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1. The complex plane C

The complex plane arises naturally as a complete, algebraically closed field. One can easily
obtain polynomials whose coefficients lie in the field of rational numbers Q, but whose solutions do
not lie in Q. Take for example the equation

(1.1) x2 = 2.
1
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It is a well known fact that
√

2 is not a rational number, although the coefficients of (1.1) are

integers. However, it is easy to show using Newton’s method that
√

2 is the limit of a sequence of
rational numbers. Therefore, the real numbers R are defined to be the completion of the field of
rational numbers, and R is a complete field.

A space is called complete if every Cauchy sequence converges. That is, if {zn}∞n=1 is a sequence
such that for any ε > 0 there exists N(ε) <∞ where m,n ≥ N(ε) implies |zn − zm| < ε.

This is not the end of the story, however, since it is still possible to obtain a polynomial whose
coefficients lie in the field of real numbers, but whose solutions do not lie in R. Consider the
equation

(1.2) x2 = −1.

Since x2 ≥ 0 for every real number, (1.2) does not have any solutions in R.
Therefore, define i to be the number satisfying i2 = −1, and let C be the numbers of the form

(1.3) z = x+ iy, x, y ∈ R, x = Re(z), y = Im(z).

The complex plane C is closed under multiplication and addition. Indeed, if z = x + iy and
w = u+ iv, since i2 = −1,

(1.4) z + w = (u+ x) + i(v + y), zw = (x+ iy)(u+ iv) = (xu− yv) + i(yu+ xv).

These operations obey the commutative, associative, and distributive properties.

Using the Pythagorean theorem in the plane, C has the natural norm |z| =
√
x2 + y2. Let z̄

denote the complex conjugate

(1.5) z̄ = x− iy.
Then it is straightforward to verify from (1.4) that

(1.6) |z|2 = x2 + y2 = zz̄.

Thus, C is a field, since for any z ∈ C, z 6= 0, (1.6) implies that

(1.7)
1

z
=

z̄

|z|2
.

The norm |z| also obeys the triangle inequality.

Proposition 1 (Triangle inequality).

(1.8) |z + w| ≤ |z|+ |w|.

Proof. Calculating directly from (1.5),

(1.9) z + w = z̄ + w̄, zw = z̄w̄,

which implies that

(1.10) |zw|2 = zwz̄w̄ = |z|2|w|2.
Therefore,

(1.11) |z + w|2 = (z + w)(z̄ + w̄) = |z|2 + |w|2 + zw̄ + z̄w ≤ (|z|+ |w|)2,

which implies (1.8). �

Remark 1. Note that zw̄ + z̄w is guaranteed to be a real number since

(1.12) 2Re(z) = z + z̄, and 2Im(z) = z − z̄.
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Every Cauchy sequence in R converging implies that every Cauchy sequence in C converges under
the norm |z|. Indeed, let zn = xn+ iyn and z = x+ iy. Then zn → z if and only if xn → x in R and
yn → y in R. Similarly, {zn}∞n=1 is Cauchy in C if and only if {xn}∞n=1 and {yn}∞n=1 are Cauchy
sequences in R. Thus, C is a complete field.

Remark 2. By standard properties of limits, (1.3), and (1.4), if zn → z in C and wn → w in C,
then zn + wn → z + w and znwn → zw in C.

The fact that C is algebraically closed follows from the fundamental theorem of algebra.

Theorem 1 (Fundamental theorem of algebra). If p(z) is a non-constant polynomial with complex
coefficients, then p(z) must have a complex root.

Proof. Suppose that for some n ≥ 1,

(1.13) p(z) = anz
n + ...+ a1z + a0, an 6= 0, aj ∈ C ∀0 ≤ j ≤ n.

Therefore, as |z| → ∞,

(1.14) p(z) = anz
n(1 +O(z−1)),

which implies that

(1.15) lim
|z|→∞

|p(z)| =∞,

so there exists 0 < R <∞ such that

(1.16) inf
|z|>R

|p(z)| > |p(0)|,

and therefore,

(1.17) inf
|z|≤R

|p(z)| = inf
z∈C
|p(z)|.

Since p is continuous, there exists z0 ∈ DR which satisfies

(1.18) |p(z0)| = inf
z∈C
|p(z)|,

where DR refers to the disk of radius R, DR = {z ∈ C : |z| ≤ R}.

Lemma 1. If p(z) is a non-constant polynomial and (1.18) holds, then p(z0) = 0.

Proof. Suppose by contradiction that p(z0) = a 6= 0. Since a polynomial in z can easily be rewritten
as a polynomial of the same degree in (z − z0) for any z0 ∈ C,

(1.19) p(z0 + ζ) = a+ q(ζ), ζ = z − z0,

where q is a non-constant polynomial of order n. Therefore, for some k ≥ 1, b 6= 0,

(1.20) q(ζ) = bζk + ...+ bnζ
n.

The term bζk dominates the behavior of q(ζ) for |ζ| small,

(1.21) q(ζ) = bζk +O(ζk+1), as ζ → 0.

Therefore, take S1 = {ω : |ω| = 1}. For any fixed ω ∈ S1,

(1.22) p(z0 + εω) = a+ bωkεk +O(εk+1), as ε↘ 0.
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Since a 6= 0 and b 6= 0, choose ω ∈ S1 such that

(1.23)
b

|b|
ωk = − a

|a|
.

Then,

(1.24) p(z0 + εω) = a(1− | b
a
|εk) +O(εk+1),

which contradicts the minimality of p(z0) when ε > 0 is sufficiently small. �

Therefore, p(z) has the root p(z0) = 0. �

Rewriting p(z) as a polynomial of order n in (z − z0), since p(z0) = 0,

(1.25) p(z) = an(z − z0)n + ...+ ã1(z − z0).

Dividing p(z) by (z − z0) gives a polynomial of order n − 1. Using Theorem 1 and arguing by
induction implies that p(z) has n roots in C.

2. The unit circle

To solve (1.23), define the curve

(2.1) γ(t) = eit, t ∈ R.
Set

(2.2) eit = c(t) + is(t).

By the chain rule,

(2.3)
d

dt
eit = ieit.

Observe that

(2.4) i(x+ iy) = −y + ix,

which is orthogonal to x+ iy. Therefore, (2.1) travels on the unit circle, and by (1.10), |(2.3)| = 1.
So γ(t) travels around the circle at speed one in a counterclockwise direction.

Another way to show this is to calculate |eit|2 = c(t)2 + s(t)2 = (eit)(eit). Using the exponential
function power series, for z = it, t ∈ R,

(2.5) ez =

∞∑
k=0

z̄k

k!
= e−it.

Remark 3. By the ratio test, (2.5) converges for any z ∈ C.

Therefore, |eit|2 = 1, and t 7→ γ(t) has the image in the unit circle centered at the origin. Also,

(2.6) γ′(t) = ieit ⇒ |γ′(t)| = 1.

Therefore, γ(t) moves at unit speed on the unit circle, γ(0) = 1, γ′(t) = iγ(t), so γ(t) travels in a
counterclockwise direction. From trigonometry,

(2.7) γ(t) = cos(t) + i sin(t),

so

(2.8) eit = cos t+ i sin t,
d

dt
eit = − sin t+ i cos t.
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This gives the formula for the derivatives for the cos(t) and sin(t) functions. Next, using (2.5),
(2.9)

eiseit = ei(s+t), ⇒ cos(s+t) = (cos s)(cos t)−(sin s)(sin t), sin(s+t) = (sin s)(cos t)+(cos s)(sin t).

It is therefore possible to write any z = x+ iy ∈ C in polar coordinates. Let r = |z| and solve

(2.10) cos θ =
x

|z|
, sin θ =

y

|z|
.

Equation (2.10) has a unique solution θ0 ∈ [0, 2π), however, θ = θ0 + 2nπ will also satisfy (2.10)
for any n ∈ Z. Therefore, define

(2.11) Arg(z) = θ0, arg(z) = θ0 + 2πn.

By direct computation,

(2.12) arg(z1z2) = arg(z1) + arg(z2),

however it is not necessarily true that

(2.13) Arg(z1z2) = Arg(z1) +Arg(z2).

Remark 4. Take z1 = z2 = −1.

Since arg(|z|2) = 1,

(2.14) arg(z̄) = −arg(z), and arg(
1

z
) = arg(

z̄

|z|2
) = −arg(z).

To solve (1.23), observe that the equation zk = 1 has k unique solutions on the unit circle.
Indeed,

(2.15) |zk| = |z|k = 1,

so for any solution |z| = 1. Furthermore, eikθ = e2πin, so ei
2πn
k solves zk = 1 for any n, which gives

k unique solutions. Since the coefficient for zk−1 is equal to minus the sum of the roots,

Theorem 2. For any k, the sum of k equidistant points on the unit circle is zero.

The formula (2.7) may be used to compute the value of π. Let π be defined to be the small-
est positive number such that γ(2π) = 1. Then γ(π) = −1 and γ(π2 ) = i. Furthermore, from
trigonometry,

(2.16) γ(
π

3
) =

1

2
+

√
3

2
i, γ(

π

6
) =

√
3

2
+

1

2
i.

We can use this fact to determine the value of π. We know from (2.6) that the length of γ(t) on
0 ≤ t ≤ ϕ is given by ϕ, so for 0 < ϕ < π

2 , parameterize this segment of the circle by

(2.17) σ(s) = (
√

1− s2, s), 0 ≤ s ≤ τ = sinϕ.

The length of this curve is given by

(2.18) l =

∫ τ

0

|σ′(s)|ds =

∫ τ

0

ds√
1− s2

= ϕ.

Therefore, from (2.16),

(2.19)
π

6
=

∫ 1/2

0

dx√
1− x2

.
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Making a power series expansion,

(2.20)
π

6
=

∞∑
n=0

an
2n+ 1

(
1

2
)2n+1,

where an are defined recursively by

(2.21) a0 = 1, an+1 =
2n+ 1

2n+ 2
an.

3. Matrix representation of complex numbers

The group of complex numbers can be represented by a two dimensional algebra of commuting
matrices. Observe that for c ∈ R, the operation c : v 7→ cv is represented by the dilation matrix

(3.1)

(
c 0
0 c

)
.

