13),

(1.19) u(x) = (1 + x)
f(1)

2
+ (1− x)

f(−1)

2
.

□

Now show that u ∈ C(D̄) and u|Sn−1 = f |Sn−1 . Let x = rω, where ω ∈ Sn−1. Then,

(1.20) u(rω) =

∫
Sn−1

p(r, ω, ω′)f(ω′)dS(ω′),

where

(1.21) p(r, ω, ω′) =
1− r2

An−1
|rω − ω′|−n.

It is clear that p(r, ω, ω′) → 0 as r ↗ 1 if ω ̸= ω′. Now then,

(1.22) p(r, y, ω′) =
1

An−1
(1− r2|y|2)|ry − ω′|−n,

is harmonic in y for |y| < 1
r . Therefore, by the mean value property for harmonic functions,

(1.23)

∫
Sn−1

p(r, ω, ω′)dS(ω) = p(0, en, ω
′) = 1.

Since

(1.24)

∫
Sn−1

p(r, ω, ω′)dS(ω′),

is independent of ω,

(1.25)

∫
Sn−1

p(r, ω, ω′)dS(ω′) =
1

An−1

∫
Sn−1

∫
Sn−1

p(r, ω, ω′)dS(ω)dS(ω′) = 1.

Therefore, u|Sn−1 = f |Sn−1 and u ∈ C(D̄). □

It remains to prove the mean value property for harmonic functions.

Definition 1 (Mean value property). Suppose Ω ⊂ Rn is a connected domain. For u ∈ C(Ω), u
satisfies the mean value property if

(1.26) u(x) =
1

An−1rn−1

∫
∂Br(x)

u(y)dS(y), for any Br(x) ⊂ Ω.

This definition is equivalent to the definition,

(1.27) u(x) =
n

An−1rn

∫
Br(x)

u(y)dy, for any Br(x) ⊂ Ω.

Indeed, if (1.26) holds,

(1.28)
n

ωnrn

∫
Br(x)

u(y)dy =
n

ωnrn

∫ r

0

u(x)ωns
n−1ds = u(x).

Meanwhile, rewriting (1.27) and differentiating with respect to r,

(1.29) u(x)rn =
n

ωn

∫
Br(x)

u(y)dy, nrn−1u(x) =
n

ωn

∫
∂Br(x)

u(y)dS(y).
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Theorem 1. Let u ∈ C2(Ω) be harmonic in Ω. Then u satisfies the mean value property in Ω.

Proof. Take a ball Br(x) ⊂ Ω. For ρ ∈ (0, r), apply the divergence theorem in Bρ(x). Then
(1.30)

0 =

∫
Bρ(x)

∆u(y)dy =

∫
∂Bρ

∂u

∂ν
dS(y) = ρn−1

∫
|w|=1

∂u

∂ρ
(x+ρw)dSw = ρn−1 ∂

∂ρ

∫
|w|=1

u(x+ρw)dSw.

For any continuous function,

(1.31) lim
ρ↘0

∫
|w|=1

u(x+ ρw)dSw = u(x),

which completes the proof. □

If u is a C2 function, then the mean value property is equivalent to being a harmonic function.

Theorem 2. If u ∈ C(Ω) has mean value property in Ω, then u is smooth and harmonic in Ω.

Proof. Choose φ ∈ C∞
0 (B1(0)) to be a radial function that satisfies

∫
B1(0)

φ(y)dy = 1. Then,

(1.32) ωn

∫ 1

0

rn−1ψ(r)dr = 1.

Now for x ∈ Ω, ϵ < dist(x, ∂Ω), then for φϵ(z) =
1
ϵnφ(

z
ϵ ),

(1.33)

∫
Ω

u(y)φϵ(y − x)dy = u(x).

Therefore, u(x) = (φϵ ∗ u)(x) for any x ∈ Ωϵ = {y ∈ Ω : d(y, ∂Ω) > ϵ}, so u is smooth.
Next,

(1.34)∫
Br(x)

∆u(y)dy = rn−1 ∂

∂r

∫
|w|=1

u(x+rw)dSw = rn−1 ∂

∂r
(ωnu(x)) = 0, for any Br(x) ⊂ Ω.

Thus, ∆u = 0 on Ω. □

The mean value property implies uniqueness for solutions to (1.1).

Proposition 3. If u ∈ C(Ω̄) satisfies the mean value property in Ω, then u assumes its maximum
and minimum only on ∂Ω, unless u is constant.

Proof. The proof is the same as for holomorphic functions. □

Since harmonic functions satisfy the mean value property, they satisfy the maximum and mini-
mum principle. Thus, a solution to the Dirichlet problem,

(1.35) ∆u = f in Ω, u = φ on ∂Ω,

is unique. Indeed, suppose u and v are two solutions to (1.35). Then, u−v solves (1.35) with f = 0
on ∂Ω. Thus, the maximum and minimum of u− v is 0, so u− v = 0 everywhere.

Remark 2. In general, uniqueness does not hold for a solution on an unbounded domain.

Harmonic functions display a Harnack inequality.
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Lemma 2 (Harnack’s inequality). Suppose u is harmonic in BR(x0) and u ≥ 0. Then,

(1.36) (
R

R+ r
)n−2R− r

R+ r
u(x0) ≤ u(x) ≤ (

R

R− r
)n−2R+ r

R− r
u(x0),

where r = |x− x0| < R.

Proof. Suppose without loss of generality that x0 = 0. Then by the Poisson integral formula,

(1.37) u(x) =
1

ωnR

∫
∂BR

R2 − |x|2

|x− y|n
u(y)dSy.

Since R− |x| ≤ |y − x| ≤ R+ |x|, if |y| = R,
(1.38)

1

ωnR
· R− |x|
R+ |x|

(
1

R+ |x|
)n−2

∫
∂BR

u(y)dSy ≤ u(x) ≤ 1

ωnR
· R+ |x|
R− |x|

(
1

R− |x|
)n−2

∫
∂BR

u(y)dSy.

Then (1.36) follows from the mean value formula. □

Corollary 1. If u is a harmonic function in Rn is bounded above or below, then u is a constant.

We can also prove a result concerning the removable singularity.

Theorem 3. Suppose u is harmonic on BR\{0} and harmonic in BR and satisfies u(x) = o(log |x|),
n = 2, o(|x|2−n), n ≥ 3 as |x| → 0. Then u can be defined so that it is C2 and harmonic in BR.

Proof. Suppose u is continuous in 0 < |x| ≤ R. Let v solve ∆v = 0 on BR, v = u on ∂BR. Then
set w = v − u in BR \ {0} and let Mr = max∂BR

|w|. Clearly, for n ≥ 3,

(1.39) |w(x)| ≤Mr ·
rn−2

|x|n−2
, on ∂Br.

Then by the maximum principle, since w = 0 on ∂BR,

(1.40) |w(x)| ≤Mr ·
rn−2

|x|n−2
, for any x ∈ BR \Br.

However, Mrr
n−2 → 0 as r ↘ 0, so w = 0 and v = u. □

2. The Dirichlet problem on a smooth domain

Having obtained the solution to the Dirichlet problem on a ball in Rn, (1.13), the next goal is to
obtain a solution on a general smooth domain Ω. Notice that, as in complex analysis, Proposition
3 can be generalized to smooth domains, which gives uniqueness.

Let v(r) be a radial function that solves

(2.1) v′′ +
n− 1

r
v′ = 0.

Then let w = v′, w = r−(n−1), and

(2.2) v(r) = c1 + c2 log r, n = 2, v(r) = c3 + c4r
2−n, n ≥ 3.

Now choose c2, c4 such that

(2.3)

∫
∂Br

∂v

∂r
dS = 1, for any r > 0, c2 =

1

2π
, c4 =

1

(2− n)An−1
.
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Then for any a ∈ Rn, set

(2.4) Γ(a, x) =
1

2π
log |a− x|, n = 2, Γ(a, x) =

1

(2− n)An−1
|a− x|2−n, n ≥ 3.

Thus, for a fixed a ∈ Rn, Γ(x, a) is harmonic at x ̸= a, ∆xΓ(a, x) = 0 for any x ̸= a, and

(2.5)

∫
∂Br(a)

∂Γ

∂nx
(a, x)dSx = 1, for any r > 0.

Theorem 4. Suppose Ω is a bounded domain in Rn and that u ∈ C1(Ω̄) ∩ C2(Ω). Then for any
a ∈ Ω there holds

(2.6) u(a) =

∫
Ω

Γ(a, x)∆u(x)dx−
∫
∂Ω

(Γ(a, x)
∂u

∂nx
(x)− u(x)

∂Γ

∂nx
(a, x))dSx.

Proof. Apply Green’s formula to u and Γ(a, ·) in the domain Ω \Br(a) for r > 0 small. Then,

(2.7)

∫
Ω\Br(a)

(Γ∆u− u∆Γ)dx =

∫
∂Ω

(Γ
∂u

∂n
− u

∂Γ

∂n
)dSx −

∫
Br(a)

(Γ
∂u

∂n
− u

∂Γ

∂n
)dSx.

Now then, ∆Γ = 0 in Ω \Br(a), so

(2.8)

∫
Ω\Br(a)

Γ∆udx =

∫
∂Ω

(Γ
∂u

∂n
− u

∂Γ

∂n
)dSx − lim

r↘0

∫
Br(a)

(Γ
∂u

∂n
− u

∂Γ

∂n
)dSx.

Now then, by direct computation, since u ∈ C2(Ω) ∩ C1(Ω̄),

(2.9) |
∫
∂Br(a)

Γ
∂u

∂n
dS| → 0, as r ↘ 0,

and by (2.3),

(2.10)

∫
∂Br(a)

u
∂Γ

∂n
dS =

1

An−1rn−1

∫
∂Br(a)

udS → u(a), as r ↘ 0.

□

Now suppose Ω is a bounded domain in Rn and let u ∈ C2(Ω) ∩ C1(Ω̄). Then for x ∈ Ω,

(2.11) u(x) =

∫
Ω

Γ(x, y)∆u(y)dy −
∫
∂Ω

(Γ(x, y)
∂u

∂ny
(y)− u(y)

∂Γ

∂ny
(x, y))dSy.

A problem where both u and ∂u
∂n is known on the boundary is overdetermined, so suppose u

solves the Dirichlet boundary problem,

(2.12) ∆u = f in Ω, u = φ, on ∂Ω.

Then,

(2.13) u(x) =

∫
Ω

Γ(x, y)f(y)dy −
∫
∂Ω

(Γ(x, y)
∂u

∂ny
(y)− φ(y)

∂Γ

∂ny
(x, y))dSy.

Now then, for fixed x ∈ Ω, consider

(2.14) γ(x, y) = Γ(x, y) + Φ(x, y),

for some Φ(x, ·) ∈ C2(Ω̄) and ∆yΦ(x, y) = 0. Then redoing the proof of Theorem 4, for any x ∈ Ω,

(2.15) u(x) =

∫
Ω

γ(x, y)∆u(y)dy −
∫
∂Ω

(γ(x, y)
∂u

∂ny
(y)− u(y)

∂γ

∂ny
(x, y))dSy.
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For a fixed x ∈ Ω, choose Φ(x, ·) ∈ C1(Ω̄) ∩ C2(Ω) such that

(2.16) ∆yΦ(x, y) = 0, for y ∈ Ω, Φ(x, y) = −Γ(x, y), for y ∈ ∂Ω.

Plugging this γ(x, y), call it G(x, y), into (2.15),

(2.17) u(x) =

∫
Ω

G(x, y)f(y)dy +

∫
∂Ω

φ(y)
∂G

∂ny
(x, y)dSy.

Remark 3. The function G(x, y) is called the Green’s function.

Remark 4. The proof of the existence of Φ(x, y) satisfying (2.16) will be postponed to a later
section. For now, we can observe that Proposition 3 implies uniqueness.

Proposition 4. Green’s function G(x, y) is symmetric in Ω × Ω; that is, G(x, y) = G(y, x) for
x ̸= y ∈ Ω.

Proof. Choose x1, x2 ∈ Ω with x1 ̸= x2, and choose r > 0 suffficiently small such that Br(x1) ∩
Br(x2) = ∅. Then set G1(y) = G(x1, y) and G2(y) = G(x2, y). Then,

(2.18)

∫
Ω\Br(x1)∪Br(x2)

(G1∆G2 −G2∆G1) =

∫
∂Ω

(G1
∂G2

∂n
−G2

∂G1

∂n
)dS

−
∫
∂Br(x1)

(G1
∂G2

∂n
−G2

∂G1

∂n
)dS −

∫
∂Br(x2)

(G1
∂G2

∂n
−G2

∂G1

∂n
)dS

= −
∫
∂Br(x1)

(G1
∂G2

∂n
−G2

∂G1

∂n
)dS −

∫
∂Br(x2)

(G1
∂G2

∂n
−G2

∂G1

∂n
)dS.

Since x1, x2 /∈ ∂Ω, G(x1, y) = G(x2, y) = 0 for y ∈ ∂Ω.
Since Gi is harmonic for y ̸= xi,

∫
Ω\Br(x1)∪Br(x2)

(G1∆G2 −G2∆G1) = 0, and therefore,

(2.19)

∫
∂Br(x1)

(G1
∂G2

∂n
−G2

∂G1

∂n
)dS +

∫
∂Br(x2)

(G1
∂G2

∂n
−G2

∂G1

∂n
)dS = 0.

Now since Φ ∈ C2(Ω̄),

(2.20)

∫
∂Br(x1)

(Γ
∂G2

∂n
−G2

∂Γ

∂n
)dS +

∫
∂Br(x2)

(G1
∂Γ

∂n
− Γ

∂G1

∂n
)dS → 0, as r ↘ 0.

Taking the limit of (2.20) as r ↘ 0,

(2.21) −G2(x1) +G1(x2) = 0, which implies G(x2, x1) = G(x1, x2).

□

Before dealing with the question of existence, it will be useful to use the Green’s function to
prove the Riemann mapping theorem.

Theorem 5. Let Ω be a bounded domain in C with smooth boundary. Suppose Ω is connected and
simply connected, which means that ∂Ω is diffeomorphic to the circle S1. Let p be a point in Ω.
There exists a holomorphic function Φ on Ω such that Φ(p) = 0 and Φ : Ω̄ → D̄ is a diffeomorphism,
where D = {z : |z| < 1}.

Proof. Let G(x, y) denote the Green’s function in two dimensions for domain Ω and let G0(x, y)
refer to Φ(x+ iy, p) in (2.16),

(2.22) G(x, y) = log |x+ iy − p|+G0(x, y) = log |z − p|+G0(x, y).
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Now let H0 ∈ C∞(Ω̄) denote the harmonic conjugate of G0,

(2.23) H0(z) =

∫ z

p

[−∂G0

∂y
dx+

∂G0

∂x
dy].

Since G0 is harmonic, Green’s theorem implies that the integral is independent of path. Indeed,
plug in u = 1 and Γ = G0 to (2.7). Furthermore,

(2.24)
∂H0

∂x
= −∂G0

∂y
,

∂H0

∂y
=
∂G0

∂x
,

so G0 + iH0 is holomorphic. Let

(2.25) H(x, y) = Im log(z − p) +H0(x, y).

Let

(2.26) Φ(z) = eG+iH = (z − p)eG0+iH0 ,

which is a single–valued function on Ω with Φ(p) = 0. Since a Green’s function vanishes on the
boundary,

(2.27) Φ : ∂Ω → S1,

and therefore by the maximum modulus principle,

(2.28) Φ : Ω → D.
In fact,

Theorem 6. Φ is a holomorphic diffeomorphism of Ω̄ onto D̄.

To show this, we must show that

(2.29) Φ : Ω̄ → D̄,
is one-to-one and onto, with nowhere vanishing derivative.

First, observe that the tangential derivative of H is nowhere vanishing on the boundary. This is
equivalent to saying that

(2.30)
∂G

∂ν
(z) ̸= 0, for all z ∈ ∂Ω.

This follows from the fact that G(z) → −∞ as z → p, G(z) is maximal on ∂Ω, G is harmonic on
Ω \ {p}, and Zaremba’s principle. Therefore, (2.28) is a local diffeomorphism, and thus a covering
map.

Remark 5. By regularity theory, G ∈ C1(Ω̄).

Next, utilize the argument principle to show that (2.29) is one-to-one and onto.

Proposition 5 (Argument principle). Let Φ ∈ C1(Ω̄) be holomorphic inside Ω, where Ω is a
bounded region in C with smooth boundary ∂Ω = γ. Take q ∈ C, not in the image of γ under Φ.
The number of points pj ∈ Ω, counting multiplicity, for which Φ(pj) = q, is equal to the winding
number of the curve Φ(γ) about q.

Now then, for q = 0, it is clear from (2.26) that p is the unique, simple zero of Φ. Therefore,
the map Φ is a simple diffeomorphism, and for any q ∈ D, there is exactly one w ∈ Ω for which
Φ(w) = q. Therefore, Φ′(w) ̸= 0 for all w ∈ Ω. □
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Because of this fact, properties of harmonic functions imply a number of important results for
holomorphic functions.

Lemma 3. Suppose u ∈ C(B̄R) is a nonnegative harmonic function in BR = BR(x0). Then

(2.31) |Du(x0)| ≤
n

R
u(x0).

Proof. Since Dxi
u is a harmonic function, integrating by parts,

(2.32) Dxiu(x0) =
n

ωnRn

∫
BR(x0)

Dxiu(y)dy =
n

ωnRn

∫
∂BR(x0)

u(y)νidS(y) ≤
n

R
u(x0).

The last inequality uses the mean value formula and the fact that u is positive. □

Corollary 2. A harmonic function bounded from above or below is constant.

Proof. Suppose without loss of generality that u is bounded from below and that u ≥ 0. Then by
(2.32), Du(x0) = 0. □

Proposition 6. Suppose u ∈ C(B̄R) is harmonic in BR = BR(x0). Then for any multiindex
|α| = m,

(2.33) |Dαu(x0)| ≤
nmem−1m!

Rm
max
B̄R

|u|.

Proof. Prove by induction. When m = 1, the proposition follows from Lemma 3. Now suppose
that the proposition holds for m, and prove for m+ 1. For 0 < θ < 1, take r = (1− θ)R. Then by
Lemma 3 and the induction assumption,

(2.34) |Dm+1u(x0)| ≤
n

r
max
B̄r

|Dmu| ≤ n

r

nmem−1 ·m!

(R− r)m
max
B̄R

|u| = nm+1em−1m!

Rm+1θm(1− θ)
max
B̄R

|u|.

Now then, for θ = m
m+1 ,

(2.35)
1

θm(1− θ)
= (1 +

1

m
)m(m+ 1) < e(m+ 1).

□

Theorem 7. A harmonic function is analytic.