Next, the action of i on x+ iy is given by i(x+ iy) = −y + ix, which is a ninety degree clockwise
rotation, given by the matrix

(3.2) J =

(
0 −1
1 0

)
.

Lemma 2. A matrix commutes with (3.2) if and only if it is of the form

(3.3)

(
a −b
b a

)
.

Proof. By direct calculation,

(3.4)

(
0 −1
1 0

)(
a b
c d

)(
0 1
−1 0

)
=

(
d −c
−b a

)
.

Therefore, a matrix commutes with (3.2) if and only if a = d and b = −c. �

By the distributive property, (3.1), and (3.2), a+ ib can be represented by the matrix

(3.5)

(
a −b
b a

)
.

Indeed,

(3.6)

(
a −b
b a

)(
x
y

)
=

(
ax− by
bx+ ay

)
,

which corresponds to

(3.7) (a+ ib)(x+ iy) = (ax− by) + i(ay + bx).

Furthermore, since the column vectors in (3.6) are the vectors

(3.8)

(
a
b

)
and

(
0 −1
1 0

)(
a
b

)
,

(3.9)

(
a −b
b a

)(
x −y
y x

)
=

(
ax− by −bx− ay
bx+ ay ax− by

)
,

so the algebra of matrices of the form (3.6) corresponds to the algebra of complex numbers of the
form a+ ib.
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A function f is called complex differentiable at z with f ′(z) = a+ ib, if and only if

(3.10) lim
h→0

1

h
[f(z + h)− f(z)] = f ′(z) = a+ ib.

Rewriting (3.10), if h = h1 + ih2,

(3.11) f(z + h) = f(z) + f ′(z)h+ o(h) = f(z) + (a(z) + ib(z))(h1 + ih2) + o(h).

Rewriting (3.11) in matrix notation,

(3.12) f(z + h) = f(z) +

(
a −b
b a

)(
h1

h2

)
+ o(h),

which will be useful shortly.
Let Ω ⊂ C be an open set. A set is called open if for all z0 ∈ Ω, there exists ε0 > 0 such that

(3.13) Dε0(z0) = {z : |z − z0| < ε0} ⊂ Ω.

Definition 1 (Holomorphic). A function f : Ω→ C is called holomorphic if and only if it is complex
differentiable and f ′ is continuous on Ω. Another term for holomorphic is complex analytic.

It is straightforward to verify that the function f(z) = z is holomorphic, since

(3.14)
1

h
[(z + h)− z] = 1.

On the other hand, f(z) = z̄ is not holomorphic, since

(3.15)
1

h
[f(z + h)− f(z)] =

h̄

h
.

Of course, f(z) = z̄ is a differentiable function from R2 → R2,

(3.16) f(x, y) =

(
x
−y

)
.

Let f : R2 → R2 be a differentiable function, f(x, y) =

(
u(x, y)
v(x, y)

)
. It is known from multivariable

calculus that if f is differentiable,

(3.17) Df(x, y) =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
,

and furthermore,

(3.18) f(x0 + h1, y0 + h2) = f(x0, y0) +Df(x0, y0)

(
h1

h2

)
+ o(h).

Comparing (3.15) to (3.18) yields a number of important facts about holomorphic functions.

Proposition 2. If f : Ω→ C is holomorphic, then ∂f
∂x and ∂f

∂y exist and are continuous on Ω, and

(3.19)
∂f

∂x
=

1

i

∂f

∂y
= f ′(z).

Proposition 3. If f : Ω→ C is C1 and ∂f
∂x = 1

i
∂f
∂y , then f is holomorphic.

Proof. Propositions 2 and 3 follow from (3.8). �
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Proposition 4. If f ∈ C1(Ω), then f is holomorphic if and only if for all z ∈ Ω, Df(z) and J
commute.

Proof. This follows from (3.4) and (3.8). �

4. Some holomorpic functions

We are now ready to show the existence of some more holomorphic functions.

Proposition 5. If f and g are holomorphic on Ω, then so are (fg)(z), f(z) + g(z), and cf(z),
where c ∈ C is a constant. Furthermore,

(4.1)
d

dz
(fg)(z) = f ′(z)g(z)+f(z)g′(z),

d

dz
(f+g)(z) = f ′(z)+g′(z),

d

dz
(cf(z)) = cf ′(z).

Proof. The proof uses the limit definition of the derivative and the usual computations from calculus.
�

A corollary of this fact is that every polynomial is holomorphic.

Corollary 1. Every polynomial is holomorphic.

It is also possible to prove the usual chain rule computations to prove a chain rule.

Proposition 6 (Chain rule). Let Ω, O be open sets in C. If f : Ω → C and g : O → Ω are
holomorphic, then f ◦ g : O → C is holomorphic, and

(4.2)
d

dz
f(g(z)) = f ′(g(z))g′(z).

Combining the chain rule with the computation

(4.3)
1

z + h
− 1

z
= − h

z(z + h)
= − h

z2
+ o(h),

Proposition 7. If f : Ω→ C is holomorphic, then 1
f(z) is holomorphic on Ω \ S, where S = {z ∈

Ω : f(z) = 0}, and on Ω \ S,

(4.4)
d

dz

1

f(z)
= − f

′(z)

f(z)2
.

Moving on from polynomials, next consider the power series. First, let

(4.5)

∞∑
k=0

zk

denote a series. Then define the sequence sn =
∑n
k=0 zk. The sequence sn converges as a sequence

if and only if
∑∞
k=0 zk converges.

Lemma 3. Assume that

(4.6)

∞∑
k=0

|zk| <∞.

Then sn is a Cauchy sequence.
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Proof. Since
∑n
k=0 |zk| ≤ A, for any n,

(4.7) sn =

n∑
k=0

|zk|

is a bounded, monotone sequence. Since a bounded, monotone sequence converges in R, for any
ε > 0, there exists M(ε) <∞ such that for any n,

(4.8)

n∑
k=M(ε)

|zk| < ε.

Then by the triangle inequality, (4.8) implies that for any m,n ≥M(ε), |sn−sm| < ε, and therefore
sn is a Cauchy sequence. �

Definition 2. A series that satisfies (4.6) is absolutely convergent.

A power series has the form

(4.9) f(z) =

∞∑
n=0

an(z − z0)n.

Any such series has a radius of convergence, some 0 ≤ R ≤ ∞ such that (3.1) converges absolutely
on the disk DR(z0) = {z : |z − z0| < R} and diverges for z such that |z − z0| > R. Let

(4.10)
1

R
= lim sup

n→∞
|an|1/n,

where R =∞ if (4.10) = 0, and R = 0 if (4.10) =∞.

5. Holomorphic functions defined by power series

Proposition 8. The series (4.9) converges whenever |z− z0| < R and diverges whenever |z− z0| >
R, where R is given by (4.10). If R > 0, then the series converges uniformly on any DR′(z0) for
R′ < R. Thus, when R > 0, the series (4.9) defines a continuous function on DR(z0),

(5.1) f : DR(z0)→ C.

Proof. When R = 0, Proposition 8 is true. For any R′ < R, there exists ε > 0 and N sufficiently
large such that

(5.2) sup
n≥N
|an|1/n ≤

1

R′ + ε
.

Doing some algebra, for any n ≥ N ,

(5.3) |an| ≤
1

(R′ + ε)n
.

Therefore, for z ∈ DR′(z0),

(5.4) |an(z − z0)n| ≤ (
R′

R′ + ε0
)n.

Therefore, (4.9) converges uniformly on DR′(z0).
Meanwhile, for R < ∞, for any z ∈ C satisfying |z − z0| > R, there exists a subsequence

m(n)↗∞ such that

(5.5) |am(n)(z − z0)m(n)| ≥ 1,
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so (4.9) fails to converge. �

Proposition 9. If R > 0, the function defined by (3.1) is holomorphic on DR(z0), with derivative
given by

(5.6) f ′(z) =

∞∑
n=1

nan(z − z0)n−1.

Proof. Following (4.10),

(5.7) lim sup
n→∞

|nan|
1

n−1 = lim
n→∞

n
1

n−1 · lim sup
n→∞

|an|
1
n ·

n
n−1 =

1

R
.

Therefore, the right hand side of (4.9) converges on DR(z0) and diverges for |z−z0| > R. A related
theorem is the following.

Theorem 3. If the power series

(5.8) f(z) =

∞∑
k=0

ak(z − z0)k,

converges for some z1 6= z0, then either (5.8) converges for all z ∈ C, or (5.8) converges on a disk
of radius 0 < R <∞.

Proof. Since ak(z1 − z0)k → 0, there exists a constant C such that |ak(z1 − z0)| ≤ C. Therefore,
the series will converge for |z − z0| < |z1 − z0|. �

Therefore, it only remains to prove that the right hand side of (3.8) is equal to f ′(z).

Proposition 10. If (5.8) has a radius of convergence R > 0 and z1 ∈ DR(z0), then f(z) has a
convergent power series about z1,

(5.9) f(z) =

∞∑
k=0

bk(z − z1)k, for |z − z1| < R− |z1 − z0|.

Proof. Suppose without loss of generality that z0 = 0. Setting fz1(ζ) = f(z1+ζ) when |ζ| < R−|z1|,
using the binomial formula,

(5.10) fz1(ζ) =

∞∑
n=0

an(z1 + ζ)n =

∞∑
n=0

n∑
k=0

an(nk )ζkzn−k1 ,

which converges absolutely by the binomial formula. Therefore,

(5.11) fz1(ζ) =

∞∑
k=0

(

∞∑
n=k

an(nk )zn−k1 )ζk.

Therefore, (5.9) holds with

(5.12) bk =

∞∑
n=k

an(nk )zn−k1 .

�
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Now then, to prove (5.6), (5.9) implies

(5.13) f(z1 + h) = b0 + b1h+

∞∑
k=2

bkh
k.

Therefore,

(5.14)
f(z1 + h)− f(z1)

h
= b1 + o(h).

By the limit definition of the derivative,

(5.15) f ′(z1) = b1 =

∞∑
n=1

nanz
n−1
1 .

�

6. Integrating along curves

Turning from integrating on a circle to an integral on a general curve in C, recall the fundamental
theorem of calculus in one variable.