Proof. Suppose u is a harmonic function in Ω. Fix x ∈ Ω and take B2R(x) ⊂ Ω and h ∈ Rn with
|h| ≤ R. Then by Taylor expansion,

(2.36) u(x+ h) = u(x) +

m−1∑
i=1

1

i!
[(h1

∂

∂x1
+ ...+ hn

∂

∂xn
)iu](x) +Rm(h),

where

(2.37) Rm(h) =
1

m!
[(h1

∂

∂x1
+ ...+hn

∂

∂xn
)mu](x1+θh1, ..., xn+θhn), for some 0 < θ < 1.

Since x+ h ∈ BR(x),

(2.38) |Rm(h)| ≤ 1

m!
|h|mnm · n

mem−1m!

Rm
max
B̄2R

|u| ≤ (
|h|n2e
R

)m max
B̄2R

|u|.

Then for |h|n2e < R
2 , Rm(h) → 0 as m→ ∞. □
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We conclude with some properties of the Green’s function.

Proposition 7. For x, y ∈ Ω with x ̸= y,
(2.39)

0 > G(x, y) > Γ(x, y), for n ≥ 3, 0 > G(x, y) > Γ(x, y)− 1

2π
log diam(Ω), for n = 2.

Proof. Fix x ∈ Ω and let G(y) = G(x, y). Since limy→xG(y) = −∞, there exists r > 0 such that
G(y) < 0 in Br(x). Since G is harmonic in Ω \ Br(x), G = 0 on ∂Ω, and G < 0 on ∂Br(x), the
maximum principle implies G < 0 in Ω \Br(x).

Now then, recall that G(x, y) = Γ(x, y)+Φ(x, y), where ∆Φ = 0 in Ω and Φ = −Γ on ∂Ω. When
n ≥ 3, Γ(x, y) = 1

(2−n)ωn
|x − y|2−n < 0 for y ∈ ∂Ω, so by the maximum principle, Φ(x, ·) > 0 on

∂Ω. By the maximum principle, Φ > 0 in Ω. When n = 2,

(2.40) Γ(x, y) =
1

2π
log |x− y| ≤ 1

2π
log diam(Ω), for y ∈ ∂Ω.

Therefore, the maximum principle implies Φ > − 1
2π log diam(Ω) in Ω. □

3. Sobolev spaces

To prove existence and uniqueness of solutions, it is necessary to first identify the appropriate
function space in which to work. Sobolev spaces are frequently the space that is useful.

When k ≥ 0 is an integer, the Sobolev space Hk(Rn) is defined as follows,

Definition 2 (Sobolev space).

(3.1) Hk(Rn) = {u ∈ L2(Rn) : Dαu ∈ L2(Rn), for |α| ≤ k},
where Dα = i−|α|∂α1

x1
∂α2
x2

· · · ∂αn
xn
, α = (α1, ..., αn).

Integrating by parts,

(3.2) (2π)−n/2

∫
e−ix·ξ 1

i
∂x1f(x)dx = i(2π)−n/2

∫
∂x1(e

−ix·ξ)f(x)dx = ξ1f̂(ξ).

By Plancherel’s theorem,

(3.3) ∥f∥L2(Rn) = ∥f̂∥L2(Rn),

Therefore,

(3.4) u ∈ Hk(Rn) ⇔ ⟨ξ⟩kû ∈ L2(Rn), ⟨ξ⟩ = (1 + |ξ|2)1/2.
This definition can be extended to s when s need not be an integer,

(3.5) Hs(Rn) = {u ∈ S ′(Rn) : ⟨ξ⟩sû ∈ L2(Rn)}.
Then,

(3.6) u ∈ Hs+1(Rn) ⇔ Dju ∈ Hs(Rn), ∀j.
For any y ∈ Rn let

(3.7) τyu(x) = u(x+ y).

Proposition 8. Let (e1, ..., en) be the standard basis of Rn and let u ∈ Hs(Rn). Then,

(3.8) σ−1(τσeju− u)

is bounded in Hs(Rn) for 0 < σ ≤ 1 if and only if Dju ∈ Hs(Rn).
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Proof. If u ∈ Hs(Rn) then σ−1(τσeju− u) converges to iDju in Hs−1(Rn). Since (3.8) is bounded
for any compact subset of (0, 1], Dju ∈ Hs implies that (3.8) is bounded in Hs.

Meanwhile, if σ−1(τσeiu− u) is bounded in Hs, then there exists a sequence σν ↘ 0 such that

(3.9) σ−1
ν (τσνeju− u),

converges weakly to an element w ∈ Hs(Rn). Therefore, w = iDju. Since w ∈ Hs(Rn), the proof
is complete. □

Corollary 3. Given u ∈ Hs(Rn), u ∈ Hs+1(Rn) if and only if τyu is a Lipschitz continuous
function of y with values in Hs(Rn).

Proof. τyu is Lipschitz continuous with values in Hs(Rn) if and only if (3.8) holds. □

Proposition 9. If s > n/2 then each u ∈ Hs(Rn) is bounded and continuous. If u ∈ Hs for some
s > n/2 + k, then u ∈ Ck(Rn).

Proof. Using Cauchy’s inequality, if s > n/2,

(3.10)

∫
|û(ξ)|dξ ≤ (

∫
|û(ξ)|2⟨ξ⟩2sdξ)1/2 · (

∫
⟨ξ⟩−2sdξ)1/2 ≤ C(s)∥u∥Hs .

Equation (3.6) implies u ∈ Ck if s > n/2 + k. □

If s = n/2 + α for some 0 < α < 1, we can establish Hölder continuity.

Proposition 10. If s = n/2 + α, 0 < α < 1, then Hs(Rn) ⊂ Cα(Rn).

Proof. Using Cauchy’s inequality,

(3.11)

|u(x+ y)− u(x)| = (2π)−n/2|
∫
û(ξ)eix·ξ(eiy·ξ − 1)dξ|

≤ C(

∫
|û(ξ)|2⟨ξ⟩n+2αdξ)1/2(

∫
|eiy·ξ − 1|2⟨ξ⟩−n−2αdξ)1/2.

For |y| ≤ 1/2,

(3.12)

∫
|eiy·ξ−1|2⟨ξ⟩−n−2αdξ ≤ C

∫
|ξ|≤ 1

|y|

|y|2|ξ|2⟨ξ⟩−n−2αdξ+4

∫
|ξ|≥ 1

|y|

⟨ξ⟩−n−2αdξ ≤ C(α)|y|2α.

□

Now consider the trace map τ : S(Rn) → S(Rn−1) given by τu = f , where f(x′) = u(0, x′) if
x = (x1, ..., xn) and x

′ = (x2, ..., xn).

Proposition 11. The map τ extends uniquely to a continuous linear map,

(3.13) τ : Hs(Rn) → Hs−1/2(Rn−1), for s >
1

2
.

Proof. If f = τu, where u ∈ S(Rn−1), then

(3.14) f̂(ξ′) = (2π)−1/2

∫
û(ξ)dξ1.

Therefore, if s > 1/2,

(3.15) |f̂(ξ′)|2 ≤ (

∫
|û(ξ)|2⟨ξ⟩2sdξ1) · (

∫
⟨ξ⟩−2sdξ1).
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Then,

(3.16)

∫
⟨ξ⟩−2sdξ1 =

∫
(1 + |ξ′|2 + ξ21)

−sdξ1 = C(1 + |ξ′|2)−s+1/2 = C⟨ξ′⟩−2(s−1/2).

Therefore,

(3.17) ⟨ξ′⟩2(s−1/2)|f̂(ξ′)|2 ≤ C

∫
|û(ξ)|2⟨ξ⟩2sdξ1.

Therefore,

(3.18) ∥f∥2Hs−1/2(Rn−1) ≤ C∥u∥2Hs(Rn).

□

Proposition 12. The map (3.13) is surjective for each s > 1/2.

Proof. If g ∈ Hs−1/2(Rn−1), let

(3.19) û(ξ) = ĝ(ξ′)
⟨ξ′⟩2(s−1/2)

⟨ξ⟩2s
.

It is clear that u ∈ Hs(Rn) and that u(0, x′) = cg(x′). □

Now let Ω be a bounded domain, start with Rn
+ = {x ∈ Rn : x1 > 0}. For any k ≥ 0, let

(3.20) Hk(Rn
+) = {u ∈ L2(Rn

+) : D
αu ∈ L2(Rn

+) for |α| ≤ k}.

Next, define the extension operator,

(3.21) Eu(x) = u(x), for x1 ≥ 0,

N∑
j=1

aju(−jx1, x′), for x1 < 0.

Lemma 4. It is possible to choose {a1, ..., aN} such that the map E has a unique continuous
extension to

(3.22) E : Hk(Rn
+) → Hk(Rn), for k ≤ N − 1.

Proof. This was proved in Lemma 4.1 in chapter four of [Tay96]. □

Now then, suppose ∂Ω is a smooth, compact manifold on which Sobolev spaces have been defined.
By using local coordinate systems, flattening out ∂Ω, combined with the extension map and the
trace theorem, we have the following result on the trace map,

Proposition 13. For s > 1/2, τ extends uniquely to a continuous map

(3.23) τ : Hs(Ω) → Hs−1/2(∂Ω).

Now let Hk
0 (Ω) be the closure of C∞

0 (Ω) in Hs(Ω). Then,

(3.24) Hk
0 (Ω) = {u ∈ Hk : supp(u) ⊂ Ω̄}.

Proposition 14. For Ω open in M with smooth boundary, k ≥ 0 an integer, we have a natural
isomorphism

(3.25) Hk
0 (Ω)

∗ ≈ H−k(Ω).
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Proof. Let P be a differential operator of order 2k with smooth coefficients on Ω̄. Suppose

(3.26) P =

L∑
j=1

AjBj ,

where Aj and Bj are differential operators of order k with smooth coefficients on Ω̄. Now take the
inner product for u, v ∈ Hk

0 (Ω),

(3.27) ⟨u, Pv⟩ =
L∑

j=1

⟨A∗
ju,Bjv⟩L2(Ω).

This dual pairing gives

(3.28) P : Hs(Ω) → Hs−2k(Ω),

for any s ∈ R. To show that any ψ ∈ H−k can be written in the form Pu for some u ∈ Hk
0 (Ω) is

the topic of the next section. □

4. Existence and regularity of solutions to the Dirichlet problem

Now turn to the question of whether or not equation (2.16) even has a solution. More generally,
does the Dirichlet problem,

(4.1) ∆u = 0, u|∂Ω = f,

have a solution for Ω compact, smoothly bounded, and f ∈ C∞(∂Ω). For u ∈ C∞
0 (Ω), integrating

by parts,

(4.2) (−∆u, u) = ∥∇u∥2L2(Ω),

where (·, ·) is the usual inner product, (f, g) =
∫
Ω
f(x)g(x)dx. Furthermore, if Ω has a nonempty

boundary,

(4.3) ∥u∥2L2(Ω) ≤ C(Ω)∥∇u∥2L2(Ω), u ∈ C∞
0 (Ω).

Now define the Sobolev space,

Definition 3.

(4.4) ∥∇u∥2H1(Ω) = ∥u∥2L2(Ω) + ∥∇u∥2L2(Ω),

and let H1
0 (Ω) denote the closure of C∞

0 (Ω) in H1(Ω). Let H−1(Ω) denote the dual of H1
0 (Ω).

Then (4.3) implies

(4.5) ∥∇u∥2L2(Ω) ≈ ∥u∥2H1(Ω), for u ∈ H1
0 (Ω).

Furthermore, note that

(4.6) ∆ : H1
0 (Ω) → H−1(Ω),

is well-defined, by the Riesz representation theorem.

Proposition 15. The map in (4.6) is one-to-one and onto.



15

Proof. First observe that by (4.2) and (4.5),

(4.7) ∥∆u∥H−1(Ω) ≥ C∥u∥H1(Ω),

for some C > 0, which implies that (4.6) is one-to-one. If (4.6) is not surjective, then there must be
an element of (H−1(Ω))∗ = H1

0 (Ω) that is orthogonal to the range. Then there exists u0 ∈ H1
0 (Ω)

such that

(4.8) (−∆u, u0) = 0, for all u ∈ H1
0 (Ω).

Taking u = u0 in (4.8) implies that by (4.5), u = 0. □

Thus there is a uniquely determined inverse

(4.9) T : H−1(Ω) → H1
0 (Ω).

Proposition 16. The inverse T to ∆ in (4.6) is a compact negative self adjoint operator on L2(Ω).

Proof. If φ = ∆u, ψ = ∆v, with u, v ∈ H1
0 (Ω), then

(4.10) (Tφ, ψ) = (T∆u,∆v) = (u,∆v) = −(∇u,∇v) = (∆u, v) = (φ, Tψ).

Indeed, (4.2) extends to

(4.11) (−∆u, v) = (∇u,∇v), for u, v ∈ H1
0 (Ω).

Therefore, restricting T to L2(Ω),

(4.12) T = T ∗,

so T is self-adjoint. Since T : L2(Ω) → H1
0 (Ω), then by Rellich’s theorem, T is compact on

L2(Ω). □

Since T is a compact operator, the spectral theorem implies that there exists an orthonormal
basis {uj} of L2(Ω) consisting of eigenfunctions of T ,

(4.13) Tuj = −µjuj , µj ↘ 0.

Then by (4.9),

(4.14) uj ∈ H1
0 (Ω), for each j.

Moreover,

(4.15) ∆uj = −λjuj , λj =
1

µj
↗ ∞.

Now consider a more general operator of the form

(4.16) Lu = −∆u+Xu,

where X is a first-order differential operator with smooth coefficients on Ω̄.

Theorem 8. Given f ∈ Hk−1(Ω) for k = 0, 1, 2, ..., a solution u ∈ H1
0 (Ω) to

(4.17) Lu = f, u ∈ H1
0 (Ω),

belongs to Hk+1(Ω) and we have the estimate

(4.18) ∥u∥2Hk+1 ≤ C∥Lu∥2Hk−1 + C∥u∥2Hk ,

for all u ∈ Hk+1(Ω) ∩H1
0 (Ω). Here,

(4.19) Hk(Ω) = {u : Dαu ∈ L2(Ω), for all |α| ≤ k}.
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A corollary of Theorem 8 implies

Corollary 4. The eigenfunctions uj of ∆ belong to C∞(Ω̄).

Apply Theorem 8 to the boundary value problem

(4.20) ∆u = 0, on Ω, u|∂Ω = f,

where

(4.21) f ∈ C∞(∂Ω),

is given. Then construct F ∈ C∞(Ω̄) so that F |∂Ω = f . Then (4.20) is equivalent to

(4.22) u = F + v,

where

(4.23) ∆v = g = −∆F, v|∂Ω = 0.

Since g ∈ C∞(Ω̄),

(4.24) v = Tg ∈ H1
0 (Ω),

satisfies (4.23) and then by Theorem 8, v ∈ C∞(Ω̄). Thus, for any f ∈ C∞(∂Ω) we have u ∈ C∞(Ω̄)
solving (4.20), assuming that each connected component of ∂Ω has nonempty boundary.

Proof of Theorem 8. First prove (4.18) with k = 0. By Hölder’s inequality, for any ϵ > 0,

(4.25) |(Xu, u)| ≤ C∥u∥H1∥u∥L2 ≤ C

2
[ϵ∥u∥2H1 +

1

ϵ
∥u∥2L2 ].

By (4.2), (4.5), and (4.25), for u ∈ H1
0 (Ω),

(4.26) Re(Lu, u) ≥ C∥u∥2H1 − C ′∥u∥2L2 .

Therefore,
(4.27)

∥u∥2H1 ≤ CRe(Lu, u)+C ′∥u∥2L2 ≤ C∥Lu∥H−1∥u∥H1+C ′∥u∥2L2 ≤ Cϵ∥u∥2H1+
C

ϵ
∥Lu∥2H−1+C ′∥u∥2L2 .

Taking ϵ > 0 sufficiently small,

(4.28) ∥u∥2H1 ≤ C∥Lu∥2H−1 + C∥u∥2L2 , u ∈ H1
0 (Ω).

Now prove Theorem 8 by induction on k. Suppose it is true that

(4.29) u ∈ H1
0 (Ω), Lu = f ∈ Hk−1(Ω) ⇒ u ∈ Hk+1(Ω),

and that (4.18) is true. Also suppose that

(4.30) u ∈ H1
0 (Ω), Lu ∈ Hk(Ω).

Since we know that u ∈ Hk+1(Ω), we want to show u ∈ Hk+2(Ω) and that (4.18) holds with k
replaced by k + 1.

Now for any χ ∈ C∞(Ω̄),

(4.31) L(χu) = χ(Lu) + [L, χ]u.

The commutator [L, χ] is a first order differential operator, by (4.29), along with u ∈ Hk+1(Ω),
implies L(χu) ∈ Hk(Ω). Therefore, the analysis of u on Ω̄ can be localized. Now suppose u ∈
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Hk+1(Ω) satisfying (4.30) is supported on a coordinate neighborhood O, either with no boundary,
or a boundary given by {xn = 0}. Applying (4.18) to

(4.32) Dj,hu(x) =
1

h
[u(x+ hej)− u(x)],

where e1, ..., en are the standard coordinate vectors in Rn. If O has no boundary, we can take
1 ≤ j ≤ n, otherwise 1 ≤ j ≤ n− 1. Then by (4.18),
(4.33)
∥Dj,hu∥2Hk+1 ≤ C∥LDj,hu∥2Hk−1 +C∥u∥2Hk+1 ≤ C∥Dj,hLu∥2Hk−1 +C∥[L,Dj,h]u∥2Hk−1 +C∥u∥2Hk+1 .

Lemma 5. As h↘ 0, [L,Dj,h] is a bounded family of operators of order two,

(4.34) ∥[L,Dj,h]u∥Hk−1 ≤ C∥u∥Hk+1 , k ≥ 0,

given u ∈ H1
0 (Ω) ∩Hk+1(Ω) supported in O.

Then

(4.35) ∥Dj,hu∥2Hk+1 ≤ C∥Lu∥2Hk + C∥u∥2Hk+1 ,

and passing to the limit h↘ 0 gives

(4.36) Dju ∈ Hk+1(Ω).

If O has no boundary then we are done. If O has a boundary then we have (4.36) for 1 ≤ j ≤ n−1.
Therefore it remains to establish

(4.37) Dnu ∈ Hk+1(Ω).

Since k ≥ 0, we need to show

(4.38) DjDnu ∈ Hk(Ω), 1 ≤ j ≤ n.

If 1 ≤ j ≤ n− 1, DjDnu = DnDju which gives (4.36). Finally,

(4.39) D2
nu = −

n−1∑
j=1

D2
ju.

All the terms on the right hand side have been shown to be in Hk(Ω), so the proof is complete for
the case when the boundary is given by xn > 0.

For a general boundary xn > ψ(x1, ..., xn−1), make the transformation

(4.40)
Φ : (x1, ..., xn) 7→ (x1, ..., xn−1, xn + ψ(x1, ..., xn−1),

Ψ : (x1, ..., xn) 7→ (x1, ..., xn−1, xn − ψ(x1, ..., xn−1).

If v(y) = u(Ψ(y)),

(4.41) L̃v = f(Ψ(y)),

where

(4.42) L̃ = ∆− 2

n−1∑
i=1

ψxi
∂i∂n − (

n∑
i=1

ψ2
xi
)∂nn +X,

where X is an operator of first order. In a local coordinate patch, |∇ψ| ≲ ϵ, so the computations

in (4.1)–(4.12) also hold for L̃. □

Remark 6. It is possible to generalize the above argument proving Proposition 16.
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Let L denote the operator

(4.43) Lu = −∂j(aij(x)∂iu) + bi(x)∂iu+ c(x)u,

and let a be the bilinear form associated with the operator L,

(4.44) a(u, v) =

∫
Ω

(aijDiuDjv + biDiuv + cuv)dx, u, v ∈ H1
0 (Ω).

If aij = aji and bi = 0, then a is symmetric,

(4.45) a(u, v) = a(v, u), ∀u, v ∈ H1
0 (Ω).

Compare (4.45) to the H1
0 (Ω) inner product defined by

(4.46) (u, v)H1
0 (Ω) =

∫
Ω

∇u · ∇vdx.

Theorem 9 (Lax-Milgram theorem). Let aij, bi, and c be bounded functions in Ω and f ∈ L2(Ω).
Suppose that the bilinear form a is coercive,

(4.47) a(u, u) ≥ c0∥u∥2H1
0 (Ω), ∀u ∈ H1

0 (Ω).

Then there exists a unique weak solution u ∈ H1
0 (Ω) of Lu = f .

Proof. Define a linear functional F on H1
0 (Ω) by

(4.48) F (φ) =

∫
Ω

fφdx, ∀φ ∈ H1
0 (Ω).

Then,

(4.49) |F (φ)| ≤ ∥f∥L2∥φ∥L2 ≤ C∥f∥L2∥φ∥H1
0
,

so F is a bounded linear functional on H1
0 . Now suppose aij = aji, bi = 0, and c ≥ 0. Then a(u, v)

is an inner product on H1
0 (Ω) that is equivalent to the standard H1

0 (Ω) inner product. Then by the
Riesz representation theorem, for any f ∈ L2(Ω) there is a unique u such that a(u, φ) = F (φ) for
all φ ∈ H1

0 (Ω). □

Theorem 10 (Riesz representation theorem). Let H be a Hilbert space whose inner product is ⟨x, y⟩.
For every linear functional φ ∈ H∗, there exists a unique vector fφ ∈ H such that φ(x) = ⟨x, fφ⟩
for all x ∈ H.

It is possible to say the same when aij is not symmetric.

Theorem 11. Let aij, bi, and c be bounded functions on Ω and f ∈ L2(Ω). Then there exists a
µ0(aij , bi, c) such that, for µ ≥ µ0, there exists a unique weak solution u ∈ H1

0 (Ω) of (L+ µ)u = f .
Here,

(4.50)

n∑
i,j=1

aij(x)ξiξj ≥ c0|ξ|2,

for some c > 0.

Proof. In this case, a need not be symmetric.

(4.51) |a(u, v)| ≤ C∥u∥H1
0 (Ω)∥v∥H1

0 (Ω), ∀u, v ∈ H1
0 (Ω).
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Then for any fixed u ∈ H1
0 (Ω), the mapping v 7→ a(u, v) is a bounded linear functional on H1

0 (Ω).
Then by the Riesz representation theorem, there exists a unique w ∈ H1

0 (Ω) such that

(4.52) a(u, v) = (w, v)H1
0 (Ω), ∀v ∈ H1

0 (Ω).

Then set w = Au,

(4.53) a(u, v) = (Au, v)H1
0 (Ω), ∀u, v ∈ H1

0 (Ω).

Then A is a bounded linear operator on H1
0 (Ω). Indeed,

(4.54)
∥Au∥2H1

0
= (Au,Au)H1

0
= a(u,Au) ≤ C∥u∥H1

0
∥Au∥H1

0
,

which implies ∥Au∥H1
0
≤ C∥u∥H1

0
, ∀u ∈ H1

0 (Ω).

By coerciveness,

(4.55) c0∥u∥2H1
0 (Ω) ≤ a(u, u) = (Au, u)H1

0 (Ω) ≤ ∥u∥H1
0 (Ω)∥Au∥H1

0 (Ω),

and therefore,

(4.56) c0∥u∥H1
0 (Ω) ≤ ∥Au∥H1

0 (Ω), ∀u ∈ H1
0 (Ω).

Therefore, A is one-to-one and the range of A is closed in H1
0 (Ω).

Next, for w ∈ R(A)⊥,

(4.57) c0∥w∥2H1
0
≤ a(w,w) = (Aw,w)H1

0
= 0.

Therefore, w = 0, so R(A)⊥ = {0}. Therefore, R(A) = H1
0 (Ω), so A is onto.

For the bounded linear functional F in H1
0 (Ω), by the Riesz representation theorem, there exists

w ∈ H1
0 (Ω) such that

(4.58) (w, v)H1
0 (Ω) = F (v), ∀v ∈ H1

0 (Ω).

Since A is onto, there exists u ∈ H1
0 (Ω) such that Au = w. Therefore, for any v ∈ H1

0 (Ω),

(4.59) a(u, v) = (Au, v)H1
0 (Ω) = (w, v)H1

0 (Ω) = F (v).

This proves existence.
Now assume ũ ∈ H1

0 (Ω) also satisfies a(ũ, v) = F (v), for any v ∈ H1
0 (Ω). Then, a(u− ũ, v) = 0

for any v ∈ H1
0 (Ω). So for v = u− ũ, a(u− ũ, u− ũ) = 0, so by coerciveness, u = ũ.

For the general operator

(4.60) L = aij∂i∂j + bi∂i + c,

for µ > 0 sufficiently large,

(4.61) aµ(u, v) = a(u, v) + µ(u, v)L2 .

Then, aµ is coercive for µ sufficiently large. Applying the Lax–Milgram theorem to L + µ proves
the theorem. □
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5. The weak and strong maximum principles

Having dealt with the question of existence and uniqueness, we now prove some weak and
strong maximum principles. The weak and strong maximum principle was already utilized, namely
Zaremba’s principle in (2.30). Let

(5.1) L = ∆+X,

where X is a real vector field. If L is a Laplacian on a manifold M, L has the form

(5.2) L = gjk(x)∂j∂k + bj(x)∂j ,

where (gjk(x)) is a positive–definite matrix and bj(x) is smooth and real–valued.

Theorem 12. Suppose Ω is an open bounded domain in Rn and L is given by (5.2) with coefficients
smooth on a neighborhood of Ω̄. If u ∈ C(Ω̄) ∩ C2(Ω) and

(5.3) Lu ≥ 0, on Ω,

then

(5.4) sup
x∈Ω

u(x) = sup
y∈∂Ω

u(y).

Furthermore, if

(5.5) Lu = 0, on Ω,

then also

(5.6) sup
x∈Ω

|u(x)| = sup
y∈∂Ω

|u(y)|.

Proof. First note that if Lu > 0 then u cannot attain an interior maximum at x0 ∈ Ω, since in that
case, ∇u(x0) = 0 and gjk(x0)∂j∂ku(x0) ≤ 0.

For Lu ≥ 0, observe that for any Ω ⊂⊂ Rn,

(5.7) L(eγx1) = (γ2g11(x) + γb1(x))eγx1 > 0,

for γ > 0 sufficiently large. Then, for any ϵ > 0, let uϵ(x) = u(x) + ϵeγx1 , so

(5.8) sup
x∈Ω

u(x) + ϵeγx1 = sup
y∈∂Ω

u(y) + ϵeγy1 .

Taking ϵ ↘ 0 proves (5.4). If Lu = 0 then replace u by −u and do the same calculation, giving
(5.6). □

Now we can prove Zaremba’s principle. This is also sometimes called the Hopf lemma.

Proposition 17 (Zaremba’s principle). Suppose that, in addition the hypotheses above, ∂Ω is
smooth and u ∈ C1(Ω̄) ∩ C2(Ω). If Lu ≥ 0 and y ∈ ∂Ω is a point such that

(5.9) u(y) > u(x), for all x ∈ Ω,

then if ν is the inward pointing normal to ∂Ω,

(5.10)
∂u

∂ν
(y) > 0.
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Proof. Let O be a small ball in Ω whose boundary is tangent to ∂Ω at y. Let p be the center of O
and let R denote the radius of O. Then for x ∈ O, let

(5.11) r(x) = |x− p|2.

If h(x) = e−αr(x)2 − e−αR2

, then by direct calculation,

(5.12) Lh = e−αr(x)2{4α2
n∑

i,j=1

gij(x)(xi − pi)(xj − pj)− 2α

n∑
i=1

gii(x)− 2α

n∑
i=1

bi(x)(xi − pi)}.

Fixing ρ ∈ (0, R), for α > 0 sufficiently large, if

(5.13) w = e−αr2 − e−αR2

,

then Lw > 0 on the shell A, where

(5.14) A = {x ∈ O : r(x) > ρ}.

Therefore, for any ϵ > 0, if w is given by (5.13) then Lu ≥ 0 implies

(5.15) L(u+ ϵw) > 0, on A.

Therefore, by Theorem 12,

(5.16) sup
A

(u+ ϵw) = sup
∂A

(u+ ϵw).

Observe that w = 0 on ∂O = {r(x) = R}. By (5.9),

(5.17) sup
{r(x)=ρ}

u(x) < u(y),

so for ϵ > 0 sufficiently small,

(5.18) u(x) + ϵw(x) ≤ u(y), for all x ∈ A.

Doing some algebra, since w(y) = 0,

(5.19)
u(y)− u(x)

|y − x|
≥ ϵ

w(x)

|y − x|
= ϵ

w(x)− w(y)

|y − x|
.

Therefore,

(5.20) lim inf
t↘0

1

t
[u(y)− u(y − tν)] ≥ −ϵ∂w

∂ν
(y).

By definition of w, ∂w
∂ν (y) < 0, which proves the Proposition. □

Proposition 18 (Strong maximum principle). Let u ∈ C2(Ω) ∩ C(Ω̄) satisfy Lu ≥ 0, then either
u is constant or

(5.21) u(x) < sup
z∈∂Ω

u(z), for all x ∈ Ω.

Proof. Let M be the nonnegative maximum of u and let Σ = {x ∈ Ω : u(x) = M}. This set is
relatively closed in Ω. We show that Σ = Ω.

If Σ is a proper subset of Ω then there exists an open ball B ⊂ Ω\Σ with a point on its boundary
belonging to Σ. Suppose x0 ∈ ∂B ∩ Σ. Then Lu ≥ 0 in B and u(x) < u(x0) for all x ∈ B, so
∂u
∂n (x0) > 0. However, this contradicts the fact that x0 ∈ Ω is an interior maximum, and thus,
∇u(x0) = 0. □
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Recall from the previous section that we have a map

(5.22) PI : C∞(∂Ω) → C∞(Ω̄),

where PI is the solution operator to the Dirichlet problem. By Proposition 18, this map has a
unique continuous extension to

(5.23) PI : C(∂Ω) → C(Ω̄).

Indeed, approximate a continuous function uniformly by a sequence of smooth functions.

We can apply these calculations to the study of eigenvalues. Let λ0 be the smallest eigenvalue
of −∆. By (4.2) and (4.5), λ0 > 0. Suppose Ω̄ is a connected, compact manifold with nonempty
smooth boundary.

Proposition 19. If u0 ∈ H1
0 (Ω) is an eigenvalue for −∆ corresponding to λ0,

(5.24) ∆u0 = −λ0u0,
then u0 is nowhere vanishing on the interior of Ω.

Proof. We have u0 ∈ C∞(Ω̄). Let

(5.25)
u+0 (x) = max{u0(x), 0},
u−0 (x) = min{u0(x), 0}.

We have u+0 , u
−
0 ∈ H1

0 (Ω) and

(5.26) ∥∇u±0 ∥2L2(Ω) =

∫
Ω±

|∇u|2,

where

(5.27) Ω± = {x ∈ Ω : ±u(x) > 0}.
Since

(5.28) λ0 = inf{∥∇u∥2L2(Ω) : u ∈ H1
0 (Ω), ∥u∥L2 = 1},

either u+0 or u−0 must be a λ0 eigenfunction of −∆. Therefore, to prove Proposition 19, it suffices
to prove it under the additional hypothesis that u0(x) ≥ 0 on Ω. In that case,

(5.29) ∆(−u0) = λ0u0 ≥ 0, on Ω,

so then applying Proposition 18 to −u0, since u0|Ω = 0,

(5.30) −u0(x) < 0, for all x ∈ Ω.

□

Corollary 5. If λ0 is the smallest eigenvalue of −∆ for Ω, with Dirichlet boundary conditions,
then the corresponding λ0-eigenspace is one-dimensional.

Proof. If there were u1 orthogonal to u0 then u1 must change sign, contradicting Proposition 19. □

Now let L have a zeroth order term,

(5.31) L = gij(x)∂i∂j + bi(x)∂i + c(x),

and let

(5.32) L = L− c(x).
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Suppose c ∈ C(Ω̄) with Ω ⊂ Rn bounded.

Proposition 20. Suppose c(x) ≥ 0 in (5.32). For u, v ∈ C2(Ω) ∩ C(Ω̄),

(5.33) Lu ≤ Lv on Ω, u ≥ v on ∂Ω ⇒ u ≥ v on Ω.

Proof. By linearity, it suffices to show that for Lv ≥ 0 on Ω and v ≤ 0 on ∂Ω, v ≤ 0 on Ω. Let
O = {x ∈ Ω : v(x) > 0}. Then Lv = cv ≥ 0 on O and v = 0 on ∂O. Then by Proposition ??,
supO v = sup∂O v, which is impossible for O ≠ ∅. □

Corollary 6. If c(x) ≥ 0 in Lu = 0 then if α = sup∂Ω u,

(5.34) α ≥ 0 ⇒ sup
Ω
u = α, and α < 0 ⇒ sup

Ω
u < 0.

Proof. The first implication follows from (5.33), since α ≥ 0 implies Lα ≤ 0. For the second
implication let O = {x ∈ Ω : u(x) > 0}. If O ≠ ∅, Ō ⊂ Ω and u = 0 on ∂O. But then the first
implication of (5.34) applies to u|∂O, which gives a contradiction. □

When L = ∆, it is possible to strengthen Proposition 20.

Proposition 21. Assume c ∈ C(Ω̄) and that L = ∆−c is negative-definite with Dirichlet boundary
condition,

(5.35) −∥∇u∥2L2 − (cu, u) < 0, for nonzero u ∈ H1
0 (Ω).

Then for v ∈ H1(Ω),

(5.36) (∆− c)v ≥ 0, on Ω, v ≤ 0 on ∂Ω ⇒ v ≤ 0, on Ω.

Proof. Let v+ = max{v, 0}. Then by (5.9), v+ ∈ H1
0 (Ω),

(5.37) −(∇v,∇v+)− (cv, v+) ≥ 0.

Since (∇v,∇v+) = (∇v+,∇v+), −(∇v+,∇v+) − (cv+, v+) ≥ 0. Then by (5.35), v+ = 0, which
proves the proposition. □

6. Single and double layer potential methods

Before moving on to the Dirichlet problem with a non-smooth domain, we study the method of
layer potentials. Begin with the Dirichlet problem for a half-space:
(6.1)

∆u = 0, in Rn+1
+ = {x ∈ Rn+1 : xn+1 > 0}, u = f, on ∂Rn+1

+ = Rn × {0}.

Using the Poisson integral formula,
(6.2)

u(x, y) = Py∗f(x), (x, y) ∈ Rn+1
+ = Rn×R+, Py(x) =

Γ(n+1
2 )

π
n+1
2

y

(|x|2 + y2)
n+1
2

, f ∈ C0(Rn+1).

Indeed, by direct computation,

(6.3)

(∆x + ∂yy)
y

(|x|2 + y2)
n+1
2

=
−n(n+ 1)y

(|x|2 + y2)
n+3
2

+ (n+ 1)(n+ 3)
|x|2y

(|x|2 + y2)
n+5
2

−(n+ 1)
y

(|x|2 + y2)
n+3
2

− 2(n+ 1)y

(|x|2 + y2)
n+3
2

+ (n+ 1)(n+ 3)
y3

(|x|2 + y2)
n+5
2

= 0.
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The estimates on convolutions imply that

(6.4) sup
y>0

∥u(·, y)∥Lp(Rn) ≤ ∥f∥Lp(Rn), for all 1 ≤ p ≤ ∞.

Indeed, this follows from the fact that

(6.5)
Γ(n+1

2 )

π
n+1
2

∫
Rn

y

(|x|2 + y2)
n+1
2

dx = 1.

Indeed, by a change of variables,
(6.6)

Γ(n+1
2 )

π
n+1
2

An−1

∫ ∞

0

1

(1 + r2)
n+1
2

rn−1dr = 2
An−1

An

∫ π/2

0

(sin θ)n−1dθ =
An−1

An

∫ π
2

−π
2

(cos θ)n−1dθ = 1.

The last equality uses the geometric implication that An = An−1

∫ π/2

−π/2
(cos θ)n−1dθ. Since Py(x) =

1
ynP1(

x
y ), (6.4) holds, and furthermore, for any f ∈ C0(Rn),

(6.7) lim
y↘0

Py ∗ f → f,

uniformly as y ↘ 0.

Now we can reverse the implication.

Lemma 6. For 1 < p ≤ ∞, if a harmonic function u in Rn+1
+ satisfies (6.4), then u has a non-

tangential limit a.e. on ∂Rn+1
+ , and the limit function u0 = u(·, 0) ∈ Lp(Rn) satisfies u(x, y) =

Py ∗ u0. If p = 1 then u0 is a Radon measure.

Proof. Suppose u is harmonic in Rn+1
+ with

(6.8) sup
y>0

∥u(·, y)∥Lp(Rn) <∞.

Now then,

(6.9) u(x, y + ρ) = Py ∗ uρ(x), uρ(x) = u(x+ ρ), y > 0, ρ > 0.

Then for some sequence ρn ↘ 0, uρn ⇀ v in Lp(Rn). Then, Py ∗ uρn(x) → Py ∗ v(x) for all y > 0
as ρn ↘ 0. Meanwhile, Py ∗ uρn

(x) = u(x, y + ρn), so Py ∗ v(x) = u(x, y), where v ∈ Lp(Rn). □

Remark 7. The proof uses uniqueness of solutions to the Dirichlet problem on the half space.