Theorem 4. If f ∈ C1([a, b]), then

(6.1)

∫ b

a

f ′(t)dt = f(b)− f(a).

Furthermore, if g ∈ C([a, b]), then

(6.2)
d

dt

∫ t

a

g(s)ds = g(t).

In the study of the holomorphic functions on the open set Ω ⊂ C, consider the integral along the
path

(6.3) γ : [a, b]→ Ω.

Then if f : Ω→ C is continuous,

(6.4)

∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt.

Proposition 11. If f is holomorphic on Ω and γ : [a, b]→ C is a C1 path, then

(6.5)

∫
γ

f ′(z)dz = f(γ(b))− f(γ(a)).

Proof. The proof uses the following chain rule.

Proposition 12. If f : Ω→ C is holomorphic and γ : [a, b]→ C is C1, then for a < t < b,

(6.6)
d

dt
f(γ(t)) = f ′(γ(t))γ′(t).

Proof. This follows from the the chain rule in (4.2). �

Then by the fundamental theorem of calculus, the proof of (4.5) is complete. �

It is possible to use these computations in connection with an antiderivative.
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Definition 3 (Anti-derivative). A holomorphic function g : Ω → C is said to have an anti-
derivative f on Ω provided f : Ω→ C is holomorphic and f ′ = g.

Each holomorphic function g : Ω → C has an antiderivative for a class of sets Ω ⊂ C which
satisfy the following property: If a + ib ∈ Ω and x + iy ∈ Ω, then the vertical line from a + ib to
a+ iy and the horizontal line from a+ iy to x+ iy lie in Ω.

Proposition 13. If Ω ⊂ C is an open set satisfying the above property, and g : Ω → C is
holomorphic, then there exists a holomorphic f : Ω→ C such that f ′ = g.

Proof. By the fundamental theorem of calculus,

(6.7)
∂f

∂x
(z) = g(z).

Also,

(6.8)
1

i

∂f

∂y
= g(a+ iy) + lim

h→0

1

ih

∫ x

a

[g(t+ iy + ih)− g(t+ iy)]dt.

Since g is holomorphic,

(6.9) (6.8) = g(x+ iy),

so f is holomorphic. �

This computation may be used to give a second proof of

Proposition 14. If R > 0, the function defined by

(6.10) f(z) =

∞∑
n=0

an(z − z0)n

is holomorphic on DR(z0) with derivative given by

(6.11) f ′(z) =

∞∑
n=1

nan(z − z0)n−1.

Proof. For any k, consider

(6.12) fk(z) =

k∑
n=0

an(z − z0)n, gk(z) =

k∑
n=1

nan(z − z0)n−1.

Then fk → f and gk → g locally uniformly on DR(z0). Also, for each k, f ′k(z) = gk(z). Therefore,
for any z ∈ DR(z0),

(6.13) fk(z) = a0 +

∫
σz

gk(ζ)dζ,

where σz is a path from z0 to z.
Making use of local uniform convergence,

(6.14) f(z) = a0 +

∫
σz

g(ζ)dζ.

Taking σz to be a path that approaches z horizontally, z = x+ iy, z0 = x0 + iy0,

(6.15) f(z) = a0 +

∫ y

y0

g(x0 + it)idt+

∫ x

x0

g(t+ iy)dt,



13

(6.16)
∂f

∂x
(z) = g(z).

Meanwhile, taking σz to be a path that approaches z vertically,

(6.17) f(z) = a0 +

∫ x

x0

g(t+ iy0)dt+

∫ y

y0

g(x+ it)idt,

so therefore,

(6.18)
1

i

∂f

∂y
(z) = g(z).

Since each gk is holomorphic, and therefore by Proposition 14 the integrals of each gk are path
independent, and gk → g locally uniformly, the proof is complete. �

7. Square roots and logs

Recall the inverse function theorem for functions from Rn to Rn.

Theorem 5. Let Ω ⊂ Rn be open and let f : Ω → Rn be a C1 map. Take p ∈ Ω and assume
Df(p) is an invertible linear transformation on Rn. Then there exists a neighborhood O of p
and a neighborhood U of q = f(p) such that f : O → U is one-to-one and onto, the inverse
g = f−1 : U → O is C1, and for x ∈ O, y = f(x),

(7.1) Dg(y) = Df(x)−1.

This result has the following consequence for holomorphic functions.

Theorem 6. Let Ω ⊂ C be open and let f : Ω → C be holomorphic. Take p ∈ Ω and assume
f ′(p) 6= 0. Then there exists a neighborhood O of p and a neighborhood U of q = f(p) such that
f : O → U is one-to-one and onto, the inverse g = f−1 : U → O is holomorphic, and, for z ∈ O,
w = f(z),

(7.2) g′(w) =
1

f ′(z)
.

Proof. Taking the matrix representation of the derivative, Df(x) is of the form

(7.3)

(
a −b
b a

)
.

The inverse of this matrix is given by

(7.4)
1

a2 + b2

(
a b
−b a

)
,

which satisfies (7.2). �

This theorem can be applied to give an inverse function in the case when f : Ω→ O is a bijection.
Consider for example the function f(z) = z2. In polar coordinates, if z = reiθ, z2 = r2e2iθ.
Therefore, f(z) maps the right half plane

(7.5) H = {z ∈ C : Re(z) > 0},

bijectively onto C\R−. Since f ′(z) = 2z vanishes only at the origin, we have a holomorphic inverse

(7.6) Sqrt : C \ R− → H,



14 BENJAMIN DODSON

which is given by

(7.7) Sqrt(reiθ) = r1/2eiθ/2, r > 0, −π < θ < π.

We can also write

(7.8)
√
z = z1/2 = Sqrt(z).

Next, consider the inverse of the exponential function exp(z) = ez. Consider the strip

(7.9) Σ = {x+ iy : x ∈ R, −π < y < π}.

Since ex+iy = exeiy, we have a bijective map

(7.10) exp : Σ→ C \ R−.

Since d
dz e

z = ez is nowhere vanishing, (5.10) has a holomorphic inverse denoted as log.

(7.11) log : C \ R− → Σ.

Taking log 1 = 0 and since

(7.12)
d

dz
ez = ez ⇒ d

dz
log z =

1

z
.

Thus,

(7.13) log z =

∫ z

1

1

ζ
dζ,

where the integral is along any path from 1 to z in C\R−. However, observe that since
∫
C

1
ζ dζ = 2πi

when C is a circle around the origin, we cannot use (7.13) to define the log globally.
Then, given a ∈ C, define

(7.14) za = Powa(z), Powa : C \ R− → C,

by

(7.15) za = ea log z.

Since eu+v = euev,

(7.16) za+b = zazb.

In particular, (7.16) implies that for any n ∈ Z, n 6= 0,

(7.17) (z1/n)n = z.

Then by (7.12),

(7.18)
d

dz
za = aza−1.
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8. The inverse sine function

Defining the inverse sine function uses a global inverse function theorem.

Theorem 7. Suppose Ω ⊂ C is convex. Assume f is holomorphic in Ω, and there exists a ∈ C
such that

(8.1) Re(af ′(z)) > 0, on Ω.

Then f maps Ω one to one onto its image f(Ω).

Proof. Take two distinct points z0, z1 ∈ Ω. By convexity, σ(t) = (1 − t)z0 + tz1 lies in Ω for all
t ∈ [0, 1]. Then

(8.2) a
f(z1)− f(z0)

z1 − z0
=

∫ 1

0

af ′((1− t)z0 + tz1)dt.

Then by (8.1), (8.2) 6= 0. �

Remark 5. Compare this result to the global inverse function theorem when f : R→ R when f is
monotone increasing or decreasing.

For example, consider the strip

(8.3) Σ̃ = {x+ iy : −π
2
< x <

π

2
, y ∈ R}.

Take f(z) = sin z, f ′(z) = cos z. Then for z ∈ Σ̃,

(8.4) Re cos z = cosx cosh y for z ∈ Σ̃.

Indeed,

(8.5)
Re cos(x+ iy) = Re

ei(x+iy) + e−i(x+iy)

2
= Re

eixe−y + e−ixey

2

=
eixe−y + e−ixe−y + e−ixey + eixey

4
= cos(x) cosh(y).

Therefore, f maps Σ̃ one to one onto its image.

Theorem 8. The function sin maps Σ̃ one-to-one onto the set

(8.6) C \ {(−∞,−1] ∪ [1,∞)}.

Proof. To see this, observe that sin(z) = g(eiz), where g(ζ) = 1
2i (ζ −

1
ζ ). Observe that the image of

Σ̃ under the map z 7→ eiz is the right half plane H. Next, the image of H under g is

(8.7) C \ {(−∞,−1] ∪ [1,∞)}.

Proposition 15. Let

(8.8) h(ζ) = g(iζ) =
1

2
(ζ +

1

ζ
).

Since g(ζ) = h(−iζ),

(8.9) h(−iζ) =
1

2
(
ζ

i
+

1

−iζ
) =

1

2i
(ζ − 1

ζ
).
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The function h given by (8.8) maps both the upper half plane U = {ζ : Imζ > 0} and the lower half
plane U∗ = {ζ : Im(ζ) > 0} one-to-one and onto

(8.10) C \ {(−∞,−1] ∪ [1,∞)}.

Proof. Observe that h : C \ 0→ C, and

(8.11) h(
1

ζ
) = h(ζ).

Solving for h(ζ) = w, if ζ 6= 0,

(8.12) ζ2 − 2wζ + 1 = 0,

which has the solutions

(8.13) ζ = w ±
√
w2 − 1.

Then for each w ∈ C, there are two solutions, except for w = ±1.
Then h maps R \ 0 onto (−∞, 1] ∪ [1,∞) two to one, except at x = ±1. This takes care of

the two images on the real line with |x| ≥ 1. Therefore, given ζ ∈ C \ 0, h(ζ) = w belongs to
(−∞,−1] ∪ [1,∞) if and only if ζ ∈ R.

Therefore, if w ∈ C \ {(−∞,−1] ∪ [1,∞)}, then h(ζ) = w has two solutions, both in C \ R.
Furthermore, the two solutions are reciprocals of each other, so given ζ ∈ C \ R, ζ ∈ U ⇔ 1

ζ ∈ U
∗.