Lemma 7. If u is a bounded, continuous solution to (6.1) and u = 0 on y = 0, then u ≡ 0.

Proof. Suppose u(x, y) is a harmonic function on Rn+1
+ such that u(x, 0) = 0. Then for y > 0, let

(6.10) v(x,−y) = −u(x, y), v(x, y) = u(x, y).

Then v solves the mean value property. Therefore, by Theorem 2, v is harmonic.

Now apply an argument similar to the proof of Liouville’s theorem in complex analysis.

Lemma 8. Suppose u ∈ C(B̄R) is harmonic in BR(x0) = BR. Then there holds

(6.11) |∇u(x0)| ≤
n

R
max
B̄R

|u|.
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Proof. Suppose x ∈ Ω is such that Br(x) ⊂ Ω. Then,

(6.12) u(x)− u(y) =
n

ωnrn
[

∫
Br(x)

u(z)dz −
∫
Br(y)

u(z)dz] ≤ n

ωnrn

∫
Br(x)∆Br(y)

|u(z)|dz.

Since Br(x)∆Br(y) ⊂ Br+|x−y|(x),

(6.13) |Br(x)∆Br(y)| ≤ ωnr
n−1|x− y|+ o(|x− y|),

so taking |x− y| ↘ 0 proves the lemma. □

Since v is harmonic and bounded on Rn+1, ∇v = 0. □

The proof of Lemma 7 can be modified to the case when ∥v(·, y)∥Lp(Rn) is uniformly bounded
for y ∈ R. Then,

(6.14)
1

Rn+1

∫
B(x,R)

|v(z′, y)|dz′dy ≤ CR−n/p.

Plugging (6.14) into (6.12),

(6.15) |u(x′, y′)− u(x, y)| ≤ R
n−1
p′ |x− y|

1
p′

Rn
sup
y

∥u(·, y)∥Lp .

Taking R→ ∞ implies that u is constant.

Now assume that Ω is a bounded, connected domain in Rn, n ≥ 3, with C2 boundary. Consider
the Dirichlet problem,

(6.16) ∆u = 0, in Ω, u|∂Ω = f ∈ C(∂Ω).

Then let γ(x) = Cn

|x|n−2 be the fundamental solution of the Laplace operator on Rn, Cn = − 1
n−2

Γ(n
2 )

2πn/2 .

Now let R(x, y) = −γ(x− y), and for f ∈ C(∂Ω), define the double-layer potential

(6.17) Df(p) =
∫
∂Ω

∂

∂nQ
R(P,Q)f(Q)dHn−1(Q), P /∈ ∂Ω,

and the single layer potential

(6.18) S(f)(P ) =
∫
∂Ω

R(P,Q)f(Q)dHn−1(Q), P /∈ ∂Ω.

Now then, since R(P,Q) is harmonic for P /∈ ∂Ω,

(6.19) ∆Df(P ) = 0, for P ∈ Rn \ ∂Ω.

Now study the boundary behavior of Df(P ) on ∂Ω.

Lemma 9. If f ∈ C(∂Ω), then
(1) Df ∈ C(Ω̄),
(2) Df ∈ C(Ω̄c).

Thus, Df can be extended continuously from inside Ω to Ω̄ and from outside Ω to Ω̄c. Let D+f
and D−f be restrictions of these two functions to ∂Ω. Set

(6.20) K(P,Q) =
∂

∂nQ
R(P,Q) =

1

ωn

⟨P −Q,nQ⟩
|P −Q|n

.
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Therefore, K ∈ C(∂Ω×∂Ω\{(P, P ) : P ∈ ∂Ω}) and |K(P,Q)| ≤ C
|P−Q|n−2 for P,Q ∈ ∂Ω and some

C <∞. Then for f ∈ C(∂Ω), define the operator

(6.21) Tf(P ) =

∫
∂Ω

K(P,Q)f(Q)dHn−1(Q), P ∈ ∂Ω.

Lemma 10 (Jump relations for D). (1) D+ = 1
2I + T , and

(2) D− = − 1
2I + T .

Moreover, T : C(∂Ω) → C(∂Ω) is compact.

Now solve the Dirichlet problem (6.1). Take g ∈ C(∂Ω) and let u(x) = Dg(x) for x ∈ Ω. Then
∆u = 0 in Ω and u ∈ C(Ω̄). Moreover, u|∂Ω = ( 12I + T )g. This map is one-to-one. Indeed, if

( 12I + T )g = 0 then

(6.22) u|∂Ω = 0, which implies u = 0, in Ω.

Now then, by Lemma 8, the jump of D across ∂Ω is g. Therefore, for v = D−g,

(6.23) v|∂Ω = −g, ∆v = 0, on Rn \ Ω.
It is also clear from the formula (6.17) that v vanishes at infinity. Accepting for a moment that
there is no jump across ∂Ω of ∂

∂νDf ,

(6.24)
∂

∂ν
v = 0, on ∂Ω.

However, this contradicts Zaremba’s principle at the maximum of g on ∂Ω.

Since 1
2I + T is a Fredholm operator, 1

2I + T is injective if and only if 1
2I + T is surjective.

Therefore, 1
2I + T is an isomorphism.

Proof of Lemmas 8 and 10. Define

(6.25) KN (P,Q) = signK(P,Q) ·min{N, |K(P,Q)|}, N ∈ Z+.

Therefore, KN is continuous on ∂Ω × ∂Ω, and the Arzela–Ascoli theorem implies that TNf =∫
∂Ω
KN (P,Q)f(Q)dHn−1(Q) is compact on C(∂Ω). Next,

(6.26) ∥TN∥ ≤ sup
P∈∂Ω

∥KN (P,Q)∥L1(∂Ω) ≤ C <∞,

where C is independent of N . Also,

(6.27) ∥TN − TN+1∥ ≤ C((
1

N
)

1
n−2 − (

1

N + 1
)

1
n−2 ) ≤ CN−1− 1

n−2 .

Therefore, T = limN→∞ TN is a compact operator on C(∂Ω).

Now apply the divergence theorem on Ω \Bδ(P ). Then,

(6.28)

∫
∂Ω

∂

∂nQ
R(P,Q)dHn−1(Q) = 1, if P ∈ Ω,

(6.29)

∫
∂Ω

K(P,Q)dHn−1(Q) =
1

2
, if P ∈ ∂Ω.

Let P0 ∈ ∂Ω and P ∈ Ω such that P → P0. Then,

(6.30) Df(P ) → 1

2
f(P0) + Tf(P0).
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This finishes the proof of Lemmas 8 and 10 in the case of Ω.

To see why (6.30) is true, first observe that for all P ∈ ∂Ω,

(6.31)

∫
∂Ω

| ∂

∂nQ
R(P,Q)|dHn−1(Q) ≤ C <∞.

If P0 /∈ supp(f), then

(6.32)

∫
∂Ω

∂

∂nQ
R(P,Q)f(Q)dHn−1(Q) →

∫
∂Ω

K(P0, Q)f(Q)dHn−1(Q) = Tf(P0).

If P0 ∈ supp(f) and f(P0) = 0, then take {fk} ⊂ C(∂Ω) such that

(6.33) ∥f − fk∥L∞(∂Ω) → 0,

and P0 /∈ supp(fk), for each k. Then,

(6.34)
|Df(P )− Tf(P )| ≤ |D(f − fk)(P )|+ |T (f − fk)(P )|+ |Dfk(P )− Tfk(P )|

≤ C∥f − fk∥L∞(∂Ω) + ∥T∥∥f − fk∥L∞(∂Ω) + |Dfk(P )− Tfk(P )|.
Then for k sufficiently large such that the first two terms are small, and then take P → P0, so the
last term goes to 0.

Finally, for the general case when f(P0) ̸= 0, observe that by (6.29), when f ≡ 1, Df = 1
2 . □

To show that there is no jump of ∂
∂νDf , we use the single–layer and double–layer potentials.

Lemma 11. If f ∈ C(∂Ω) then
(1) D+S(f) = ∂

∂νS(f) ∈ C(Ω̄δ0),

(2) D−S(f) = ∂
∂νS(f) ∈ C(Ω̄c

δ0
).

Here, Ω̄δ0 = {x ∈ Ω̄ : dist(x, ∂Ω) ≤ δ0} for some δ0 > 0 small.

Now let

(6.35) K∗(P,Q) = K(Q,P ),

and define

(6.36) T ∗f(P ) =

∫
∂Ω

K∗(P,Q)f(Q)dHn−1(Q), P ∈ ∂Ω.

Lemma 12 (Jump relations for DS(f)). (1) D+S(f) = − 1
2I + T ∗, and

(2) D−S(f) =
1
2I + T ∗.

Define the Neumann operator

(6.37) N : C∞(∂Ω) → C∞(∂Ω),

where u ∈ C∞(Ω̄) solves

(6.38) ∆u = 0, on Ω, u = f on ∂Ω,

and then let

(6.39) N f =
∂u

∂ν
|∂Ω.

Now then, by Green’s formula, (2.6),

(6.40)

∫
∂Ω

[f(Q)
∂

∂nQ
R(P,Q)−N f(Q)R(P,Q)]dHn−1(Q) = u(P ), P ∈ Ω, 0, P /∈ Ω.
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Also, by (6.17) and (6.18),

(6.41) (6.40) = Df − SN f.

Taking the limit from each side,

(6.42)
∂

∂ν
D+f − ∂

∂ν
SN f = N f,

∂

∂ν
D−f − ∂

∂ν
SN f− = 0.

Plugging in Lemmas 10, 11, and 12,

(6.43)
∂

∂ν
D+f = −1

2
N f + T ∗N f +N f,

∂

∂ν
D−f =

1

2
N f + T ∗N f.

This proves that there is no jump across the boundary.

7. The Neumann boundary problem

In the study of layer potentials, the Dirichlet and Neumann problems,

(7.1) ∆u = f, on Ω,
∂u

∂ν
= 0, on ∂Ω,

are inextricably linked. Here Ω̄ is connected and compact with nonempty boundary.

By Green’s formula, for u and v smooth on Ω̄,

(7.2) (−∆u, v)L2 = (∇u,∇v)L2 −
∫
∂Ω

v
∂u

∂ν
dS.

If ∂u
∂ν = 0 on ∂Ω, we are motivated to consider the operator

(7.3) LN : H1(Ω) → H1(Ω)∗,

defined by

(7.4) (LNu, v)L2 = (∇u,∇v)L2 , u, v ∈ H1(Ω).

The operator LN annihilates constants, so LN is not injective. However,

(7.5) ((LN + 1)u, u) = ∥∇u∥2L2 + ∥u∥2L2 ,

so

Proposition 22. The map

(7.6) LN + 1 : H1(Ω) → H1(Ω)∗,

is one-to-one and onto.

As in section three, the inverse map

(7.7) TN : H1(Ω)∗ → H1(Ω),

restricts to a compact, self–adjoint operator on L2(Ω). Therefore, there is an orthonormal basis uj
of L2(Ω) consisting of eigenfunctions of TN :

(7.8) TNuj = µjuj , µj ↘ 0, uj ∈ H1(Ω).

Now then,

(7.9) LNuj = λjuj , λj =
1

µj
− 1 ↗ ∞.
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Now let i : H1(Ω)∗ → D′(Ω) be the adjoint of the inclusion C∞
0 (Ω) ↪→ H1(Ω). Then,

(7.10) i(LNu) = −∆u, in D′(Ω), for u ∈ H1(Ω).

Therefore, in the distributional sense,

(7.11) ∆uj = −λjuj , on Ω.

Regularity theorems imply that each uj belongs to C∞(Ω̄).

Proposition 23. Given f ∈ L2(Ω), u = TNf satisfies

(7.12) u ∈ H2(Ω),
∂u

∂ν
|∂Ω = 0,

and

(7.13) (−∆+ 1)u = f.

Furthermore,

(7.14) ∥u∥2H2 ≤ C∥∆u∥2L2 + C∥u∥2H1 ,

for all u satisfying (7.12).

Proof. By (7.5) and Cauchy’s inequality,

(7.15) ∥u∥2H1 = (LNu, u)L2 +∥u∥2L2 ≤ ∥LNu∥H1∗∥u∥H1 +∥u∥2L2 ≤ 1

2
∥u∥2H1 +

1

2
∥LNu∥2H1∗ +∥u∥2L2 ,

which implies

(7.16) ∥u∥2H1 ≤ C∥LNu∥2H1∗ + C∥u∥2L2 .

Now take χ ∈ C∞(Ω̄) and either χ ∈ C∞
0 (Ω) or ∂χ

∂ν = 0 on ∂Ω. Let Mχu = χu. Then,

(7.17) (LNMχu, v)L2 = (∇(χu),∇v)L2 = ((∇χ)u,∇v) + (χ∇u,∇v),

(7.18) (MχLNu, v)L2 = (LNu, χv) = (∇u, (∇χ)v) + (∇u, χ∇v).
Therefore,

(7.19) ([LN ,Mχ]u, v) = ((∇χ)u,∇v)− (∇χ · ∇u, v).

Integrating by parts, since ∂χ
∂ν = 0 on ∂Ω,

(7.20) [LN ,Mχ]u = −(∆χ)u− 2∇χ · ∇u.
Therefore,

(7.21) [LN ,Mχ] : H
1(Ω) → L2(Ω).

Now then, by (7.14),
(7.22)
∥Dj,hu∥2L2 ≤ C∥LNDj,hu∥2H1∗+C∥Dj,hu∥2L2 ≤ C∥Dj,hLNu∥2H1∗+C∥[LN , Dj,h]u∥2H1∗+C∥Dj,hu∥2L2 .

Then,

(7.23) (LNDj,hu, v) = (dDj,hu, dv) = (du,D
(1)
j,hdv),

where

(7.24) D
(1)
j,hφ = h−1(τ∗j,hφ− φ).



30 BENJAMIN DODSON

The adjoint of Dj,h is Dj,−h, so

(7.25) (Dj,hLNu, v) = (LNu,Dj,−hv) = (du,D
(1)
j,−hdv).

Therefore,

(7.26) ([LN , Dj,h]u, v) = ([D
(1)∗
j,−h −D

(1)
j,h]du, dv).

Lemma 13. If β is a one–form on Ω,

(7.27) ∥[D(1)∗
j,−h −D

(1)
j,h]β∥L2 ≤ C∥β∥L2 .

Proof. The proof is similar to the proof of Lemma 5. □

Plugging in Lemma 13, we have

(7.28) ∥[LN , Dj,h]u∥H1∗ ≤ C∥du∥L2 .

Therefore,

(7.29) ∥Dj,hu∥2H1 ≤ C∥Dj,hLNu∥2H1∗ + C∥u∥2H1 .

Now then, (Dj,hf1, v) = (f1, Dj,−hv) for v ∈ H1, so

(7.30) ∥Dj,hf1∥2H1∗ ≤ C∥f1∥2L2 ,

which implies

(7.31) ∥Dj,hu∥2H1 ≤ C∥f1∥2L2 + C∥u∥2H1 .

Therefore, Dju ∈ H1 for j = 1, ..., n− 1. As in section three, it remains to estimate Dnn, which
uses the fact that the operator is elliptic.

It remains to show that u satisfies the Neumann boundary condition. If u = TNf ∈ H2(Ω),
v ∈ H1(Ω),
(7.32)

(f, v) = (LNu, v)+ (u, v) = (∇u,∇v)+ (u, v) = ((−∆+1)u, v)+

∫
∂Ω

v̄
∂u

∂ν
dS = (f, v)+

∫
∂Ω

v̄
∂u

∂ν
dS.

Since this holds for all v ∈ H1(Ω), ∂u
∂ν = 0 on ∂Ω. □

Arguing by induction,

Proposition 24. For k = 1, 2, 3, ..., given f1 ∈ Hk(Ω), a function u ∈ Hk+1(Ω) satisfying

(7.33) ∆u = f1, on Ω,
∂u

∂ν
= 0, on ∂Ω,

belongs to Hk+2(Ω), and we have the estimate

(7.34) ∥u∥2Hk+2 ≤ C∥∆u∥2Hk + C∥u∥2Hk+1 ,

for all u ∈ Hk+2(Ω) such that ∂u
∂ν = 0 on ∂Ω.

We can also analyze nonhomogeneous boundary value problems such as

(7.35) (−∆+ 1)u = f, in Ω,
∂u

∂ν
= g, on ∂Ω.
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For g ∈ Hk+1/2(∂Ω), we can choose h ∈ Hk+2(Ω) such that ∂h
∂ν = g on ∂Ω, and then write u = v+h,

where

(7.36) (−∆+ 1)v = f + (∆− 1)h, in Ω,
∂v

∂ν
= 0, on ∂Ω.

The fact that 0 is an eigenvalue in (7.9) with eigenspace consisting of constants, implies

Proposition 25. Given f ∈ L2(Ω), the boundary value problem (7.1) has a solution u ∈ H2(Ω) if
and only if

(7.37)

∫
Ω

f(x)dx = 0.

Provided this condition holds, the solution u is unique up to an additive constant and belongs to
Hk+2(Ω) if f ∈ Hk(Ω), k ≥ 0.

Proof. Integrating by parts, if u ∈ H2(Ω) solves (7.1),

(7.38)

∫
Ω

f(x)dx =

∫
Ω

∆udx =

∫
∂Ω

∂u

∂ν
dS(x) = 0.

On the other hand, if (7.37) holds, then f is orthogonal to the constant function, and we can use
the formula (7.9) to compute the inverse. □

We have an extension for the nonhomogeneous boundary problem

(7.39) ∆u = f on Ω,
∂u

∂ν
= g, on ∂Ω.

By Green’s formula (7.2),

(7.40)

∫
Ω

∆u(x)dx =

∫
∂Ω

∂u

∂ν
dS(x).

Thus, a necessary condition for (7.39) to have a solution is

(7.41)

∫
Ω

f(x)dx =

∫
∂Ω

g(x)dS(x).

This condition is also sufficient.

Proposition 26. If k ≥ 0, f ∈ Hk(Ω), and g ∈ Hk+ 1
2 (∂Ω), then (7.39) has a solution Hk+2(Ω) if

and only if (7.41) holds.

Proof. Define the linear operator

(7.42) T : Hk+2(Ω) → Hk(Ω)⊕Hk+1/2(∂Ω), T u = (∆u,
∂u

∂ν
).

Now use a proposition from functional analysis.

Proposition 27. If K is compact operator from V to Y , T is a linear operator from V to W , and

(7.43) ∥u∥V ≤ ∥Tu∥W + ∥Ku∥Y ,

then T has closed range.
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Then, since

(7.44) ∥u∥2Hk+2(Ω) ≤ C∥∆u∥2Hk(Ω) + C∥∂u
∂ν

∥2Hk+1/2(∂Ω) + C∥u∥2Hk+1(Ω),

T has closed range. We also know that the kernel of T consists of constants. By (7.41), (−1, 1) ∈
C∞(Ω̄)⊕ C∞(∂Ω) is orthogonal to the range of T . If T is Fredholm of index zero, then this is all
of the orthogonal complement of the range of T . Now,

(7.45) T ♯ : Hk+2(Ω) → Hk(Ω)⊕Hk+1/2(∂Ω), T ♯u = ((∆− 1)u,
∂u

∂ν
).