�

The inverse function is denoted

(8.14) sin−1 : C \ {(−∞,−1] ∪ [1,∞)} → Σ̃.

For z ∈ Σ̃, sin2(z) ∈ C \ [1,∞), and therefore,

(8.15) cos(z) = (1− sin2 z)1/2, z ∈ Σ̃.

Therefore, by the inverse function theorem, g(z) = sin−1 z satisfies,

(8.16) g′(z) = (1− z2)−1/2, z ∈ C \ {(−∞,−1] ∪ [1,∞)}.
Therefore,

(8.17) sin−1 z =

∫ z

0

(1− ζ2)−1/2dζ,

where the integral is along any path from 0 to z in C \ {(−∞,−1] ∪ [1,∞)}. �

9. Harmonic functions on a planar domain

Suppose f ∈ C∞(Ω) is a holomorphic function. Applying ( ∂
∂x + i ∂∂y ) to the Cauchy–Riemann

equations, implies

(9.1) (
∂

∂x
+ i

∂

∂y
)(
∂

∂x
− i ∂

∂y
)f =

∂2f

∂x2
+
∂2f

∂y2
= 0,

on the open set Ω ⊂ C.
Such a function is called harmonic. More generally, if O is an open set in Rn, a function

f ∈ C2(O) is said to be harmonic on O if ∆f = 0 on O, where

(9.2) ∆f =
∂2f

∂x2
1

+ ...+
∂2f

∂x2
n

= 0.
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Taking the real and imaginary parts of (9.1), f = u+ iv,

(9.3) ∆u = 0, ∆v = 0.

Therefore, if f ∈ C∞(Ω) is a holomorphic function, the real and imaginary parts of f are harmonic
functions on Ω.

Many domains Ω ⊂ C have the property that if u ∈ C2(Ω) is a real-valued, harmonic function,
then there exists a real-valued harmonic function v ∈ C2(Ω) such that f = u + iv is holomorphic
on Ω.

Definition 4. v is said to be the harmonic conjugate of u.

Given α = a + ib and z = x + iy, let γαz denote a path from a + ib to a + iy, and then the
horizontal line from a+ iy to x+ iy. Next, let σαz denote the horizontal line segment from a+ ib
to x + ib, and then the vertical line segment from x + ib to x + iy. Let Rαz denote the rectangle
bounded for the four line segments.

Proposition 16. Let Ω ⊂ C be open, α = a+ ib ∈ Ω, and assume that the following property holds:
If z ∈ Ω, then Rαz ⊂ Ω. Let u ∈ C2(Ω) be harmonic. Then u has a harmonic conjugate v ∈ C2(Ω).

Proof. For z ∈ Ω, set

(9.4) v(z) =

∫
γαz

(−∂u
∂y
dx+

∂u

∂x
dy) =

∫ y

b

∂u

∂x
(a, s)ds−

∫ x

a

∂u

∂y
(t, y)dt.

Also set

(9.5) ṽ(z) =

∫
σαz

(−∂u
∂y
dx+

∂u

∂x
dy) = −

∫ x

a

∂u

∂y
(t, b)dt+

∫ y

b

∂u

∂x
(x, s)ds.

By the fundamental theorem of calculus,

(9.6)
∂v

∂x
= −∂u

∂y
(z),

∂ṽ

∂y
(z) =

∂u

∂x
(z).

Furthermore, since Rαz ⊂ Ω, by Green’s theorem, since u is a harmonic function,

(9.7) ṽ(z)− v(z) =

∫
∂Rαz

(−∂u
∂y
dx+

∂u

∂x
dy) =

∫ ∫
Rαz

(
∂2u

∂x2
+
∂2u

∂y2
)dxdy = 0.

Therefore, u and v satisfy the Cauchy–Riemann equations. �

It is possible to prove this this proposition without Green’s theorem.

Proposition 17. Let Ω ⊂ C be open, α = a+ ib ∈ Ω, and assume the following property holds: If
also z ∈ Ω then γαz ⊂ C.

Let u ∈ C2(Ω) be harmonic. Then u has a harmonic conjugate v ∈ C2(Ω).

Proof. Define v as in (9.4). Then ∂v
∂x = −∂u∂y . Also, by (9.4),

(9.8)
∂v

∂y
(z) =

∂u

∂x
(a, y)−

∫ x

a

∂2u

∂y2
(t, y)dt =

∂u

∂x
(a, y) +

∫ x

a

∂2u

∂x2
(t, y)dt =

∂u

∂x
(z).

Therefore, u and v satisfy the Cauchy–Riemann equations. �

Proposition 18 (Mean value theorem for harmonic functions). If u ∈ C2(Ω) is harmonic, z0 ∈ Ω,

and Dr(z0) ⊂ Ω, then

(9.9) u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ)dθ.
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Proof. Since u is a continuous function,

(9.10) lim
r↘0

1

2π

∫ 2π

0

u(z0 + reiθ)dθ = u(z0).

Taking the derivative with respect to r,

(9.11)
d

dr

1

2π

∫ 2π

0

u(z0 + reiθ)dθ =
1

2π

∫ 2π

0

ur(z0 + reiθ)dθ.

By Green’s theorem,

(9.12)
1

2π

∫ 2π

0

ur(z0 + reiθ)dθ =
1

2π

∫
Dr(z0)

∆udxdy = 0.

This proves (9.9). �

Writing (9.9) in polar coordinates,

(9.13) u(z0) =
1

πr2

∫ ∫
Dr(z0)

u(z)dxdy.

With this, we can establish a maximum principle for harmonic functions.

Proposition 19. Let Ω ⊂ C be a connected open set. If u : Ω → R is harmonic on Ω, then given
z0 ∈ Ω,

(9.14) u(z0) = sup
z∈Ω

u(z) ⇒ u is constant on Ω.

If, in addition, Ω is bounded and u ∈ C(Ω̄), then

(9.15) sup
z∈Ω̄

u(z) = sup
z∈∂Ω

u(z).

Proof. Equation (9.15) follows from (9.14) if Ω is bounded, since u must achieve a maximum
somewhere on Ω̄. Thus, assume there exists z0 ∈ Ω such that the hypotheses of (9.14) hold. Set

(9.16) O = {ζ ∈ Ω : u(ζ) = u(z0)}.

Since z0 ∈ O, O is not empty. Moreover, by continuity, O is a closed subset of Ω. Moreover, by
(9.13), if there exists a a disk of radius ρ, Dρ(ζ0) ⊂ Ω, since u is the supremum, u(z) = u(ζ0) for
all z ∈ Dρ(ζ0). �

10. More harmonic functions

Corollary 2. If f(z) is a holomorphic function, and f ∈ C∞(Ω), given z0 ∈ Ω,

(10.1) |f(z0)| = sup
z∈Ω
|f(z)| ⇒ f is constant on Ω.

If, in addition, Ω is bounded, and f ∈ C(Ω̄), then

(10.2) sup
z∈Ω̄

|f(z)| = sup
z∈∂Ω

|f(z)|.
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Proof. If f = u+ iv, and u and v are harmonic functions, by the product rule,

(10.3) ∆(u2 + v2) = |∇u|2 + |∇v|2.
Plugging this fact into the proof of Proposition 18,

(10.4) u(z0)2 + v(z0)2 ≤ 1

πr2

∫
Dr(z0)

(u(z)2 + v(z)2)dxdy.

Moreover, equality holds if and only if |∇u| = 0 and |∇v| = 0 on Dr(z0). �

Next, Liouville’s theorem for harmonic functions on C.

Proposition 20. If u ∈ C2(Ω) is bounded and harmonic on all of C, then u is constant.

Proof. Choose any two points p, q ∈ C. For all r > 0,

(10.5) u(p)− u(q) =
1

πr2
[

∫ ∫
Dr(p)

u(z)dxdy −
∫
Dr(q)

u(z)dxdy].

Hence,

(10.6) |u(p)− u(q)| ≤ 1

πr2

∫ ∫
∆(p,q,r)

|u(z)|dxdy,

where ∆(p, q, r) is the set of points contained in Dr(p) or Dr(q), but not both. Therefore,
∆(p, q, r) ∼ r as r →∞. Taking r →∞ in (10.6), since |u| is bounded, u(p)− u(q) = 0. �

Corollary 3. If f : C→ C is holomorphic and bounded, and f ∈ C∞(Ω), then f is constant.

Proof. Since f is holomorphic, f = u + iv, where u and v are harmonic functions. Since |f | is
uniformly bounded, |u| and |v| are uniformly bounded, and therefore, by Proposition 20, u and v
are constant. �

If f ∈ C∞(Ω) is a holomorphic function, then since f = u + iv, where u and v are harmonic
functions, so

(10.7) f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ)dθ.

However, it is possible to prove (10.7) without making the a priori assumption that f ∈ C∞(Ω).

Theorem 9 (Cauchy integral formula). If f is holomorphic on the open set Ω ⊂ C, and Dr(z0) ⊂ Ω,
then

(10.8) f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ)dθ =
1

2πi

∫
∂Dr(z0)

f(ζ)

ζ − z0
dζ.

Proof. As in the proof of Proposition 18,

(10.9) lim
r↘0

1

2π

∫ 2π

0

f(z0 + reiθ)dθ = f(z0).

Taking a derivative with respect to r,

(10.10)
d

dr

1

2π

∫ 2π

0

f(z0 + reiθ)dθ =
1

2π

∫ 2π

0

f ′(z0 + reiθ)eiθdθ =
1

2πir

∫
∂Dr(z0)

f ′(z0 + ζ)dζ = 0.

�
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Corollary 4. If f is holomorphic on Ω, then f ∈ C∞(Ω).

Proof. We can compute the derivative of (10.8) directly.

(10.11) (
d

dz
)nf(z) =

(−1)nn!

2πi

∫
∂Dr(z)

f(ζ)

(ζ − z)n+1
dζ.

This integral converges for any n. �

11. Consequences of the Cauchy integral formula

The Cauchy integral formula may be extended to an integral on the boundary of Ω, where Ω is
a bounded region.

Theorem 10. If f ∈ C1(Ω̄) is holomorphic on Ω, then

(11.1)

∫
∂Ω

f(z)dz = 0.

Proof. It is possible to take “bites” out of Ω with sets of the form Rαz. �

Then the integral in Theorem 9 on Dr(z0) can be moved out to ∂Ω, since 1
ζ−z0 is holomorphic

on C \ {z0}.

Theorem 11. If f ∈ C1(Ω̄) is holomorphic, then for z ∈ Dr(z0) ⊂ Ω, f(z) has the convergent
power series expansion

(11.2) f(z) =

∞∑
n=0

an(z − z0)n,

with

(11.3) an =
1

2πi

∫
∂Ω

f(ζ)

(ζ − z0)n+1
dζ =

f (n)(z0)

n!
.

Proof. Suppose z ∈ Dr(z0). By Theorem 9,

(11.4) f(z) =
1

2πi

∫
∂Ω

f(ζ)

(ζ − z0)− (z − z0)
dζ.

Making the infinite series expansion, since |z − z0| < |ζ − z0|,

(11.5)
1

(ζ − z0)− (z − z0)
=

1

ζ − z0

∞∑
n=0

(
z − z0

ζ − z0
)n.

Plugging this series into (10.8) with ∂Dr(z0) replaced by ∂Ω gives (11.2) and (11.3). �

Proposition 21 (Schwarz lemma). Suppose f is holomorphic on the unit disk D1(0). Assume
|f(z)| ≤ 1 for |z| < 1, and f(0) = 0. Then,

(11.6) |f(z)| ≤ |z|.

Furthermore, equality holds in (11.6), for some z ∈ D1(0) \ 0, if and only if f(z) = cz for some
constant of absolute value one.
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Proof. The hypotheses imply that g(z) = f(z)
z is a holomorphic function on D1(0). Therefore,

|g(z)| ≤ 1
a for z ∈ Da(0), 0 < a < 1. Using the maximum principle, |g(z)| ≤ 1

a for all z ∈ Da(0).
Taking a↗ 1,

(11.7) |g(z)| ≤ 1, ∀z ∈ D1(0).

Therefore, (11.6) holds. Next, suppose that |f(z0)| = |z0| at some z0 ∈ D1(0) \ 0. Then g attains a
maximum at z0, which implies g(z) is constant on D1(0), so f(z) = cz. �

It is also possible to prove the fundamental theorem of algebra using the maximum principle.

Theorem 12 (Fundamental theorem of algebra). If p(z) = anz
n + ...+ a1z + a0, an 6= 0 for some

n ≥ 1 is a polynomial of degree n, then p(z) must vanish somewhere on C.

Proof. If p(z) does not vanish on C, then f(z) = 1
p(z) is an entire function on C. Furthermore,

(11.8)
1

p(z)
=

1

zn
1

an + an−1z−1 + ...+ a0z−n
.

Then

(11.9) lim
z→∞

| 1

p(z)
|,

exists and is uniformly bounded. Then, by Liouville’s theorem, 1
p(z) is constant. �

12. Morera’s theorem and Goursat’s theorem

Let Ω be a connected open set in C. If f : Ω → C is holomorphic, then the Cauchy integral
formula and Cauchy integral theorem hold for f . Here, we establish a converse of the Cauchy
integral theorem, Morera’s theorem.

Theorem 13 (Morera’s theorem). Assume g : Ω→ C is continuous and

(12.1)

∫
γ

g(z)dz = 0,

whenever γ = ∂R, where R is a rectangle with sides parallel to the real and imaginary axes. Then
g is holomorphic.

Proof. Holomorphicity is a local property, so assume without loss of generality that Ω is a rectangle.
Fix α = a+ ib in Ω. Given z ∈ Ω, let γαz and σαz be piecewise linear paths from α to z. Then

(12.2) f(z) =

∫
γαz

g(ζ)dζ = i

∫ y

b

g(a+ is)ds+

∫ x

a

g(t+ iy)dt,

and

(12.3) f(z) =

∫
σαz

g(ζ)dζ =

∫ x

a

g(s+ ib)ds+ i

∫ y

b

g(x+ it)dt.

By (12.1), (12.2) and (12.3) are equal. Therefore,

(12.4)
∂f

∂x
(z) =

1

i

∂f

∂y
(z) = g(z).

Thus, f : Ω→ C is C1 and satisfies the Cauchy–Riemann equations, so f is holomorphic. Therefore,
g is holomorphic. �
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Next, prove Goursat’s theorem, which shows that if f is merely complex differentiable, f is
holomorphic.

Theorem 14 (Goursat’s theorem). If f : Ω→ C is complex differentiable at each point of Ω, then
f is holomorphic, so f ∈ C1(Ω), and in fact f ∈ C∞(Ω).

Proof. It is enough to show that the hypotheses yield

(12.5)

∫
∂R

f(z)dz = 0,

for every rectangle R ⊂ Ω.
Given a rectangle R ⊂ Ω, set a =

∫
∂R
f(z)dz. Divide R into four rectangles of equal size. The

integral over R is equal to the sum of the integrals over all four rectangles. Therefore, there must
exist one rectangle R1 such that

(12.6) |
∫
∂R1

f(z)dz| ≥ |a|
4
.

Then, divide R1 into four equal rectangles. One of them, R2, must have the property that

(12.7) |
∫
∂R2

f(z)dz| ≥ 4−2|a|.

Thus, there exists a sequence of nested rectangles Rk with perimeter ∂Rk of length 2−kl(∂R) = 2−kb
such that

(12.8) |
∫
∂Rk

f(z)dz| ≥ 4−k|a|.

The rectangles shrink to a point p ∈ Ω. Since f is complex differentiable,

(12.9) f(z) = f(p) + f ′(p)(z − p) + o(|z − p|).

Now then,

(12.10)

∫
∂Rk

f(p)dz =

∫
∂Rk

f ′(p)(z − p)dz = 0.

Therefore,

(12.11) |
∫
∂Rk

f(z)dz| ≤ Cδk2−k2−k.

Plugging (12.11) into (12.8), a = 0. �

13. More theorems

Set L = Ω ∩ R and set Ω± = {z ∈ Ω : ±Im(z) > 0}.

Proposition 22 (Schwarz reflection principle). Assume f : Ω+∪L→ C is continuous, holomorphic
in Ω+, and real valued on L. Then define g : Ω→ C by

(13.1) g(z) = f(z), z ∈ Ω+ ∪ L, g(z) = f(z̄), z ∈ Ω−.

Then g is holomorphic on Ω.
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Proof. It can be verified that g is C1 on Ω− and satisfies the Cauchy–Riemann equations, so g is
holomorphic on Ω \ L. Also, g is continuous on Ω.

To show that g is holomorphic on all of Ω, g satisfies (12.1) when γ = ∂R, and R ⊂ Ω+. The
same is also true if R ⊂ Ω−. Finally, if R intersects L, it is possible to split the integral on ∂R into
two integrals on rectangles. �

The Cauchy integral formula yields a locally uniform convergence result.

Proposition 23. Let Ω ⊂ C be an open set and let fν : Ω → C be holomorphic. Assume fν → f
locally uniformly (i.e. uniformly on each compact subset of Ω). Then f : Ω → C is holomorphic,
and f ′ν → f ′ locally uniformly on Ω.

Proof. Let K ⊂ Ω be a compact set. Then choose a smoothly bounded O such that K ⊂ O ⊂ Ō ⊂
Ω. Then, by the Cauchy integral formula,

(13.2) fν(z) =
1

2πi

∫
∂O

fν(ζ)

ζ − z
dζ,

(13.3) f ′ν(z) =
1

2πi

∫
∂O

fν(ζ)

(ζ − z)2
dζ.

Since fν → f locally uniformly on ∂O, the integrands in (13.2) and (13.3) converge uniformly on
Ō. Therefore, for any z ∈ O,

(13.4) f(z) =
1

2πi

∫
∂O

f(ζ)

ζ − z
dζ, ∀z ∈ O,

so f is holomorphic on O, and

(13.5) f ′(z) =
1

2πi

∫
∂O

f(ζ)

(ζ − z)2
dζ,

so f ′ν → f ′ locally uniformly on O. �

It is also possible to produce an integral for the inverse of a holomorphic map.

Proposition 24. Suppose f is holomorphic and one-to-one on a neighborhood of Ω̄, the closure of
a piecewise, smoothly bounded domain Ω ⊂ C. Set g = f−1 : f(Ω)→ Ω. Then

(13.6) g(w) =
1

2πi

∫
∂Ω

zf ′(z)

f(z)− w
dz, ∀w ∈ f(Ω).

Proof. Set ζ = g(w), so that h(z) = f(z)−w has one zero in Ω̄, at z = ζ, and h′(ζ) 6= 0. Indeed, if
h has a zero of order k at z0, then

(13.7) h(z) = (z − z0)kϕ(z)k

for some holomorphic function ϕ(z) that is nonvanishing in a neighborhood of Ω̄. Therefore, if f is
one to one, then f(z) − w = (z − z0)ϕ(z) for some holomorphic function ϕ(z) on a neighborhood
of Ω̄. Therefore,

(13.8)
1

2πi

∫
∂Ω

z
h′(z)

h(z)
dz =

1

2πi

∫
∂Ω

z(
1

z − z0
+
ϕ′(z)

ϕ(z)
)dz = ζ.

�
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14. Laurent series

The Laurent series is a generalization of the power series expansion, which works for functions
holomorphic in an annulus. Let

(14.1) A = {z ∈ C : r0 < |z − z0| < r1}

be such an annulus, where 0 < r0 < r1 <∞. Let γj be the counterclockwise circles {|z− z0| = rj},
so that ∂A = γ1 − γ0. Then for any f ∈ C1(A) holomorphic in A, the Cauchy integral formula
implies that for z ∈ A,

(14.2) f(z) =
1

2πi

∫
γ1

f(ζ)

ζ − z
dζ − 1

2πi

∫
γ0

f(ζ)

ζ − z
dζ.

Now then, for ζ ∈ γ1, since |z − z0| < |ζ − z0|,

(14.3)
1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

∞∑
j=0

(
z − z0

ζ − z0
)j .