The operator T ♯ differs from T by the operator Ku = (−u, 0), which is compact. Since T ♯ is an
isomorphism, T is Fredholm of index zero. □

8. A class of semilinear equations

The Dirichlet and Neumann problems are linear problems. This means that two solutions to the
problem ∆u = 0 may be added together to obtain another solution to the problem, a phenomenon
that has proved to be very useful to solving such equations. Here, we consider a class of semilinear
equations,

(8.1) ∆u = f(x, u), on M,

whereM is a Riemannian manifold, or the interior of a compact manifold M̄ with smooth boundary.
Consider the Dirichlet boundary condition,

(8.2) u|∂M = g,

where M̄ is connected and has nonempty boundary. Suppose f ∈ C∞(M̄ × R), and also suppose
that

(8.3)
∂f

∂u
≥ 0.

Now suppose F (x, u) =
∫ u

0
f(x, s)ds, so f(x, u) = ∂uF (x, u). Then by (8.3), F (x, u) is a convex

function of u. Let

(8.4) I(u) =
1

2
∥du∥2L2(M) +

∫
M
F (x, u(x))dV (x).

Then, a solution to (8.1) is a critical point of I on the space of functions u on M that are equal to
g on ∂M . Indeed, let ψ ∈ C∞

0 (M) be a perturbation of u. Then,
(8.5)

I(u+ϵψ) = I(u)+(ϵdψ, du)+ϵ

∫ 1

0

∫
M

∂F

∂u
(x, u+τϵψ)dV (x)dτ+O(ϵ2) = I(u)+ϵ(−∆u+f(x, u), ψ)+o(ϵ).

Then, u is a minimizer of (8.5) if and only if u is a weak solution to ∆u− f(x, u) = 0.

Remark 8. Let L be the linear operator,

(8.6) Lu = −∂j(aij∂iu) + biDiu+ cu, λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2.
Define the weak solution

Definition 4 (Weak solution). Let f ∈ L2(Ω) and u ∈ H1
loc(Ω). Then u is a weak solution of

Lu = f in Ω if for any φ ∈ H1
0 (Ω),

(8.7)

∫
Ω

(aij(x)∂iu∂jφ+ bi(x)∂iuφ+ c(x)uφ)dx =

∫
Ω

fφdx.
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As a warm–up, first consider a special case of (8.1). Let Ω be a bounded domain, aij(x) = aji(x)
and c(x) be bounded functions on Ω. Define

(8.8) J(u) =
1

2

∫
Ω

(aij(x)∂iu∂ju+ c(x)u2)dx−
∫
Ω

u(x)f(x)dx.

The minimizer u is a weak solution of

(8.9) −∂j(aij(x)∂iu) + c(x)u = f(x), in Ω.

Since (8.8) is a convex function, (8.8) has a unique minimizer.

Theorem 13. Let aij and c be bounded functions in Ω with aij = aji, c ≥ 0, and f ∈ L2(Ω). Then
J admits a minimizer u ∈ H1

0 (Ω).

Proof. First show that J has a lower bound in H1
0 (Ω). By the Poincare inequality,

(8.10)

∫
Ω

u2dx ≤ C(Ω)

∫
Ω

|∇u|2dx.

Then for any λ > 0,

(8.11)

∫
Ω

|uf |dx ≤ λ

4

∫
|∇u|2dx+

C

λ

∫
f2dx.

Therefore,

(8.12) J(u) ≥ λ

4

∫
|∇u|2 − C

λ

∫
f2dx.

Therefore, J has a lower bound in H1
0 (Ω). Set,

(8.13) J0 = inf{J(u) : u ∈ H1
0 (Ω)}.

Now consider a minimizing sequence {uk} ⊂ H1
0 (Ω), with J(uk) → J0. Then,

(8.14)

∫
Ω

|∇uk|2dx ≤ 4

λ
J(uk) +

4C

λ2

∫
Ω

f2dx.

Since J(uk) is bounded, ∥uk∥H1
0
is also bounded. Therefore, by Rellich’s theorem, there exists a

sequence {uk′} and u ∈ H1
0 (Ω) such that uk′ → u in the L2 norm as k′ → ∞.

By the Hilbert space structure, J(u) ≤ limk′→∞ J(uk′) = J0, so since J0 is a minimizer, J(u) =
J0. Therefore, J0 is attained in H1

0 (Ω). □

Returning to (8.1), make a temporary restriction on F . For |u| ≥ K, let ∂uf(x, u) = 0. Therefore,
for some L, |∂uF (x, u)| ≤ L on M̄ × R. Let,

(8.15) V = {u ∈ H1(M) : u = g, on ∂M}.

Lemma 14. We have the following results about the functional I : V → R.
(1) I is strictly convex,
(2) F is Lipschitz continuous,
(3) I is bounded below,
(4) I(v) → ∞, as ∥v∥H1 → ∞.
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Proof. Convexity follows from (8.3). The fact that I is Lipschitz continuous follows from |F (x, u)−
F (x, v)| ≤ L|u−v|, which follows from the bounds on |∂uF (x, u)| ≤ L. Since F is convex, F (x, u) ≥
−C0|u| − C1, so

(8.16) I(u) ≥ 1

2
∥du∥2 − C0∥u∥L1 − C ′

1 ≥ 1

4
∥du∥2L2 +

1

2
B∥u∥2L2 − C∥u∥L2 − C ′,

since

(8.17)
1

2
∥du∥2L2 ≥ B∥u∥2L2 − C ′′.

□

Lemma 14 implies that I has a unique minimum on V .

Proposition 28. Under the above hypotheses, I(u) has a unique minimum on V .

Proof. Let α0 = infV I(u). Since I is bounded below, α0 > −∞. Choose R such that K =
V ∩ BR(0) ̸= ∅ and such that ∥u∥H1 ≥ R implies I(u) ≥ α0 + 1. Then K is a closed, convex,
bounded subset of H1(M). Let uk ∈ H1(M) be a sequence in BR(0), where

(8.18) I(uk) ↘ α0.

By Rellich’s theorem, after passing to a subsequence, uk converges in L2 to some u0 ∈ L2. Fur-
thermore, as in the proof of Theorem 13, uk → u0 in H1(M). Therefore, inf I(u) is assumed at u0,
and by the strict convexity of I(u), u0 is unique. The unique minimum of I(u) is the solution to
(8.1). □

We have the regularity result.

Proposition 29. For k = 1, 2, 3, ..., if g ∈ Hk+1/2(∂M), then any solution u ∈ V to (8.1) and
(8.2) belongs to Hk+1(M). Hence, if g ∈ C∞(∂M), then u ∈ C∞(M).

Proof. Start with u ∈ H1(M). Then the right hand side belongs to L2(M), which implies that
u ∈ H2(M) if g ∈ H3/2(M). Arguing by induction proves the proposition. □

We have uniqueness of the element u ∈ V minimimizing I(u) under the hypotheses. In fact,

under the hypothesis ∂f
∂u ≥ 0, there is uniqueness of solutions to (8.1) and (8.2) which are sufficiently

smooth.

Proposition 30. Let u and v ∈ C2(M)∩C(M̄) satisfy (8.1) with u = g and v = h on ∂M. Then,

(8.19) sup
M

(u− v) ≤ sup
∂M

(g − h) ∨ 0,

and

(8.20) sup
M

|u− v| ≤ sup
∂M

|g − h|.

Proof. Let w = u− v. Then,

(8.21) ∆w = λ(x)w, w|∂M = g − h,

where

(8.22) λ(x) =
f(x, u)− f(x, v)

u− v
≥ 0.

If O = {x ∈ M : w(x) ≥ 0}, then ∆w ≥ 0 on O, so applying the maximum principle, Theorem 12,
on O gives (8.19). Replacing w by −w gives (8.20). □
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Corollary 7. Let f(x, 0) = φ(x) ∈ C∞(M̄). Take g ∈ C∞(∂M), and let Φ ∈ C∞(M̄) be the
solution to

(8.23) ∆Φ = φ, on M, Φ = g, on ∂M.

Then under the hypothesis ∂f
∂u ≥ 0, a solution u to (1.1) satisfies

(8.24) sup
M

u ≤ sup
M

Φ+ (sup
M

(−Φ) ∨ 0),

and

(8.25) sup
M

|u| ≤ sup
M

2|Φ|.

Proof. We have

(8.26) ∆(u− Φ) = f(x, u)− f(x, 0) = λ(x)u,

with λ(x) = f(x,u)−f(x,0)
u ≥ 0. Therefore, ∆(u− Φ) ≥ 0 on O = {x ∈ M : u(x) > 0}, so

(8.27) sup
O

(u− Φ) = sup
∂O

(u− Φ) ≤ sup
M

(−Φ) ∨ 0.

The last inequality follows from the fact that u = Φ on ∂M , and if ∂O has a point that is not
contained in ∂M, then u = 0 on that point. Also, ∆(Φ− u) ≥ 0 on O− = {x ∈ M : u(x) < 0}, so

(8.28) sup
O−

(Φ− u) = sup
∂O−

(Φ− u) ≤ sup
M

Φ ∨ 0.

□

Theorem 14. Suppose f(x, u) satisfies ∂f
∂u ≥ 0. Given g ∈ C∞(∂M), there is a unique solution

u ∈ C∞(M̄) to (8.1) and (8.2).

Proof. Let fj(x, u) be smooth and satisfying

(8.29) fj(x, u) = f(x, u), for |u| ≤ j,

and suppose that (8.3) and (8.4) hold for fj(x, u), and furthermore fj(x, u) = ∂uFj(x, u), ∂uf(x, u) =
0 for |u| ≥ Kj , and |∂uFj(x, u)| ≤ Lj on M̄×R. Then by Proposition 28, we have a unique solution
uj ∈ C∞(M̄) to

(8.30) ∆uj = fj(x, uj), uj |∂M = g.

If fj(x, 0) = f(x, 0) = φ(x), so then (8.25) holds for all uj , so

(8.31) sup
M

|uj | ≤ sup
M

2|Φ|.

Thus, the sequence (uj) stabilizes for large j, and the proof is complete. □

When f(x, u) = f(u), and f is locally Lipschitz in R, it is possible to prove some symmetry
results for a solution to (8.1).

Lemma 15. Suppose that Ω is a bounded domain that is convex in the x1-direction and is symmetric
with respect to the plane {x1 = 0}. Suppose u ∈ C(Ω̄) ∩ C2(Ω) is a positive solution of

(8.32) ∆u+ f(u) = 0, in Ω, u = 0, on ∂Ω,

where f is locally Lipschitz in R. Then u is symmetric with respect to x1 and ∂x1
u(x) < 0 for any

x ∈ Ω when x1 > 0.



36 BENJAMIN DODSON

Proof. Write x = (x1, y) ∈ Ω, y ∈ Rn−1. We prove that

(8.33) u(x1, y) < u(x∗1, y),

for any x1 > 0 and x∗1 < x1 with x∗1 + x1 > 0. Letting x∗1 → −x1 gives u(x1, y) ≤ u(−x1, y) for any
x1. Changing the direction x1 7→ −x1 gives the symmetry.

Now let a = sup(x1,y)∈Ω x1. For 0 < λ < a define

(8.34)

Σλ = {x ∈ Ω : x1 > λ},
Tλ = {x1 = λ},

Σ′
λ = reflection of Σλ with respect to Tλ,

xλ = (2λ− x1, x2, ...., xn), for x = (x1, ..., xn).

and let

(8.35) wλ(x) = u(x)− u(xλ), for x = (x1, ..., xn).

By the mean value theorem and (8.33), since f is locally Lipschitz,

(8.36)
∆wλ + c(x, λ)wλ = 0, in Σλ,

wλ ≤ 0, and wλ�≡0, on ∂Σλ,

where c(x, λ) is a bounded function in Σλ.

Now we need to show that wλ < 0 in Σλ for any λ ∈ (0, a). In particular, this implies that wλ

assumes its maximum in Σλ along ∂(Σλ ∩ Ω). Then by the Hopf lemma, for any such λ ∈ (0, a),

(8.37) ∂x1wλ|x1=λ = 2∂x1u|x1=λ < 0.

For λ close to a, wλ < 0, using the maximum principle for small domains (see Theorem 2.32 of
[HL11]) combined with the strong maximum principle.

Let (λ0, a) be the largest interval of values of λ such that wλ < 0 in Σλ. If λ0 > 0, then by
continuity wλ0

≤ 0 in Σλ0
and wλ0�≡0 on ∂Σλ0

. If wλ0
≡ 0 on ∂Σλ0

. Then by the strong maximum
principle, wλ0

< 0 in Σλ0
. It suffices to show that for any ϵ > 0 small, wλ0−ϵ < 0 in Σλ0−ϵ.

Now let K be a closed subset in Σλ0
such that |Σλ0

\K| < δ
2 . Since wλ0

< 0 in Σλ0
, wλ0−ϵ < 0

in K, when ϵ > 0 is small. Also, |Σλ0−ϵ \K| < δ. Then again by the maximum principle on small
domains, wλ0−ϵ ≤ 0 in Σλ0−ϵ \ K. Therefore, wλ0−ϵ < 0 in Σλ0−ϵ \ K. Therefore, wλ0−ϵ < 0 in
Σλ0−ϵ. □

Theorem 15. Suppose u ∈ C(B̄1) ∩ C2(B1) is a positive solution of

(8.38) ∆u+ f(u) = 0, in B1, u = 0, on ∂B1,

where f is locally Lipschitz in R. Then u is radially symmetric in B1 and ∂u
∂r (x) < 0 for x ̸= 0.

9. Alexandroff maximum principle

The maximum principle for small domains is also called the Alexandroff maximum principle.
Suppose Ω is a bounded domain and let

(9.1) L = aij(x)∂i∂j + bi(x)∂i + c(x),

where aij , bi, and c are continuous. Also, suppose that the coefficient matrix aij(x) is positive
definite everywhere in Ω, and that

(9.2) 0 < λ(x)|ξ|2 ≤ aij(x)ξiξj ≤ Λ(x)|ξ|2.
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Remark 9. There is no assumption of uniform ellipticity in (9.2).

Let D = det(A) and D∗ = D1/n. Then,

(9.3) 0 < λ(x) ≤ D∗(x) ≤ Λ(x),

where D∗ is the geometric mean of the eigenvalues of aij(x), λ > 0 is the minimum eigenvalue and
Λ <∞ is the maximum eigenvalue.

Definition 5 (Contact set). For u ∈ C2(Ω), define

(9.4) Γ+ = {y ∈ Ω : u(x) ≤ u(y) +∇u(y) · (x− y) for any x ∈ Ω}.

The set Γ+ is called the upper contact set of u. In this case The Hessian matrix D2u = ∂i∂ju is
nonpositive on Γ+.

If u is continuous, it is possible to define the contact set

(9.5) Γ+ = {y ∈ Ω : u(x) ≤ u(y) + p · (x− y), ∀x ∈ Ω, for some p = p(y) ∈ Rn}.

Then u is concave if and only if Γ+ = Ω. If u ∈ C1(Ω), then p(y) = ∇u(y), and any support
plane is the tangent plane to the graph.

Now consider the equation,

(9.6) Lu = f, in Ω, f ∈ C(Ω).

Theorem 16. Suppose u ∈ C(Ω̄) ∩ C2(Ω) satisfies Lu ≥ f in Ω with the following conditions:

(9.7)
|b|
D∗ ,

f

D∗ ∈ Ln(Ω), and c ≤ 0, in Ω.

Then there holds

(9.8) sup
Ω
u ≤ sup

∂Ω
u+ + C∥f

−

D∗ ∥Ln(Γ+),

where Γ+ is the upper contact set of u and C = C(n, diam(Ω), ∥ b
D∗ ∥Ln(Γ+)). In fact,

(9.9) C = d · {exp( 2
n−2

ωnnn
(∥ b

D∗ ∥
n
Ln(Γ+) + 1)− 1},

where ωn is the volume of the unit ball in Rn and
−→
b = (b1, ..., bn).

Remark 10. The integral domain can be replaced by

(9.10) Γ+ ∩ {x ∈ Ω : u(x) > sup
∂Ω

u+, u+ = max{u, 0}}.

We begin with the lemma.

Lemma 16. Suppose g ∈ L1
loc(Rn) is nonnegative. Then for any u ∈ C(Ω̄) ∩ C2(Ω), there holds

(9.11)

∫
BM̃ (0)

g ≤
∫
Γ+

g(Du)|detD2u|.

Here Γ+ is the upper contact set of u and M̃ = (supΩ u−sup∂Ω u+)
d with d = diam(Ω).
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Remark 11. If A is any positive definite matrix,

(9.12) det(−D2u) ≤ 1

D
(
−aijDiju

n
)n, on Γ+.

Therefore,

(9.13)

∫
BM̃ (0)

g ≤
∫
Γ+

g(Du)(
−aijDiju

nD∗ )n.

Remark 12. A special case corresponds to g = 1. In this case,

(9.14) sup
Ω
u ≤ sup

∂Ω
u+ +

d

ω
1/n
n

(

∫
Γ+

|detD2u|)1/n ≤ sup
∂Ω

u+ +
d

ω
1/n
n

(

∫
Γ+

(−aijDiju

nD∗ )n)1/n.

This is Theorem 16 when bi ≡ 0 and c ≡ 0.

Proof of Lemma 16. Suppose without loss of generality that u ≤ 0 on ∂Ω. Then let Ω+ = {u > 0}.
Then,

(9.15)

∫
Du(Γ+∩Ω+)

g ≤
∫
Γ+∩Ω+

g(Du)|det(D2u)|,

where |det(D2u)| is the Jacobian of the map Du : Ω → Rn.
Now then, consider χϵ = Du − ϵId : Ω → Rn, then Dχϵ = D2u − ϵI, which is negative definite

on Γ+. Then by the change of variables formula,

(9.16)

∫
χϵ(Γ+∩Ω+)

g =

∫
Γ+∩Ω+

g(χϵ)|det(D2u− ϵI)|,

which implies (9.15) when ϵ↘ 0.

Now it remains to show that BM̃ (0) ⊂ Du(Γ+ ∩ Ω+). That is, for any a ∈ Rn, |a| < M̃ , there
exists x ∈ Γ+ ∩Ω+ such that a = Du(x). Suppose u attains its maximum m > 0 at 0 ∈ Ω, that is,

(9.17) u(0) = m = sup
Ω
u.