Meanwhile, for ζ ∈ γ0, since |ζ − z0| < |z − z0|,

(14.4)
1

ζ − z
= − 1

(z − z0)− (ζ − z0)
=
−1

z − z0

∞∑
j=0

(
ζ − z0

z − z0
)j .

Therefore,

(14.5) f(z) =

∞∑
n=−∞

an(z − z0)n, z ∈ A,

where for n ≥ 0,

(14.6) an =
1

2πi

∫
γ1

f(ζ)

(ζ − z0)n+1
dζ,

and for n < 0,

(14.7) an =
1

2πi

∫
γ0

f(ζ)(ζ − z0)−n−1dζ.

Therefore,

Proposition 25. Given 0 ≤ r0 < r1 ≤ ∞, let A be the annulus (14.1). If f : A → C is holomorphic,
then it is given by the absolutely convergent series (14.5), with

(14.8) an =
1

2πi

∫
γ

f(ζ)

(ζ − z0)n+1
dζ, n ∈ Z,

where γ is any counterclockwise oriented circle centered at z0 of radius r0 < r < r1.

Proof. The preceding argument can be applied to any annulus

(14.9) Ab = {z ∈ C : r′0 < |z − z0| < r′1},

where r0 < r′0 < r′1 < r1. Since f is holomorphic on Ab, the integrals on γ0 and γ1 can be moved
to γ. �
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When f has an isolated singularity at z0, we can take r0 = 0. For example, take

(14.10) f(z) =
3z2 + 2z + 6

(z − 2)3
.

Making a partial fraction decomposition,

(14.11) f(z) =
22

(z − 2)3
+

14

(z − 2)2
+

3

z − 2
.

In general, if

(14.12) f(z) =
p(z)

(z − z0)n
=

n−1∑
j=1

aj
(z − z0)j

, aj =
1

(n− j)!
lim
z→z0

(
d

dz
)n−jp(z).

15. More Laurent series

Now consider the function

(15.1) f(z) =
3z2 + 4z + 5

(z − 2)(z + 1)(z + 3)
=

1

z − 2
+

1

z + 1
+

1

z + 3
.

Since f(z) is analytic in the disk, {z : |z| < 1}, the Laurent series in this region is a power series.
For an annulus centered at z0 = 2, f(z) is analytic on the annulus {z : 0 < |z − 2| < 3}. The

1
z−2 term is okay. Now then, 1

z+1 + 1
z+3 is analytic on {z : |z − 2| < 3}. Then,

(15.2)
1

z + 1
=

1

3 + (z − 2)
=

1

3

∞∑
n=0

(−1)n(z − 2)n

3n
.

Similarly,

(15.3)
1

z + 3
=

1

5 + (z − 2)
=

1

5

∞∑
n=0

(−1)n(z − 2)n

5n
.

Therefore, for n ≥ 0,

(15.4) an =
(−1)n

5n+1
+

(−1)n

3n+1
.

Many of the same computations that we have done for convergent power series may also be
utilized for convergent Laurent series.

Proposition 26. Assume f(z) is given by the series (10.5) converging for z ∈ A, for r0 < |z−z0| <
r1. Then f is holomorphic on A, and

(15.5) f ′(z) =

∞∑
n=−∞

nan(z − z0)n−1, z ∈ A.

Proof. Choose R1 such that

(15.6)
1

R1
= lim sup

n→∞
|an|1/n,

and

(15.7) R0 = lim sup
n→∞

|a−n|1/n.
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As before,

(15.8)

∞∑
n=0

an(z − z0)n,

converges absolutely for |z − z0| < R1 and diverges for |z − z0| > R1, and

(15.9)

−1∑
n=−∞

an(z − z0)n,

converges absolutely for |z−z0| > R0 and diverges for |z−z0| < R0. Once again, since limn→∞ n1/n =
1, the same computations may be made on A.

Taking

(15.10) fν(z) =

ν∑
n=−ν

an(z − z0)n,

fν → f locally uniformly on A, so the limit f is holomorphic on A, and f ′ν converges locally
uniformly to f ′. �

For example, do the Laurent expansion for

(15.11) f(z) = e1/z =

∞∑
n=0

1

n!

1

zn
.

Clearly R1 =∞ since an = 0 for n > 0. Now then,

(15.12) lim
n→∞

|a−n|−1/n = lim
n→∞

(n!)1/n =∞,

so R0 = 0.

16. Singularities

The function f(z) = 1
z is holomorphic on C \ {0} and has a singularity at z = 0.

Definition 5 (Isolated singularity). A point p ∈ C is an isolated singularity if there is a neighbor-
hood U of p such that f is holomorphic on U \ {p}.

So then, 0 is an isolated singularity for f(z) = 1
z . An isolated singularity is said to be removable

if there exists a function f̃ holomorphic on U , where f̃ = f on U \{p}. If p is a removable singularity,
then f is bounded near p. The converse is also true.

Theorem 15. If p ∈ Ω and f is holomorphic on Ω \ {p} and bounded, then p is a removable
singularity.

Proof. Consider the function g : Ω→ C defined by

(16.1) g(z) = (z − p)2f(z), z ∈ Ω \ {p}, g(p) = 0.

Since f is bounded, g is continuous on Ω. Also, g is complex differentiable at each point of Ω, since

(16.2) g′(z) = 2(z − p)f(z) + (z − p)2f ′(z), z ∈ Ω \ {p}, g′(p) = 0.
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Therefore, by Goursat’s theorem, g is holomorphic on Ω, so on a neighborhood U of p, g has the
convergent power series

(16.3) g(z) =

∞∑
n=0

an(z − p)n, z ∈ U.

Since g(p) = g′(p) = 0, a0 = a1 = 0, so

(16.4) g(z) = (z − p)2h(z), h(z) =

∞∑
n=0

an+2(z − p)n, z ∈ U.

Comparing (16.4) to (16.1), h(z) = f(z) on U \ {p}, so set

(16.5) f̃(z) = f(z), z ∈ Ω \ {p}, f̃(p) = h(p).

�

An isolated singularity p is said to be a pole if |f(z)| → ∞ as z → p. Therefore, there exists a
neighborhood U centered at p such that |f(z)| ≥ 1 on U \ {p}. Thus, g(z) = 1

f(z) is holomorphic

on U \ {p}, and g(z) → 0 as z → p, so g has a removable singularity on U . Therefore, g has a
convergent power series expansion on U ,

(16.6) g(z) =

∞∑
n=k

an(z − p)n,

where ak is the first nonzero coefficient in the power series. Therefore,

(16.7) g(z) = (z − p)kh(z), h(p) = ak 6= 0,

with h holomorphic on U .

Proposition 27. If f is holomorphic on Ω \ {p} with a pole at p, then there exists k ∈ Z+ such
that

(16.8) f(z) = (z − p)−kF (z),

on Ω \ {p}, with F holomorphic on Ω, and F (p) 6= 0.

If k = 1, f has a simple pole at p.
A function holomorphic on Ω except for a set of poles is said to be meromorphic on Ω. One

example of such a function is

(16.9) tan z =
sin z

cos z
,

which is meromorphic on C, with poles at {(k + 1
2 )π : k ∈ Z}.

17. More singularities and zeros

Proposition 28. If f : C → C is holomorphic and |f(z)| → ∞ as |z| → ∞, then f(z) is a
polynomial.

Proof. Define the function g : C \ {0} → C defined by

(17.1) g(z) = f(
1

z
).
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Since |g(z)| → ∞ as z →∞, g has a pole at 0. Then, by Proposition 27,

(17.2) g(z) = z−kG(z),

on C \ {0} for some k ∈ Z+, with G holomorphic on C and G(0) 6= 0. Then,

(17.3) G(z) =

k−1∑
j=0

gjz
j + zkh(z),

and therefore,

(17.4) g(z) =

k−1∑
j=0

gjz
j−k + h(z).

Therefore,

(17.5) f(z) =

k−1∑
j=0

gjz
k−j + h(

1

z
),

so

(17.6) f(z)−
k−1∑
j=0

gjz
k−j ,

is holomorphic on C, and approaches h(0) as |z| → ∞. Therefore, by Liouville’s theorem, the
difference is constant, so f(z) is a polynomial. �

An isolated singularity of a function that is not a pole or a removable singularity is called an
essential singularity. An example of an essential singularity is the function f(z) = e

1
z .

Proposition 29 (Casorati-Weierstrass theorem). Suppose f : Ω \ {p} → C has an essential singu-
larity at p. Then for any neighborhood U of p, the image of U \ {p} is dense in C.

Proof. Suppose there exists a neighborhood U of p such that the image of U \ {p} omits a neigh-
borhood of w0 ∈ C. Replacing f(z) by f(z) − w0, suppose without loss of generality w0 = 0.
Then

(17.7) g(z) =
1

f(z)

is holomorphic and bounded on U \ {p}, so g(z) has a removable singularity at p, so g̃(z) has a
holomorphic extension on U . If g̃(p) 6= 0, then p is a removable singularity for f . If g̃(p) = 0, then
p is a pole of f . �

Definition 6 (Zeros). An analytic function is said to have a zero of order m at z0 if

(17.8) f(z0) = ... = f (m−1)(z0) = 0,

and

(17.9) f (m)(z0) 6= 0.
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Suppose f has a zero of order m. Then

(17.10) f(z) =

∞∑
j=m

f (j)(z0)
1

j!
(z − z0)j = (z − z0)mg(z),

where g(z) 6= 0 in a neighborhood of z0. Therefore, if a sequence of zeros of f converges, and f is
analytic, then f must be identically zero.

18. Residue calculus

Suppose f is holomorphic on an open set Ω, except for isolated singularities at points pj ∈ Ω.
Each pj is contained in a disk Dj ⊂⊂ Ω on a neighborhood of which f has a Laurent series

(18.1) f(z) =

∞∑
n=−∞

an(pj)(z − pj)n.

Definition 7 (Residue). The coefficient a−1(pj) of (z − pj)−1 is called the residue of f at pj and
is denoted Respj (f). Then

(18.2) Respj (f) =
1

2πi

∫
∂Dj

f(z)dz.