Now consider an affine function for |a| < m
d ≡ M̃ ,

(9.18) L(x) = m+ a · x.
Then L(x) > 0 for any x ∈ Ω, and L(0) = m. Since u assumes its minimum at 0, Du(0) = 0. There
exists x1 close to 0 such that u(x1) > L(x1) > 0. Note that u ≤ 0 < L on ∂Ω. Therefore, there
exists x̃ ∈ Ω such that Du(x̃) = DL(x̃) = a. Then translate the plane y = L(x) to the highest such
point. In that case the entire surface y = u(x) lies below the plane, and thus x ∈ Γ+. Also, at this
point, u(x) is positive, so x ∈ (9.10). □

Proof of Theorem 16. We want to choose g so that we can apply Lemma 16. By the Cauchy
inequality, since c ≤ 0 in Ω,

(9.19)

−aijDiju ≤ biDiu+ cu− f ≤ biDiu− f, in Ω+ = {x : u(x) > 0},

≤ |b||Du|+ f− ≤ (|b|n +
(f−)n

µn
)1/n(|Du|n + µn)1/n · (1 + 1)

n−2
n .

In particular,

(9.20) (−aijDiju)
n ≤ (|b|n + (

f−

µ
)n)(|Du|n + µn) · 2n−2.
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Now choose g(p) = 1
|p|n+µn . By Lemma 16,

(9.21)

∫
BM̃ (0)

g ≤ 2n−2

nn

∫
Γ+∩Ω+

|b|n + µ−n(f−)n

D
.

Now evaluate the left hand side.

(9.22)

∫
BM̃ (0)

g = ωn

∫ M̃

0

rn−1

rn + µn
dr =

ωn

n
log

M̃n + µn

µn
=
ωn

n
log(

M̃n

µn
+ 1).

Therefore,

(9.23) M̃n ≤ µn{exp{ 2
n−2

ωnnn
[∥ b

D∗ ∥
n
Ln(Γ+∩Ω+) + µ−n∥f

−

D∗ ∥
n
Ln(Γ+∩Ω+)} − 1}.

If f is not identically zero then choose µ = ∥ f−

D∗ ∥Ln(Γ+∩Ω+). If f ≡ 0 then let µ↘ 0. □

Now consider

(9.24) Lu ≡ aijDiju+ biDiu+ cu, in Ω,

where aij is positive definite, det(aij) ≥ λ and |bi| + |c| ≤ Λ. Now we can prove the maximum
principle for small domains.

Theorem 17. Suppose u ∈ C(Ω̄) ∩ C2(Ω) satisfies Lu ≥ 0 in Ω with u ≤ 0 on ∂Ω. Suppose
diam(Ω) ≤ d. Then there exists δ(n, λ,Λ, d) > 0 such that if |Ω| ≤ δ, then u ≤ 0 in Ω.

Proof. Split c = c+ − c−. Then,

(9.25) aijDiju+ biDiu− c−u ≥ −c+u ≡ f.

Now then, by Theorem 16,

(9.26) sup
Ω
u ≤ c(n, λ,Λ, d)∥c+u+∥Ln(Ω) ≤ c(n, λ,Λ, d)∥c+∥L∞ |Ω|1/n · sup

Ω
u ≤ 1

2
sup
Ω
u,

when |Ω| is small. Therefore, u ≤ 0 in Ω. □

Now we derive some estimates for solutions to quasi-linear equations and fully nonlinear equa-
tions, which will be useful going forward.

Proposition 31. Suppose u ∈ C(Ω̄) ∩ C2(Ω) satisfies

(9.27) Qu = aij(x, u,Du)Diju+ b(x, u,Du) = 0, in Ω,

where aij(x, z, p)ξiξj > 0 for any (x, z, p) ∈ Ω×R×Rn and ξ ∈ Rn. Suppose there exist nonnegative
functions g ∈ Ln

loc(Rn) and h ∈ Ln(Ω) such that

(9.28)
|b(x, z, p)|
nD∗ ≤ h(x)

g(p)
, for any (x, z, p) ∈ Ω× R× Rn,

(9.29)

∫
Ω

hn(x)dx <

∫
gn(p)dp ≡ g∞.

Then there holds supΩ |u| ≤ sup∂Ω |u|+ Cdiam(Ω), where C = C(g, h).
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Proof of Proposition 31. Suppose Qu ≥ 0 in Ω. Then we have

(9.30) −aijDiju ≤ b, in Ω.

By definition of Γ+, {Diju} is non-positive in Γ+. Thus, −aijDiju ≥ 0, so b(x, u,Du) ≥ 0 in Γ+.
Then in Γ+ ∩ Ω+,

(9.31)
b(x, z,Du)

nD∗ ≤ h(x)

g(Du)
.

Then by Lemma 16,
(9.32)∫

BM̃ (0)

gn ≤
∫
Γ+∩Ω+

gn(Du)(
−aijDiju

nD∗ )n ≤
∫
Γ+∩Ω+

gn(Du)(
b

nD∗ )
n ≤

∫
Γ+∩Ω+

hn ≤
∫
Ω

hn.

Therefore, by (9.29) there exists C(g, h) such that M̃ ≤ C. Thus,

(9.33) sup
Ω
u ≤ sup

∂Ω
u+ + Cdiam(Ω).

□

The mean curvature equation is a fully nonlinear equation. The prescribed mean curvature
equation is given by

(9.34) (1 + |Du|2)∆u−DiuDjuDiju = nH(x)(1 + |Du|2)3/2, for some H ∈ C(Ω).

Then,

(9.35)
aij(x, z, p) = (1 + |p|2)δij − pipj ⇒ D = (1 + |p|2)n−1,

b = −nH(x)(1 + |p|2)3/2.

This implies

(9.36)
|b(x, z, p)|
nD∗ ≤ |H(x)|(1 + |p|2)3/2

(1 + |p|2)n−1
n

= |H(x)|(1 + |p|2)
n+2
2n ,

and

(9.37) g∞ =

∫
Rn

gn(p)dp =

∫
Rn

(1 + |p|2)−
n+2
2 dp = ωn.

Corollary 8. Suppose u ∈ C(Ω̄) ∩ C2(Ω) satisfies

(9.38) (1 + |Du|2)∆u−DiuDjuDiju = nH(x)(1 + |Du|2)3/2, in Ω,

for some H ∈ C(Ω). Then if

(9.39) H0 ≡
∫
Ω

|H(x)|ndx < ωn,

we have

(9.40) sup
Ω

|u| ≤ sup
∂Ω

|u|+ Cdiam(Ω),

where C = C(n,H0).

Now discuss Monge–Ampere equations.
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Corollary 9. Suppose u ∈ C(Ω̄) ∩ C2(Ω) satisfies

(9.41) det(D2u) = f(x, u,Du), in Ω,

for some f ∈ C(Ω×R×Rn). Suppose there exist nonnegative functions g ∈ L1
loc(Rn) and h ∈ L1(Ω)

such that

(9.42) |f(x, z, p)| ≤ h(x)

g(p)
, for any (x, z, p) ∈ Ω× R× Rn,

(9.43)

∫
Ω

h(x)dx <

∫
Rn

g(p)dp ≡ g∞.

Then there holds

(9.44) sup
Ω

|u| ≤ sup
∂Ω

|u|+ Cdiam(Ω), C = C(g, h).

Corollary 10. Let u ∈ C(Ω̄) ∩ C2(Ω) satisfy

(9.45) det(D2u) = f(x), in Ω,

for some f ∈ C(Ω̄). Then there holds

(9.46) sup
Ω

|u| ≤ sup
∂Ω

|u|+ diam(Ω)

ω
1/n
n

(

∫
Ω

|f |n)1/n.

Proof. Here we take g = 1 and then g∞ = ∞. □

Now take the prescribed Gaussian curvature condition.

Corollary 11. Let u ∈ C(Ω̄) ∩ C2(Ω) satisfy

(9.47) det(D2u) = K(x)(1 + |Du|2)
n+2
2 , in Ω,

for some K ∈ C(Ω̄). Then if

(9.48) K0 ≡
∫
Ω

|K(x)| < ωn,

(9.49) sup
Ω

|u| ≤ sup
∂Ω

|u|+ C(n,K0)diam(Ω).

Proof. Again we use the fact that
∫
(1 + |p|2)−n+2

n = ωn. □

10. Surfaces with prescribed Gaussian curvature

Now let M be a connected, compact, two–dimensional manifold with nonempty boundary. Let g
be the metric on M. We wish to construct a conformally related metric whose Gaussian curvature
is a given function K(x) on M.

Now let k(x) be the Gaussian curvature of g and let g′ = e2ug. Then the Gauss curvature of g′

is given by

(10.1) K(x) = (−∆u+ k(x))e−2u.

Then we wish to solve

(10.2) ∆u = k(x)−K(x)e2u = f(x, u).
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Proposition 32. If M is a connected, compact, two–dimensional manifold with nonempty boundary
∂M, g a Riemannian metric on M, and K ∈ C∞(M) a given function satisfying

(10.3) K(x) ≤ 0, on M,

then there exists u ∈ C∞(M) such that the metric g′ = e2ug conformal to g has Gauss curvature
K. Given any v ∈ C∞(∂M), there is a unique u satisfying u = v on ∂M.

Proof. Apply Theorem 14 to the Proposition. Notice that we need K(x) ≤ 0 to obtain ∂f
∂u ≥ 0. □

Now suppose thatM is compact and does not have a boundary. For now, we retain the hypothesis
∂f
∂u ≥ 0. If M does not have a boundary, (8.16) no longer holds for constant functions on M.
Therefore, suppose that for some aj ∈ R,
(10.4) u < a0 ⇒ f(x, u) < 0, u > a1 ⇒ f(x, u) > 0.

Then if ∂f
∂u > 0, (10.4) is equivalent to the existence of a function u = φ(x) such that f(x, φ(x)) = 0.

Theorem 18. If u solves (8.1) and M is compact, then

(10.5) a0 ≤ u(x) ≤ a1,

provided (10.4) holds.

Proof. Since M is compact, u achieves a maximum at some x0 ∈ M. Then, ∆u(x0) ≤ 0 on M, so
f(x0, u(x0)) ≤ 0, and therefore by (10.5), u ≤ a1. The other inequality follows similarly. □

To obtain an existence result, we use the method of continuity. We show that for each τ ∈ [0, 1],
there is a smooth solution to

(10.6) ∆u = (1− τ)(u− b) + τf(x, u) = fτ (x, u), b =
a0 + a1

2
.

This equation is certainly solvable when τ = 0, since u = b is a solution. Now let J ⊂ [0, 1] be the
largest interval containing 0 such that (10.6) has a solution for all τ ∈ J .

Claim 1. J is closed.

Proof. Observe that for any τ ∈ [0, 1], u < a0 implies fτ (x, u) < 0, and u > a1 implies fτ (x, u) < 0.
Therefore, any solution must satisfy (10.5). Now let uj = uτj for τj ∈ J , τj ↗ σ. Therefore,
∥uj∥L∞ ≤ a < ∞, so gj(x) = fτj (x, uj(x)) is bounded in C(M), and therefore elliptic regularity
for the Laplace operator implies

(10.7) ∥uj∥Cr(M) ≤ br <∞, for any r < 2.

The bound (10.7) implies a bound on the Cr norm of gj , which implies a Cr bound on u for r < 4.
Iterating this bound implies uj ∈ C∞(M). Any limit point u ∈ C∞(M) solves (10.6) with τ = σ,
so J is closed. □

Claim 2. J is open in [0, 1].

Proof. To see this, we show that if τ0 < 1 and τ0 ∈ J , then there exists some ϵ > 0 such that
[τ0, τ0 + ϵ) ⊂ J . To see this, fix k large and define the operator

(10.8) Ψ : [0, 1]×Hk(M) → Hk−2(M), Ψ(τ, u) = ∆u− fτ (x, u).

This map is C1, and its derivative with respect to the second argument is given by

(10.9) D2Ψτ0(τ0, u)v = Lv, Lv = ∆v −A(x)v, A(x) = 1− τ0 + τ0∂uf(x, u).
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Now then, if ∂f
∂u ≥ 0, then A(x) ≥ 1− τ0 > 0, and therefore L is invertible. By the inverse function

theorem, Ψ(τ, u) = 0 is solvable for |τ − τ0| < ϵ. □

Therefore, we have proved

Proposition 33. If M is a compact manifold without boundary and if ∂uf(x, u) ≥ 0 and f(x, u)
satisfies (10.4), then (10.1) has a unique solution. If ∂uf(x, u) > 0 then the solution is unique.

Proof. It only remains to prove uniqueness when ∂uf(x, u) > 0. Let u and v be two solutions and
let w = u− v. Then w solves

(10.10) ∆w = λ(x)w, λ(x) =
f(x, u)− f(x, v)

u− v
≥ 0.

Therefore,

(10.11) −∥∇w∥2L2 =

∫
λ(x)|w(x)|2dx,

which implies that w = 0 if λ(x) > 0 on M. □

It is possible to use the continuity method to solve the Dirichlet problem. Let Ω be a bounded
domain on Rn and let aij , bi, and c be defined on Ω with aij = aji. Then consider the operator L
given by

(10.12) Lu = aij∂i∂ju+ bi∂iu+ cu, in Ω,

for any u ∈ C2(Ω) and

(10.13) λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2, ∀x ∈ Ω, ξ ∈ Rn, λ > 0.

Consider the general existence result for solutions to the Dirichlet problem with C2,α boundary
values for general uniformly elliptic equations with Cα coefficients.

Theorem 19. Let Ω be a bounded C2,α domain in Rn and let L be a uniformly elliptic operator
in Ω with c ≤ 0 in Ω and aij, bi, c ∈ Cα(Ω̄) for some α ∈ (0, 1). Then for any f ∈ Cα(Ω̄) and
φ ∈ C2,α(Ω̄), there exists a unique solution u ∈ C2,α(Ω̄) of the Dirichlet problem

(10.14) Lu = f, in Ω, u = φ, on ∂Ω.

The crucial step in solving the Dirichlet problem for L to assume that the similar Dirichlet
problem for the Laplace operator is solved.

Theorem 20. Let Ω be a bounded C2,α domain in Rn and let L be a uniformly elliptic operator
in Ω with c ≤ 0 in Ω and aij, bi, c ∈ Cα(Ω̄) for some α ∈ (0, 1). If the Dirichlet problem for the
Poisson equation,

(10.15) ∆u = f, in Ω, u = φ, on ∂Ω,

has a C2,α(Ω̄) solution for f ∈ Cα(Ω̄) and φ ∈ C2,α(Ω̄), then the Dirichlet problem,

(10.16) Lu = f, in Ω, u = φ, on ∂Ω,

also has a unique C2,α(Ω̄) solution for all such f and φ.
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Proof. Suppose without loss of generality that φ = 0. Indeed, we can take Lv = f − Lφ in Ω and
v = 0 on ∂Ω.

Now consider the family of equations,

(10.17) Ltu ≡ tLu+ (1− t)∆u = f, for t ∈ [0, 1].

Now then, L0 = ∆, L1 = L,

(10.18) Ltu = atij(x)Diju+ bti(x)Diu+ ct(x)u,

(10.19) atij(x)ξiξj ≥ min(1, λ)|ξ|2,

for any x ∈ Ω, ξ ∈ Rn, and

(10.20) |atij |Cα(Ω̄), |bti|Cα(Ω̄), |ct|Cα(Ω̄) ≤ max(1,Λ).

Therefore,

(10.21) |Ltu|Cα(Ω̄) ≤ C(n, α, λ,Λ,Ω)|u|C2,α(Ω).

Then for each t ∈ [0, 1], Lt : X → Cα(Ω) is a bounded linear operator, where X is a Banach space,

(10.22) X = {u ∈ C2,α(Ω̄) : u = 0, on ∂Ω}.

Now let I be the collection of s ∈ [0, 1] such that the Dirichlet problem

(10.23) Lsu = f, in Ω, u = 0, on ∂Ω,

is solvable in C2,α(Ω̄) for any f ∈ Cα(Ω̄). For s ∈ I, let u = L−1
s f be the unique solution. Then by

the maximum principle and global C2,α-estimates,

(10.24) |L−1
s f |C2,α(Ω) ≤ C|f |Cα(Ω̄).

For any t ∈ [0, 1] and f ∈ Cα(Ω̄),

(10.25) Ltu = f ⇒ Lsu = f + (Ls − Lt)u = f + (t− s)(∆u− Lu).

Therefore, u ∈ C2,α(Ω̄) is a solution to

(10.26) Ltu = f, in Ω, u = 0, on ∂Ω,

if and only if,

(10.27) u = L−1
s (f + (t− s)(∆u− Lu)).

For u ∈ X , set

(10.28) Tu = L−1
s (f + (t− s)(∆u− Lu)).

Then, T : X → X is an operator and for any u, v ∈ X ,
(10.29)
|Tu−Tv|C2,α(Ω̄) = |(t−s)L−1

s ((∆−L)(u−v))|C2,α(Ω̄) ≤ C|t−s||(∆−L)(u−v)|Cα(Ω̄) ≤ C|t−s||u−v|C2,α(Ω̄).

Therefore, T : X → X is a contraction if |t− s| < δ = C−1. Thus, for any t ∈ [0, 1] with |t− s| < δ,
there exists a unique u ∈ X such that u = Tu,

(10.30) u = L−1
s (f + (t− s)(∆u− Lu)), Ltu = f.

Therefore, if |t − s| < δ, there exists a unique solution to (10.26). Partition the interval [0, 1] into
subintervals of length < δ and argue by induction. Since 0 ∈ I, 1 ∈ I. □
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11. Fixed point theorems and existence results

Recall Brouwer’s fixed point theorem.

Proposition 34. If K is a compact, convex set in a finite dimensional vector space V , and F :
K → K is a continuous map, then F has a fixed point.

Proof. If K is the closed unit ball in Rn, and ψ : K → K is a continuous map without fixed point,
then let F (x) map x to z, where z is the endpoint of the ray from x through ψ(x) that intersects
∂K. Then F is a continuous retraction of B to ∂B, which violates homotopy theory.

For a general compact K, put an inner product on V and let B ⊂ V denote a ball that contains
K. Let ψ : B → K map a point x to the point in K closet to x. If x is a fixed point of
F ◦ ψ : B → K ⊂ B, then x ∈ K. Since ψ is the identity on K, F has a fixed point. □

Schauder’s fixed point theorem is a generalization of the Brouwer fixed point theorem.

Theorem 21 (Schauder’s fixed point theorem). Let G be a compact, convex set in a Banach space
X and let T be a continuous mapping of G to itself. Then T has a fixed point, that is, there exists
some x ∈ G such that Tx = x.

Proof. Let k ∈ N. Since G is compact, there exists a finite set such that the balls Bi = Bi/k(xi),
i = 1, 2, ..., n cover G. Let Gk be the convex hull of {x1, ..., xn} and let Jk : G → Gk be defined by

(11.1) Jk(x) =

∑
i dist(x,G −Bi)xi∑
i dist(x,G −Bi)

.

Then Jk is continuous on G, and furthermore,

(11.2) ∥Jk(x)− x∥ ≤
∑

i dist(x,G −Bi)∥x− xi∥∑
i dist(x,G −Bi)

<
1

k
.

Now then, Jk ◦ T : Gk → Gk. Therefore, by the Brouwer fixed point theorem, there exists a
yk ∈ Gk such that Jk ◦ T (yk) = yk, k = 1, 2, .... Since G is compact, there exists some x ∈ G such
that yk → x ∈ G. For any k,

(11.3) ∥yk − T (yk)∥ = ∥Jk ◦ T (yk)− T (yk)∥ <
1

k
.

Since T is continuous,

(11.4) lim
k→∞

yk = x = Tx, for some x ∈ G.

□

Corollary 12. Let G be a closed, convex set in a Banach space X. Suppose T is a map from G to
G such that TG is precompact. Then T has a fixed point in G.

Proof. Let K be the closed, convex hull of TG. Since TG is precompact, K is compact, so consider
T |K , which maps K to itself. □

Corollary 13. Let B be the open ball in a Banach space V . Let F : B̄ → V be a continuous map
such that F (B̄) is relatively compact and F (∂B) ⊂ B. Then F has a fixed point.

Proof. Define a map G : B̄ → B̄ by

(11.5) G(x) = F (x), if ∥F (x)∥ ≤ 1, G(x) =
F (x)

∥F (x)∥
if ∥F (x)∥ ≥ 1.
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Then G : B̄ → B̄ is continuous and G(B̄) is relatively compact. By Corollary 12, G has a fixed
point, G(x) = x. Since F (∂B) ⊂ B, ∥x∥ < 1, so F (x) = G(x) = x. □

Theorem 22 (Leray-Schauder theorem). Let V be a Banach space and let F : [0, 1] × V → V be
a continuous, compact map such that F (0, v) = v0 is independent of v ∈ V . Suppose there exists
M <∞ such that, for all (σ, x) ∈ [0, 1]× V ,

(11.6) F (σ, x) = x implies ∥x∥ < M.

Then the map F1 : V → V , F1(v) = F (1, v), has a fixed point.

Remark 13. For example, we could take the mapping F (σ, x) = σF (x).

Proof. Suppose without loss of generality that v0 = 0 and M = 1. Let B be the open ball in V .
Given ϵ ∈ (0, 1], define the map Gϵ : B̄ → V by

(11.7)
Gϵ(x) = F (

1− ∥x∥
ϵ

,
x

∥x∥
), if 1− ϵ ≤ ∥x∥ ≤ 1,

= F (1,
x

1− ϵ
), if ∥x∥ ≤ 1− ϵ.

Observe that Gϵ(∂B) = 0, and that for each ϵ ∈ (0, 1], Gϵ(V ) is precompact. Therefore, Corollary
13 implies that Gϵ has a fixed point x(ϵ).

For each k, let xk = x( 1k ), and set

(11.8)
σk = k(1− ∥xk∥), if 1− 1

k
≤ ∥xk∥ ≤ 1,

= 1 if ∥xk∥ ≤ 1− 1

k
.

Therefore, σk ∈ (0, 1], and F (σk,
xk

Ck
) = xk, where Ck is the denominator of (11.7). Furthermore,

since F is compact and (11.6) holds, (σk, xk) → (σ, x).
Next, σ = 1. Indeed, if σ < 1, then ∥xk∥ ≥ 1 − 1

k for k large, which implies ∥x∥ = 1 and
F (σ, x) = x, which contradicts (11.6). Therefore, σk → 1 and F (1, x) = x. □

Remark 14. Suppose T is a compact mapping of a Banach space X into itself. For some σ ∈ (0, 1],
the map σT possesses a fixed point. Since T (B1) is compact in X, there exists A ≥ 1 such that
∥Tx∥ ≤ A for all x ∈ B1. Thus, the mapping σT with σ = 1

A maps B1 into itself, and therefore,
by the Schauder fixed point theorem, Theorem 21, σTx has a fixed point. Also, if ∥x∥ < M for any
fixed point of σTx, then for any σ ∈ [0, 1], the mapping σTx has a fixed point.

Returning to the problem

(11.9) ∆u = f(x, u),

suppose f(x, u) < 0 for u < a0 and f(x, u) > 0 if u > a1, but
∂f
∂u > 0 need not hold. Alter f(x, u)

on u ≤ a0 and on u ≥ a1 to a smooth g(x, u) satisfying g(x, u) = −κ0 < 0 for u ≤ a0 − δ and
g(x, u) = κ1 > 0 for u ≥ a1 + δ, for some δ > 0.We want to show that for each τ ∈ [0, 1],

(11.10) ∆u = (1− τ)(u− b) + τg(x, u) = gτ (x, u),

is solvable, with solution satisfying

(11.11) a0 ≤ uτ (x) ≤ a1.
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Doing some algebra,

(11.12) u = (∆− 1)−1(gτ (x, u)− u) = Φτ (u).

Each Φτ is a continuous and compact map on C(M),

(11.13) Φτ : C(M) → C(M),

with continuous dependence on τ . For solvability, we can use the Leray–Schauder fixed point
theorem, Theorem 22. Indeed, when τ = 0,

(11.14) Φ0(u) = −(∆− 1)−1b = b,

which is independent of u. Meanwhile, if u solves (11.12), then u also solves (11.10), so (11.11)
holds. Therefore,

(11.15) u = Φτ (u) ⇒ ∥u∥C(M) ≤ A = max{|a0|, |a1|}.

Applying Theorem 22, (11.12) is solvable for all τ ∈ [0, 1]. Therefore,

Theorem 23. If M is a compact manifold without boundary and if the function f(x, u) satisfies
f(x, u) < 0 when u < a0 and f(x, u) > 0 if u > a1, then (11.9) has a smooth solution satisfying
a0 ≤ u(x) ≤ a1.

The equation

(11.16) ∆u = k(x)−K(x)e2u = f(x, u),

satisfies the hypotheses of Theorem 23 when k(x) < 0 and K(x) < 0.

In higher dimensions, when dimM = n ≥ 3, we alter the metric by

(11.17) g′ = u
4

n−2 g.

The scalar curvatures σ and S of the metrics g and g′ are related by

(11.18) S = u−α(σu− γ∆u), γ = 4
n− 1

n− 2
, α =

n+ 2

n− 2
,

where ∆ is the Laplacian for the metric g. Obtaining the scalar curvature S for g′ is equivalent to
solving

(11.19) γ∆u = σ(x)u− S(x)uα,

for a smooth positive function u. Since γ > 1 and α > 1, in the case when σ(x) < 0 and S(x) < 0,
there exist 0 < a0 < a1 < ∞ that satisfy f(x, u) < 0 when u < a0 and f(x, u) > 0 when u > a1.
Then,

Proposition 35. Let M be a compact manifold of dimension n ≥ 2. Let g be a Riemannian metric
on M with scalar curvature σ. If both σ and S are negative functions in C∞(M), then there exists
a conformally equivalent metric g′ on M with scalar curvature S.

We can also generalize to

(11.20) γ∆u = B(x)uβ + σ(x)u−A(x)uα, β < 1 < α.

It is possible that β < 0. Then we have f(x, u) < 0 if u < a0, f(x, u) > 0 if u > a1, if we assume
A < 0 on M, but only B ≤ 0 on M, provided σ(x) < 0 on {x ∈ M : B(x) = 0}.
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We can apply fixed point results to the minimal surface equation. For 0 < β < 1, consider the
Banach space X = C1,β(Ω̄) where Ω is a C2,α bounded domain in Rn. Now let L be an operator
given by

(11.21) Lu = aij(x, u,∇u)uxixj + b(x, u,∇u).

Assume L is elliptic in Ω̄, that is, aij(x, ζ, p) is positive definite for all (x, ζ, p) ∈ Ω̄×R×Rn. Also
assume that for some α ∈ (0, 1) that aij , b ∈ Cα(Ω̄×R×Rn), and let ϕ ∈ C2,α(∂Ω). Now, for any
v ∈ C1,β(Ω̄) = X, let u = Tv be the unique solution in C2,αβ(Ω̄) of the Dirichlet problem

(11.22) aij(x, v,Dv)uxixj
+ b(x, v,Dv) = 0, in Ω, u|∂Ω = ϕ, on ∂Ω.

The solvability of Lu = 0 in Ω with u = ϕ on ∂Ω in the space C2,α(Ω̄) in the space C2,α(Ω̄) is
equivalent to the solvability of Tu = u in X. Now let

(11.23) Lσu = aij(x, u,Du)uxixj
+ σb(x, u,∇u).

Then u = σTu is the same as Lσu = 0 in Ω and u = σϕ on ∂Ω. By the Leray–Schauder fixed point
theorem,

Theorem 24. Let Ω, ϕ, and L be as above. If, for some β > 0, there is a constant M independent
of u and σ such that for every C2,α(Ω̄) solution of the Dirichlet problem

(11.24) Lσu = 0, in Ω, u = σϕ,

satisfies

(11.25) ∥u∥C1,β(Ω̄) < M,

then it follows that the Dirichlet problem Lu = 0 in Ω with u = ϕ on ∂Ω is solvable in C2,α(Ω̄).

The assumptions in the previous theorem can be verified for the minimal surface equation.
Consider the case where Ω is a uniformly convex, C2,α bounded domain in Rn, ϕ ∈ C2,α(Ω), and

(11.26) div(
∇u√

1 + |∇u|2
) = 0, in Ω, u|∂Ω = ϕ, on ∂Ω.

Suppose u is a C2,α solution of (11.26). Then the maximum principle implies

(11.27) ∥u∥L∞(Ω̄) ≤ ∥ϕ∥L∞(∂Ω) ≡ C0 <∞.

By the uniform convexity of ∂Ω and the C2,α regularity of ϕ, it is possible show that there exist
linear functions l±x0

(x) such that

(11.28) l±x0
(x0) = ϕ(x0), and l−x0

(x) ≤ ϕ(x) ≤ l+x0
(x), for all x ∈ ∂Ω.

Since linear functions are solutions of div( ∇u√
1+|∇u|2

) = 0 in Ω, then from the maximum principle,

(11.29) l−x0
(x) ≤ u(x) ≤ l+x0

(x), x ∈ Ω̄.

In particular, |∇u(x0)| ≤ max |∇l±x0
(x0)| ≡ C1 <∞.

If u is a C2,α solution of (11.26), then uα = ∂
∂xα

u satisfies

(11.30)
∂

∂xi
(FPiPj

(Du)uaj) = 0.

Here,
√
1 + |∇u|2, so (FPiPj

(Du)) > 0. Thus, uα satisfies the maximum principle, so

(11.31) ∥∇u∥L∞(Ω) ≤ ∥∇u∥L∞(∂Ω) ≤ C1 <∞.
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Therefore, by (11.26), (11.30), and (11.31), from De Giorgi–Moser theory,

(11.32) ∥∇u∥Cβ(Ω̄) ≤ C(C0, C1, C2) <∞, C2 = ∥ϕ∥C2,α(∂Ω).

Rewriting (11.26),

(11.33) ∆u− uiuj
1 + |∇u|2

uij = 0.

Combining (11.32) and (11.33) and the Schauder estimates,

(11.34) ∥u∥C2,β(Ω̄) ≤ C(C0, C1, C2,Ω),

where 0 < β ≤ α.

12. Direct methods in the calculus of variations

We turn now to the question of existence of minima or other stationary points of functionals of
the form

(12.1) I(u) =

∫
Ω

F (x, u,∇u)dV (x),

over a set of functions {u ∈ B : u = g on ∂Ω}, where B is a Banach space and g is a smooth
function on ∂Ω. Let Ω̄ be a compact Riemannian manifold with boundary and suppose

(12.2) F : RN × (RN ⊗ T ∗Ω̄) → R, is continuous.

Let

(12.3) V = {u ∈ H1(Ω,RN ) : u = g on ∂Ω}.

Assume that for each x ∈ Ω̄,

(12.4) F (x, ·, ·) : RN × (RN ⊗ T ∗
x Ω̄) → R, is convex.

Also assume that

(12.5) A0|ξ|2 −B0|u| − C0 ≤ F (x, u, ξ),

and also suppose that

(12.6) |F (x, u, ξ)− F (x, v, ζ)| ≤ C(|u− v|+ |ξ − ζ|)(|ξ|+ |ζ|+ 1).

Proposition 36. Suppose Ω is connected with nonempty boundary. Also suppose I(u) < ∞ for
some u ∈ V . Under the hypotheses (12.2)–(12.6), I has a minimum on V .

Proof. By (12.5),

(12.7) I(u) ≥ A0∥∇u∥2L2 −B0∥u∥L1 − C0|Ω|.

Therefore, following the proof of Lemma 14, I(u) is bounded below. Furthermore, by (12.6), for
∥u∥H1 , ∥v∥H1 ≤ L,

(12.8) I(u)− I(v) ≲L ∥u− v∥H1 .

Finally, by (12.4), I(u) is convex. □

Proposition 36 is a special case of a more general result.
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Proposition 37. Let V be a closed, convex subset of a reflexive Banach spaceW , and let Φ : V → R
be a continuous map satisfying:

(12.9) inf
V

Φ = α0 ∈ (−∞,∞),

(12.10) ∃b > α0 such that Φ−1([α0, b]) is bounded in W,

(12.11) ∀y ∈ (α0, b], Φ−1([α0, y]) is convex.

Then there exists v ∈ V such that Φ(v) = α0.

Proof. For any 0 < ϵ ≤ b − a0, Kϵ = {u ∈ V : α0 ≤ I(u) ≤ α0 + ϵ} is weakly compact. Then
∩ϵ>0Kϵ = K0 ̸= ∅. □

It is possible to generalize the above result for the Sobolev space W 1,p, where 1 < p <∞.

Proposition 38. Assume Ω is connected, with nonempty boundary. Take 1 < p <∞ and assume
that I(u) <∞ for some u ∈ V . If (12.2), (12.4) hold, along with

(12.12) V = {u ∈ H1,p(Ω;RN ) : u = g on ∂Ω},

(12.13) A0|ξ|p −B0|u| − C0 ≤ F (x, u, ξ),

and

(12.14) |F (x, u, ξ)− F (x, v, ζ)| ≤ C(|u− v|+ |ξ − ζ|)(|ξ|+ |ζ|+ 1)p−1.

We can replace (12.4) by a hypothesis of convexity in the last section.

Proposition 39. Make the hypotheses of Proposition 36, or more generally of Proposition 38, by
weaken (12.4) to the hypothesis that

(12.15) F (x, u, ·) : RN ⊗ T ∗
x Ω̄ → R is convex,

for each (x, u) ∈ Ω̄× RN . Then I has a minimum on V .

Proof. First observe that (12.13) combined with Poincare’s inequality implies that −∞ < α0 =
infV I(u). Also,

(12.16) B = {u ∈ V : I(u) ≤ α0 + 1} is bounded in H1,p(Ω,RN ).

Now then, choose uj ∈ B such that I(uj) ↘ α0. Assume

(12.17) uj ⇀ u, weakly in H1,p(Ω,RN ),

so therefore uj → u strongly in Lp(Ω,RN ). We need to show that I(u) = α0.

Set

(12.18) Φ(u, v) =

∫
Ω

F (x, u, v)dV (x).

Setting vj = ∇uj ,
(12.19) Φ(uj , vj) → α0.

Also, vj ⇀ v = ∇u weakly in Lp(Ω,RN ⊗ T ∗
x Ω̄). Now then, by (12.14),

(12.20) |Φ(uj , vj)− Φ(u, vj)| ≤ C

∫
Ω

|uj − u|(|vj |+ 1)p−1dV (x) ≤ C ′∥uj − u∥Lp(Ω),
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which by (12.19) implies that

(12.21) Φ(u, vj) → α0.

Now, by (12.5), (12.6) and (12.15),

(12.22) Kϵ = {w ∈ Lp(Ω,RN ⊗ T ∗Ω̄) : Φ(u,w) ≤ α0 + ϵ},

is a closed, convex subset of Lp(Ω,RN ⊗ T ∗). Therefore, Kϵ is weakly compact, provided it is
nonempty. Also, vj ∈ Kϵj with ϵj ↘ 0, so v ∈ K0. Therefore, Φ(u, v) ≤ α0 holds. □

Proposition 40. Let 1 < p < ∞ and let F (x, u, ξ) satisfy the hypotheses of Proposition 39. If
S is any subset of V that is closed in the weak topology of H1,p(Ω,RN ), it follows that I|S has a
minimum in S.

Proof. Same argument as in the proof of Proposition 39. □

Suppose that X ⊂ RN is a closed subset and that

(12.23) S = {u ∈ V : u(x) ∈ X for a.e. x ∈ Ω}.

For example, we could take X to be a compact Riemannian manifold isometrically embedded into
RN , and let F (x, u,∇u) = |∇u|2. The minimum is a harmonic map, u : Ω → X,

(12.24) ∆u− Γ(u)(∇u,∇u) = 0.

Harmonic maps can be generalized to the study of “liquid crystals”. Take

(12.25) F (x, u,∇u) = a1|∇u|2 + a2(div(u))
2 + a3(u · curl(u))2 + a4|u× curl(u)|2,

where the coefficients aj are positive constants. Then we minimize the functional
∫
Ω
F (x, u,∇u)dV (x)

over a set S of the form (12.23) with X = S2 ⊂ R3,

(12.26) S = {u ∈ H1(Ω,R3) : |u(x)| = 1 a.e. on Ω, u = g, on ∂Ω}.

In this case,

(12.27) F (x, u, ξ) =
∑
j,α

bjα(u)ξ
2
jα, bj,α(u) ≥ a1 > 0,

where bj,α(u) is a polynomial of degree two in u. This function is convex in ξ, but does not satisfy
(12.6). Instead,

(12.28) |Φ(uj , vj)− Φ(u, vj)| ≤ C

∫
Ω

|uj − u||vj |2dV (x).

Theorem 25. Assume Ω is connected with nonempty boundary. Take 1 < p <∞ and set

(12.29) V = {u ∈ H1,p(Ω,RN ) : u = g, on ∂Ω}.

Assume I(u) < ∞ for some u ∈ V and that F (x, u, ξ) is smooth in its arguments, satisfies the
convexity condition (12.15), and also,

(12.30) A0|ξ|p ≤ F (x, u, ξ),

for some A0 > 0. Then I has a minimum on V .
If S is a closed subset of V that is closed under the weak topology of H1,p(Ω,RN ), then I|S has

a minimum in S.
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Proof. Equation (12.30) clearly implies that 0 ≤ α0 = infS I(u). Choose B as in (12.16) and choose
ujB ∩ S such that I(uj) → α0, uj ⇀ u weakly in H1,p(Ω,RN ). Then passing to a subsequence,
assume uj → u a.e. on Ω. We need to show that

(12.31)

∫
Ω

F (x, u,∇u)dV (x) ≤ α0.