If, in addition Ω is bounded, with piecewise smooth boundary, and f ∈ C(Ω̄, {pj}), assuming
{pj} is a finite set, then by the Cauchy integral formula,

(18.3)

∫
∂Ω

f(z)dz =
∑
j

∫
∂Dj

f(z)dz = 2πi
∑
j

Respj (f).

The residue formula has a number of applications. For example, we can compute

(18.4)

∫ ∞
−∞

dx

1 + x2
.

The function f(z) = (1+z2)−1 is a meromorphic function, with simple poles at z = ±i. The residue
at i may be computed

(18.5) lim
z→i

(z − i) 1

z2 + 1
= lim
z→i

1

z + i
=

1

2i
.

Therefore, if γ is a positively oriented contour that contains i in its interior, but not −i, then

(18.6)

∫
γ

1

z2 + 1
dz = π.

In particular, let γR denote the contour from −R to R, and then the semicircle Reiθ, where 0 ≤
θ ≤ π. Then

(18.7)

∫
γR

1

z2 + 1
dz = π.

Then,

(18.8)

∫ π

0

R

1 +R2e2iθ
ieiθdθ = O(

1

R
),
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so

(18.9)

∫ R

−R

1

1 + x2
dx = π +O(

1

R
).

Taking R→∞,

(18.10)

∫ ∞
−∞

1

1 + x2
dx = π.

We also know the antiderivative of 1
1+x2 , which is arctan(x).

Next, consider the integral

(18.11)

∫ ∞
−∞

1

1 + x4
dx.

The function 1
1+z4 has four simple poles, at z = ei

π
4 , ei

3π
4 , ei

5π
4 , and ei

7π
4 . Since

(18.12) lim
z→ei

π
4

z2 + i = 2i, and lim
z→ei

3π
4

z2 − i = −2i,

(18.13) lim
z→ei

π
4

1

(z2 + i)(z + ei
π
4 )

=
1

4i

1

ei
π
4

=
1

4
e−

3πi
4 ,

(18.14) lim
z→ei

3π
4

1

(z2 − i)(z + ei
3π
4 )

=
−1

4i

1

ei
π
4

=
1

4
e−

πi
4 .

Therefore, for any γR,

(18.15)

∫
γR

1

z4 + 1
dz =

π√
2
.

Since

(18.16)

∫
1

1 +R4e4iθ
Rieiθdθ = O(

1

R3
),

(18.17)

∫ ∞
−∞

1

1 + x4
dx =

π√
2
.

19. More residue calculus

The evaluation of Fourier transforms provides a rich source of examples to which to apply residue
calculus. For example, consider the problem of computing

(19.1)

∫ ∞
−∞

eixξ

1 + x2
dx.

This integral has simple poles at z = ±i. Moreover, the residue at z = i is e−ξ

2i and the residue at

z = −i is − e
ξ

2i . Then for ξ ≥ 0,

(19.2)

∫
γR

eizξ

1 + z2
dz = πe−ξ.

Taking R→∞,

(19.3)

∫ ∞
−∞

eixξ

1 + x2
dx = πe−ξ.
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Making the same computation for ξ ≤ 0,

(19.4)

∫ ∞
−∞

eixξ

1 + x2
dx = πe−|ξ|.

It is also possible to use residue calculus to compute trigonometric integrals. Take for example,

(19.5)

∫ 2π

0

sin2 θ

5 + 4 cos θ
dθ =

∫ 2π

0

(eiθ−e−iθ)2

−4

5 + 2(eiθ + e−iθ
dθ.

Since eiθ travels around a circle of radius 1 when θ travels from 0 to 2π, and if z = eiθ, dθ = dz
iz ,

(19.6) = −1

4

∫
|z|=1

(z − 1
z )2

5 + 2(z + 1
z )

dz

iz
= − 1

4i

∫
|z|=1

(z2 − 1)2

5z3 + 2z4 + 2z2
dz.

Factoring the denominator,

(19.7) 2z4 + 5z3 + 2z2 = 2z2(z +
1

2
)(z + 2).

Therefore, (19.6) has a double pole at z = 0 and simple poles at z = − 1
2 and z = −2. Therefore,

(19.8) (19.6) = −π
2

[Res|z=0 +Res|z=− 1
2
] = −π

2
[
d

dz

(z2 − 1)2

2z2 + 5z + 2
|z=0 +

(z2 − 1)2

2z2(z + 2)
|z=− 1

2
]

(19.9) = −π
2

(
2(−1)(0)

2
− 5(−1)2

(2)2
+

( 1
4 − 1)2

2( 1
4 )( 3

2 )
) =

π

4
.

20. Residue calculus using algebra of paths

Next, consider the Fourier transform

(20.1) A =

∫ ∞
−∞

eixξ

2 cosh x
2

dx.

Take the integral over the the contour γ(x) = x+ 2πi. Then compute

(20.2) 2 cosh
x− 2πi

2
= −(ex/2 + e−x/2) = −2 cosh(

x

2
).

The poles of 1
2 cosh z

2
are exactly the points where cosh( z2 ) = 0, or ez/2 = −e−z/2, so then ez = −1,

z = iπ + i2nπ. Therefore,

(20.3) (1 + e−2πξ)

∫ ∞
−∞

eixξ

2 cosh x
2

dx = 2πi lim
z→πi

(z − πi)eizξ

2 cosh( z2 )
= 2πi

e−ξ

sinh(πi2 )
= πe−ξ.

Doing some algebra,

(20.4)

∫ ∞
−∞

eixξ

2 cosh x
2

dx =
π

coshπξ
.

It is possible to use the algebra of paths to compute the integral

(20.5)

∫ ∞
−∞

eax

1 + ex
dx,
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when 0 < a < 1. Let γR denote the contour from −R to R, then up to R + 2iπ, then left to
−R+ 2iπ, then down to −R. Since eaz

1+ez has a simple pole at z = iπ + 2niπ, for all n,

(20.6)

∫
γR

eaz

1 + ez
dz =

eiaπ

eiπ
= −eiaπ.

Furthermore, we can show that when 0 < a < 1,

(20.7) lim
R→∞

∫ R+2πi

R

eaz

1 + ez
dz,

∫ −R+2πi

−R

eaz

1 + ez
dz = 0.

Therefore, let

(20.8) A =

∫ ∞
−∞

eax

1 + ex
dx,

(20.9) A− e2πiaA = −eiaπ.
Doing some algebra,

(20.10) A =
π

sinπa
.

21. More residue calculus using algebra of paths

Now apply residue calculus to an integrand with a double pole. For example, consider the integral

(21.1) u(ξ) =

∫ ∞
−∞

eixξ

(1 + x2)2
dx, ξ ∈ R.

Then,

(21.2) Resi
eizξ

(1 + z2)2
= g′(i),

where

(21.3) g(z) =
eiξz

(z + i)2
.

Then,

(21.4) g′(i) = − i
4

(1 + ξ)e−ξ.

Therefore, when ξ > 0,

(21.5) u(ξ) = lim
R→∞

∫
γR

eiξz

(1 + z2)2
dz =

π

2
(1 + ξ)e−ξ.

Therefore, since u(ξ) is an even function of ξ,

(21.6)

∫ ∞
−∞

eixξ

(1 + x2)2
dx =

π

2
(1 + |ξ|)e−|ξ|, ∀ξ ∈ R.

Another example of this kind is the integral

(21.7) B =

∫ ∞
0

xα

1 + x2
dx,

for some 0 < α < 1. Then define zα = rαeiαθ for 0 < θ < 2π. Then zα is holomorphic on C \ R+.
Moreover, (x+ iy)α has distinct boundary values when x > 0 as y ↘ 0 and y ↗ 0. Then let γR be
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the curve going from 0 to Reiε along the curve reiε, followed by the counterclockwise circle from
Reiε to Rei(2π−ε), and then from Rei(2π−ε) to zero along the path rei(2π−ε), r going from R to 0.

Then for any R > 1,
(21.8)∫
γR

zα

1 + z2
dz = 2πiResz=i(

zα

1 + z2
)+2πiResz=−i(

zα

1 + z2
) =

2πi

2i
eiα

π
2−2πi

2i
e

3πiα
2 = π(eiπα/2−e3πiα/2).

Next,

(21.9)

∫ 2π−ε

ε

Rαeiθα

1 +R2e2iθ
Rieiθdθ = O(Rα−1).

Also, for any R > 0 fixed,

(21.10) lim
ε↘0

∫ R

0

rαeiεα

1 + r2e2iε
eiεdr =

∫ R

0

xα

1 + x2
dx.

Meanwhile,

(21.11) − lim
ε↘0

∫ R

0

rαei(2π−ε)α

1 + r2e2i(2π−ε) dr = −e2πiα

∫ R

0

xα

1 + x2
dx.

Therefore, taking R→∞,

(21.12) (1− e2πiα)B = π(eπiα/2 − e3πiα/2).

Doing some algebra,

(21.13) B = π
sin(πα/2)

sinπα
.

22. The argument principle

Suppose Ω ⊂ C is a bounded domain with piecewise smooth boundary and f ∈ C2(Ω̄) is holo-
morphic on Ω, and nowhere zero on ∂Ω. The number of zeros, counted with multiplicity, may be
expressed in terms of the behavior of f on ∂Ω. We say that pj ∈ Ω is a zero of multiplicity k
provided,

(22.1) f (l)(pj) = 0, 0 ≤ l ≤ k − 1, f (k)(pj) 6= 0.

Proposition 30. Under the hypotheses stated above, the number ν(f,Ω) of zeros of f in Ω, counted
with multiplicity, is given by

(22.2) ν(f,Ω) =
1

2πi

∫
∂Ω

f ′(z)

f(z)
dz.

Proof. Let Dj be small, disjoint disks around pj ∈ Ω. Then, by the Cauchy integral formula,

(22.3)
1

2πi

∫
∂Ω

f ′(z)

f(z)
dz =

1

2πi

∫
∂Dj

f ′(z)

f(z)
dz.

In a neighborhood D̄j of pj ,

(22.4) f(z) = (z − pj)mjg(z),

with g(z) non-vanishing on D̄j . Therefore, on D̄j ,

(22.5)
f ′(z)

f(z)
=

mj

(z − pj)
+
g′(z)

g(z)
.
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Since g′(z)
g(z) is holomorphic on D̄j ,

(22.6)
1

2πi

∫
∂Dj

f ′(z)

f(z)
dz =

mj

2πi

∫
∂Dj

dz

z − pj
= mj .