By Egorov’s theorem, there exist measurable sets Eν ⊃ Eν+1 ⊃ ... in Ω of measure < 2−ν , such
that uj → u uniformly on Ω \ Eν . We can also arrange that

(12.32) |u(x)|+ |∇u(x)| ≤ C2ν , for x ∈ Ω \ Eν .

Now then,
(12.33)∫

Ω\Eν

F (x, u,∇u) =
∫
Ω\Eν

F (x, uj ,∇uj)dV (x) +

∫
Ω\Eν

[F (x, uj ,∇u)− F (x, uj ,∇uj)]dV (x)

+

∫
Ω\Eν

[F (x, u,∇u)− F (x, uj ,∇u)]dV (x).

Now then, since F is convex in ξ,

(12.34) F (x, uj ,∇u)− F (x, uj ,∇uj) ≤ DξF (x, uj ,∇u) · (∇u−∇uj).

For each ν,

(12.35) DξF (x, uj ,∇u) → DξF (x, u,∇u), uniformly on Ω \ Eν ,

while ∇u−∇uj weakly in Lp(Ω,Rn), so

(12.36) lim
j→∞

∫
Ω\Eν

[F (x, uj ,∇u)− F (x, uj ,∇uj)]dV (x) = 0.

Finally, F (x, u,∇u)− F (x, uj ,∇u) → 0 uniformly on Ω \ Eν . Therefore,

(12.37)

∫
Ω\Eν

F (x, u,∇u)dV (x) ≤ lim sup
j→∞

∫
Ω

F (x, uj ,∇uj)dV (x) ≤ α0.

Taking ν → ∞ proves (12.31). □

There are variants of the above result.

Proposition 41. Assume that F is smooth in (x, u, ξ),

(12.38) F (x, u, ξ) ≥ 0,

and that

(12.39) F (x, u, ·) : RN ⊗ T ∗
x Ω̄ → R, is convex,

for each x, u. Suppose

(12.40) uν ⇀ u, weakly in H1,1
loc (Ω,R

N ).

Then,

(12.41) I(u) ≤ lim inf
ν→∞

I(uν).
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13. Surfaces with negative curvature

Recall that if g and g′ are conformally related,

(13.1) g′ = e2ug,

then K and k are related by

(13.2) K(x) = e−2u(−∆u+ k(x)),

where ∆ is the Laplace operator for the original metric g. Then we wish to solve the PDE,

(13.3) ∆u = k(x)−K(x)e2u.

By the Gauss–Bonnet formula,

(13.4)

∫
M
k(x)dV (x) =

∫
M
K(x)e2udV (x) = 2πχ(M),

it is not possible to arrange that K < 0 be the curvature of M if M is diffeomorphic to the sphere
or the torus, since

(13.5) χ(S2) = 2, χ(T2) = 0.

In fact, this is the only obstruction.

Theorem 26. If M is a compact surface satisfying χ(M) < 0 with given Riemannian metric
g, then for any negative K ∈ C∞(M), the equation (13.3) has a solution, so M has a metric,
conformal to g, with Gaussian curvature K(x).

We produce the solution as an element where the function,

(13.6) F (u) =

∫
M
(
1

2
|du|2 + k(x)u)dV,

achieves a minimum on the set

(13.7) S = {u ∈ H1(M) :

∫
M
K(x)e2udV = 2πχ(M)}.

Lemma 17. The set S is a nonempty C1–submanifold of H1(M) if K < 0 and χ(M) < 0.

Proof. Set Φ(u) = e2u. By Trudinger’s inequality,

(13.8) Φ : H1(M) → Lp(M),

for all p <∞. Indeed, using the estimate,

(13.9) ∥u∥Lp(Rn) ≤ Cnp
1/2∥u∥Hn/2(Rn),

so

(13.10) e2u =

∞∑
k=0

1

k!
uk,

which implies

(13.11)

∫
M
e2udV (x) ≤ C

∞∑
k=0

(k/2)k

k!
∥u∥kH1(M) <∞.

Since |e2u|p = e2pu, (13.8) holds.
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Now then, Φ is differentiable at each u ∈ H1(M), and

(13.12) DΦ(u)v = 2e2uv, DΦ(u) : H1(M) → L1(M).

Furthermore,
(13.13)

∥(DΦ(u)−DΦ(w))v∥L1(M) ≤ 2

∫
M

|v||e2u − e2w|dV

≤ 2(

∫
|v|4dV )1/4(

∫
|u− w|4dV )1/4(

∫
e4|u|+4|w|dV )1/2 ≤ C(∥u∥H1 , ∥v∥H1)∥v∥H1∥u− w∥H1 .

Remark 15. The first inequality follows from Taylor’s formula.

Therefore, the map Φ : H1(M) → L1(M) is a C1 map. Consequently, if J(u) =
∫
MKe2udV

implies J : H1(M) → R is a C1 map.
Furthermore, DJ(u) = 2Ke2u belongs to H−1(M) ≡ L(H1(M),R), so DJ(u) ̸= 0 on S. There-

fore, by the implicit function theorem, S is a C1 submanifold of H1(M). Furthermore, if K < 0
and χ(M) < 0 then there is a constant function in S, so S ̸= ∅. □

Theorem 27. Suppose F : S → R, defined by (13.6), assumes a minimum at u ∈ S. Then u solves
(13.3), provided that the hypothesis of Theorem 26 holds.

Proof. The map F : S → R is a C1 map. If γ(s) is a C1 curve in S with γ(0) = u, γ′(0) = v,

(13.14) 0 =
d

ds
F (u+ sv)|s=0 =

∫
M
[(du, dv) + k(x)v]dV =

∫
M
(−∆u+ k(x))vdV.

Since v is tangent to S at u,

(13.15)

∫
M
Ke2(u+sv)dV = 2πχ(M) +O(s2),

which is equivalent to

(13.16)

∫
M
vK(x)e2udV (x) = 0.

Therefore, if u ∈ S is a minimum for F ,

(13.17) v ∈ H1(M),

∫
M
vKe2udV = 0 implies

∫
M
(−∆u+ k(x))vdV = 0.

Therefore, −∆u+ k(x) is parallel to Ke2u in H1(M);

(13.18) −∆u+ k(x) = βKe2u, for some β ∈ R.

Integrating both sides on M,

(13.19)

∫
M
k(x)dV (x) = χ(M) = β

∫
M
K(x)e2udV (x) = βχ(M),

so when χ(M) ̸= 0, β = 1. By Trudinger’s estimate, the right hand side belongs to L2(M), so
u ∈ H2(M), which implies e2u ∈ H2(M), so by induction, u ∈ C∞(M). □

Now we show that F has a minimum on S, for K < 0 and χ(M) < 0. For u ∈ H1(M), let

(13.20) u = u0 + α,
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where α = (Area(M))−1
∫
M udV is the mean value of u, and

(13.21) u0 ∈ H̄(M) = {v ∈ H1(M) :

∫
M
vdV (x) = 0}.

Then u ∈ S if and only if,

(13.22) e2α
∫
M
K(x)e2u0dV (x) = 2πχ(M),

which is equivalent to

(13.23) α =
1

2
log[2πχ(M)/

∫
Ke2u0dV (x)].

Therefore,

(13.24) F (u) =

∫
M
(
1

2
|du0|2 + ku0)dV + πχ(M){log(2π|χ(M)|)− log |

∫
M
Ke2u0dV (x)|}.

Lemma 18. If χ(M) < 0 and K < 0, then infS F (u) = a > −∞.

Proof. To prove this lemma, we need to bound

(13.25) −χ(M) log |
∫
M
K(x)e2u0dV (x)|,

from below. Indeed, for K(x) ≤ −δ < 0,

(13.26)

∫
K(x)e2u0dV (x) ≤ −δ

∫
e2u0dV.

Since ex ≥ 1 + x,
∫
e2u0dV (x) ≥

∫
dV (x) +

∫
2u0dV (x) = Area(M), −δ

∫
M e2u0dV (x) ≤ −δA,

where A is the area of M. Therefore,

(13.27) −πχ(M) log |
∫
M
K(x)e2u0dV (x)| ≥ π|χ(M)| log(δA) ≥ b > −∞.

Therefore, for u ∈ S,

(13.28) F (u) ≥
∫
M
(
1

2
|du0|2 + k(x)u0)dV (x)− C2,

with C2 independent of u0 ∈ H1(M). Since ∥u0∥L2 ≤ C∥du0∥L2 ,

(13.29) |
∫
M
k(x)u0dV (x)| ≤ C3ϵ∥du0∥2L2 +

C4

ϵ
,

so for ϵ = 1
2C3

, F (u) ≥ −2C3C4 − C2. □

Now we can prove the main existence result.

Theorem 28. If M and K are as in Theorem 26, then F achieves a minimum at a point u ∈ S,
which consequently solves (13.3).

Proof. Choose un ∈ S so that F (un) ↘ a, F (un) ≤ a+ 1. By (13.28) and (13.29),

(13.30)
1

4
∥dun0∥2L2 − C5 ≤ a+ 1.

Here, un0 = un −mean value. The mean value of un is

(13.31)
1

2
log[2πχ(M)/

∫
M
Ke2un0dV (x)],
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which is bounded from above by the proof of Lemma 18. Therefore, un is bounded in H1(M), and
passing to a subsequence, there exists an element u ∈ H1(M) such that

(13.32) un ⇀ u, weakly in H1(M).

By properties of weak convergence, e2un → e2u in L1(M) norm, so u ∈ S. Also, by (13.32),∫
M k(x)undV →

∫
M k(x)udV (x). Also,

(13.33)

∫
M

|du|2dV (x) ≤ lim inf
n→∞

∫
M

|dun|2dV (x).

Therefore, F (u) ≤ a = infv∈S F (v), which implies that F (u) = a. □

Consider the special case when K = −1. For any compact surface with χ(M) < 0, given a
Riemannian metric g, it is conformally equivalent to a metric for which K = −1. The universal
covering surface

(13.34) M̃ → M,

Definition 6 (Universal cover). The universal cover of a connected topological space X is a simply
connected space Y with map f : Y → X that is a covering map.

Theorem 29. Any two complete, simply connected Riemannian manifolds with the same constant
curvature and the same dimension are isometric.

Proof. Differential geometry. □

One model surface of curvature −1 is the Poincare disk,

(13.35) D = {(x, y) ∈ R2 : x2 + y2 < 1} = {z ∈ C : |z| < 1},
with metric

(13.36) ds2 = 4(1− x2 − y2)−2(dx2 + dy2).

Any compact surface M with negative Euler characteristic is conformally equivalent to the quotient
ofD by a discrete group Γ of isometries. IfM is orientable, all the elements of Γ preserve orientation.

Next, consider the case χ(M) = 0. We claim that any metric g on such M is conformally
equivalent to a flat metric g′, that is, one for which K = 0. In this case (13.2) is

(13.37) ∆u = k(x).

This equation can be solved on M if and only if

(13.38)

∫
M
k(x)dV (x) = 0.

By the Gauss–Bonnet formula, (13.4), (13.38) holds precisely when χ(M) = 0. Then the universal

covering surface M̃ of M inherits a flat metric, and must be isometric to Euclidean space.

Proposition 42. If M is a compact Riemannian surface, χ(M) = 0, then M is holomorphically
equivalent to the quotient of C by a discrete group of transformations.

If M is a compact, connected Riemann surface, χ(M) ≤ 2. If χ(M) = 2, then M is conformally
equivalent to the standard sphere S2.

Proposition 43. If M is a compact Riemannian manifold homeomorphic to S2, with Riemannian
metric tensor g, then M has metric tensor conformal to g, with Gauss curvature ≡ 1.
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In other words, it is possible to solve for u ∈ C∞(M) the equation

(13.39) ∆u = k(x)− e2u,

which does not follow from Theorem 26.

14. Local solvability of nonlinear elliptic equations

An elliptic differential operator of order m is an operator that in local coordinates has the form

(14.1) P (x,D)u =
∑

|α|≤m

aα(x)D
αu,

which has principal symbol

(14.2) Pm(x, ξ) =
∑

|α|=m

aα(x)ξ
α,

which is invertible for nonzero ξ ∈ Rn.

Theorem 30. If P (x,D) is elliptic of order m and u ∈ D′(M), P (x,D)u = f ∈ Hs(M), then
u ∈ Hs+m

loc (M), and for each U ⊂⊂ V ⊂⊂ M, σ < s+m, then there is an estimate

(14.3) ∥u∥Hs+m(U) ≤ C∥P (x,D)u∥Hs(V ) + C∥u∥Hσ(V ).

Now consider the nonlinear partial differential equation,

(14.4) f(x,Dmu) = g(x),

where

(14.5) Dmu = {Dαu : |α| ≤ m}.
Suppose f(x, ζ) is smooth in its operators, x ∈ Ω, and ζ = {ζα : |α| ≤ m}. Then define

(14.6) F (u) = f(x,Dmu), F : C∞(Ω) → C∞(Ω).

Definition 7. Suppose F is a nonlinear differential operator and u0 ∈ Cm(Ω). The linearization
of F at u0 is DF (u0), which is a linear map from Cm(Ω) to C(Ω).

(14.7) DF (u0)v =
∂

∂s
F (u0 + sv)|s=0 =

∑
|β|≤m

∂f

∂ζβ
(x,Dmu0)D

βv.

Thus, DF (u0) is a linear differential operator of order m. The operator F is elliptic if DF (u0) is
an elliptic, linear differential operator.

An operator of the form

(14.8) f(x,Dmu) =
∑

|α|=m

aα(x,D
m−1u)Dαu+ f1(x,D

m−1u),

is said to be quasi-linear. If F (u) = f(x,Dmu), where f is in the form of (14.8), then

(14.9) DF (u0) =
∑

|α|=m

aα(x,D
m−1u0)D

αv + Lv,

where L is a linear differential operator of order m− 1 with coefficients depending on Dm−1u0.

Definition 8 (Fully nonlinear). A nonlinear operator that is not quasilinear is called completely
nonlinear.
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Definition 9 (Monge-Ampere operator). One example of a completely nonlinear operator is the
Monge-Ampere operator,

(14.10) F (u) = det

(
uxx uxy
uyx uyy

)
= uxxuyy − uxyuyx,

where (x, y) ∈ Ω ⊂ R2.

In this case,

(14.11) DF (u)v = Tr[

(
vxx vxy
vxy vyy

)(
uyy −uxy
−uxy uxx

)
] = uyyvxx − 2uxyvxy + uxxvyy.

Then the principal symbol for (14.11) is

(14.12) uyyξ
2
1 − 2uxyξ1ξ2 + uxxξ

2
2 = ⟨

−→
ξ ,

(
uyy −uxy
−uxy uxx

)
−→
ξ ⟩.

Thus, DF (u) is elliptic if the matrix

(14.13)

(
uyy −uxy
−uxy uxx

)
,

is either positive definite or negative definite. This condition holds precisely when F (u) > 0.

Now, for Ω ⊂ Rn, consider the Monge–Ampere operator

(14.14) F (u) = detH(u), H(u) = (∂j∂ku).

Then,

(14.15) DF (u)v = Tr[C(u)H(v)],

where H(v) is the Hessian matrix for v and C(u) is the cofactor matrix of H(u),

(14.16) H(u)C(u) = [detH(u)]I.

Then DF (u) is a linear, second-order differential operator, and is elliptic provided C(u) is either
positive definite or negative definite. This holds provided the Hessian matrixH(u) is either positive-
definite or negative-definite.

Theorem 31. Let g ∈ C∞(Ω) and let u1 ∈ C∞(Ω) satisfy

(14.17) F (u1) = g(x), at x = x0,

where F (u) is of the form F (u) = f(x,Dmu). Suppose that F is elliptic at u1. Then, for any l,
there exists u ∈ Cl(Ω) such that

(14.18) F (u) = g,

on a neighborhood of x0.

We start with a lemma.

Lemma 19. Under the hypotheses of Theorem 31, there exists u0 ∈ C∞(Ω) such that

(14.19) F (u0)− g(x) = O(|x− x0|∞),

and

(14.20) (u0 − u1)(x) = O(|x− x0|m+1).
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Proof. Suppose without loss of generality that x0 = 0. Then denote the coordinates near x0 = 0
by (x, y) = (x1, ..., xn−1, y). Then write u0(x, y) as a formal power series in y:

(14.21) u0(x, y) = v0(x) + v1(x)y + ...+
1

k!
vk(x)y

k + ...

Then set

(14.22) v0(x) = u1(x, 0), v1(x) = ∂yu1(x, 0), · · · , vm−1(x) = ∂m−1
y u1(x, 0).

Then the PDE F (u) = g can be rewritten in the form,

(14.23)
∂mu

∂ym
= F ♯(x, y,Dm

x u,D
m−1
x Dyu, ...,D

1
xD

m−1
y u).

Then the equation for vm(x) becomes

(14.24) vm(x) = f ♯(x, 0, Dm
x v0(x), ..., D

1
xvm−1(x)).

Now then, since F (u) = g(x), vm(0) = ∂my u1(0, 0), so (14.20) is satisfied. Taking y-derivatives
inductively yields the other coefficients, and the lemma follows by construction. □

If F is elliptic at u1, then F continues to be elliptic at u0, at least in a neighborhood of x0, and
we can shrink Ω appropriately. For k > m+ 1 + n

2 ,

(14.25) F : Hk(Ω) → Hk−m(Ω),

is a C1 map. Then,

(14.26) L = DF (u0) : H
k(Ω) → Hk−m(Ω).

Since L is an elliptic operator of order m, the Dirichlet problem is a regular boundary problem for
the strongly elliptic operator LL∗.

Definition 10 (Strongly elliptic). A strongly elliptic operator is an operator

(14.27)
∑

|β|=2m

aβ(x)ξ
β ≥ C(x)|ξ|2m, for some C(x) > 0, ξ ∈ Rd.

Furthermore, if Ω is a sufficiently small neighborhood of x0, the map

(14.28) LL∗ : Hk+m(Ω) ∩Hm
0 (Ω) → Hk−m(Ω),

is invertible. Therefore, L is surjective, so we can apply the implicit function theorem. For any
neighborhood Bk of u0 ∈ Hk(Ω), the image of Bk under the map F contains a neighborhood Ck
of F (u0) in Hk−m(Ω). If (14.19) holds, then any neighborhood of r(x) = F (u0) − g in Hk−m(Ω)
contains functions that vanish on a neighborhood of x0. Therefore, any neighborhood Ck of F (u0)
contains functions equal to g(x) on a neighborhood of x0. This establishes local solvability asserted
in Theorem 31.
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