�

Proposition 30 has an interpretation in terms of winding numbers. Let Cj denote the connected
components of ∂Ω, with proper orientation, and suppose Cj is parameterized by ϕj : S1 → Cj .
Then,

(22.7) f ◦ ϕj : S1 → C \ {0}

parameterizes the image curve γj = f(Cj).

Proposition 31. With Cj and γj as above,

(22.8)
1

2πi

∫
Cj

f ′(z)

f(z)
dz =

1

2πi

∫
γj

dz

z
.

Proof. In general,

(22.9)

∫
Cj

u(z)dz =

∫ 2π

0

u(ϕj(t))ϕ
′
j(t)dt,

and

(22.10)

∫
γj

v(z)dz =

∫ 2π

0

v(f(ϕj(t)))
d

dt
f ◦ ϕj(t)dt =

∫ 2π

0

v(f(ϕj(t)))f
′(ϕj(t))ϕ

′
j(t)dt.

In particular, taking v(z) = 1
z ,

(22.11)

∫
Cj

f ′(z)

f(z)
dz =

∫ 2π

0

f ′(ϕj(t))

f(ϕj(t))
ϕ′j(t)dt =

∫ 2π

0

1

f(ϕj(t))
f ′(ϕj(t))ϕ

′
j(t)dt

=

∫ 2π

0

v(f(ϕj(t)))f
′(ϕj(t))ϕ

′
j(t)dt =

∫
γj

1

z
dz.

�

Suppose γ is an arbitrary continuous, piecewise C1 curve in C \ {0}, say,

(22.12) γ : [0, 2π]→ C \ {0}, γ(t) = r(t)eiθ(t),

where r(t) and θ(t) are continuous, piecewise C1, real valued functions of t, and r(t) > 0. Then,

(22.13) γ′(t) = [r′(t) + ir(t)θ′(t)]eiθ(t).

Computing,

(22.14)
1

2πi

∫
γ

dz

z
=

1

2πi

∫ 2π

0

γ′(t)

γ(t)
dt =

1

2πi

∫ 2π

0

[
r′(t)

r(t)
+ iθ′(t)]dt.

Since r(0) = eiθ(0) = r(2π)eiθ(2π),

(22.15)

∫ 2π

0

r′(t)

r(t)
dt = log r(2π)− log r(0) = 0,
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and

(22.16)
1

2π

∫ 2π

0

θ′(t) =
1

2π
[θ(2π)− θ(0)] = n(γ, 0) ∈ Z.

This integer is called the winding number.
Since continuous, integer valued functions must be constant, the winding number is stable.

Proposition 32. If γ0 and γ1 are smoothly homotopic in C \ {0}, then

(22.17) n(γ0, 0) = n(γ1, 0).

Proof. If γs is a smooth family of curves in C \ {0}, for 0 ≤ s ≤ 1, then

(22.18) n(γs, 0) =
1

2π

∫
γs

dθ,

is a continuous function of s ∈ [0, 1], taking values in Z. Hence it is constant. �

23. Rouche’s theorem

Proposition 33 (Argument principle). If Cj denote the connected components of ∂Ω,

(23.1) ν(f,Ω) =
∑
j

n(γj , 0), γj = f(Cj).

That is, the total number of zeros of f in Ω, counting multiplicity, is equal to the sum of the winding
numbers of f(Cj) about 0.

Proof. For any Cj ,

(23.2)
1

2πi

∫
Cj

f ′(z)

f(z)
dz = n(γj , 0), γj = f(Cj).

�

The argument principle also holds for meromorphic functions. If f has a pole of order mj at pj ,
then (19.6) would give −mj for a disk of small radius around pj .

Proposition 34. Assume f is meromorphic on a bounded domain Ω, and C1 in a neighborhood of
∂Ω. Then the number of zeros of f minus the number of poles of f (counting multiplicity) in Ω is
equal to the sum of the winding numbers of f(Cj) about 0, where the Cj are connected components
of ∂Ω.

Many times, the right hand side is more readily calculable than the left hand side. For example,
a useful corollary to the above result is Rouche’s theorem.

Proposition 35 (Rouche’s theorem). Let f, g ∈ C1(Ω̄) be holomorphic in Ω and nowhere zero on
∂Ω. Also assume that

(23.3) |f(z)− g(z)| < |f(z)|, ∀z ∈ ∂Ω.

Then,

(23.4) ν(f,Ω) = ν(g,Ω).
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Proof. Inequality (23.3) implies that f and g are smoothly homotopic as maps from ∂Ω to C \ {0}.
Indeed, take

(23.5) fτ (z) = f(z)− τ [f(z)− g(z)], 0 ≤ τ ≤ 1.

Therefore, f |Cj and g|Cj have the same winding numbers about 0, for each boundary component
Cj . �

Rouche’s theorem gives another proof of the fundamental theorem of algebra. Let

(23.6) f(z) = zn, and g(z) = zn + an−1z
n−1 + ...+ a0.

For z sufficiently large, |f(z)−g(z)| < |f(z)|, and therefore, f and g have the same number of zeros
inside the disk {z : |z| ≤ R}. It is clear that f has n zeros inside this disk, so g must have n zeros
as well.

Proposition 36. Suppose Ω is as in Proposition 30 and let f ∈ C1(Ω̄) be holomorphic on Ω.
Suppose S ⊂ C is connected, and S ∩ f(∂Ω) = ∅. Then,

(23.7) ν(f − q,Ω) is independent of q ∈ S.

Proof. Define the function,

(23.8) ϕ(q) = ν(f − q,Ω) =
1

2πi

∫
∂Ω

f ′(z)

f(z)− q
dz.

This function is a continuous function of q, so since ϕ : S → Z and S is connected, ϕ must be
constant. �

Proposition 37 (Open mapping theorem). If Ω ⊂ C is open and connected, and f : Ω → C is
holomorphic and nonconstant, then f maps open sets to open sets.

Proof. Suppose p ∈ Ω and q = f(p). Then we have a power series expansion

(23.9) f(z) = f(p) +

∞∑
n=k

an(z − p)n,

where ak 6= 0. Therefore, there exists a disk Dρ(p) such that f |Dρ(p) is bounded away from q.
Applying Proposition 36 to S = Dε(q) for some ε > 0, for all q′ ∈ Dε(q),

(23.10) ν(f − q′, Dρ(p)) = ν(f − q,ρ (p)) = k.

Therefore, such points q′ are contained in the range of f , and are hit exactly k times, counting
multiplicity. �

Proposition 38 (Hurwitz theorem). Assume fn are holomorphic on each connected region Ω and
fn → f locally uniformly on Ω. Assume each fn is nowhere vanishing in Ω. Then f is either
nowhere vanishing or identically zero in Ω.

Proof. Since fn → f locally uniformly, f is holomorphic on Ω and f ′n → f ′ locally uniformly on Ω.
If f is not identically zero on Ω, then the only zeros of f in Ω are isolated. Let D be a disk in Ω
for which f has zeros in D, but not in ∂D. Then 1

fn
→ 1

f locally uniformly on ∂D. By (22.2),

(23.11)
1

2πi

∫
∂D

f ′n(z)

fn(z)
dz = 0, for all n.
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Passing to the limit,

(23.12) ν(f,D) =
1

2πi

∫
∂D

f ′(z)

f(z)
= 0,

so f does not have any zeros in D. �

24. Infinite products

In addition to represented holomorphic functions as an infinite sum of functions, it is also useful
to represent a function as an infinite product of functions.

First, consider the product of numbers

(24.1)

∞∏
k=1

(1 + ak).

Disregarding the case when ak = −1 for some k, convergence of
∏M
k=1(1 + ak) as M →∞ amounts

to the convergence of

(24.2) lim
M→∞

N∏
k=M

(1 + ak) = 1, uniformly in N > M.

In particular, we require ak → 0 as k →∞.
Writing out the product

(24.3)

N∏
k=M

(1 + ak) = 1 +

N∑
j=M

aj +
∑

M≤j1<j2≤N

aj1aj2 + ...+ aM · · · aN ,

(24.4) |
N∏

k=M

(1 + ak)− 1| ≤
N∏

k=M

(1 + |ak|)− 1.

Now then,

(24.5) log

N∏
k=M

(1 + |ak|) =

N∑
k=M

log(1 + |ak|).

Since x ≥ 0 implies log(1 + x) ≤ x, and 0 ≤ x ≤ 1 implies log(1 + x) ≥ x
2 ,

(24.6)
1

2

N∑
k=M

|ak| ≤ log

N∏
k=M

(1 + |ak|) ≤
N∑

k=M

|ak|.

Therefore, limM→∞
∏N
k=M (1 + |ak|) = 1 uniformly for N > M , if and only if

∑N
k=M |ak| → 0

uniformly in M →∞.
Another consequence is the following,

(24.7) If 1 + ak 6= 0, for all k, then
∑
k

|ak| <∞,⇒
∞∏
k=1

(1 + ak) 6= 0.

Now replace the sequence (ak) of complex numbers by a sequence (fk) of holomorphic functions.
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Proposition 39. Let fk : Ω→ C be holomorphic. Assume that for each compact set K ⊂ Ω there
exist Mk(K) such that

(24.8) sup
z∈K
|fk(z)| ≤Mk(K), and

∑
k

Mk(K) <∞.

Then we have a convergent infinite product

(24.9)

∞∏
k=1

(1 + fk(z)) = F (z).

In fact,

(24.10)

n∏
k=1

(1 + fk(z))→ F (z), as n→∞,

uniformly on compact subsets of Ω. Therefore, F is holomorphic on Ω. If z0 ∈ Ω and 1+fk(z0) 6= 0
for all k, then F (z0) 6= 0.

Now assume that fk, gk : Ω → C are holomorphic, and assume in addition that supK |gk| ≤
Mk(K). Then one has the convergent infinite product

(24.11)

∞∏
k=1

(1 + gk(z)) = G(z),

with G holomorphic on Ω. Now then,

(24.12) (1 + fk(z))(1 + gk(z)) = 1 + fk(z) + gk(z) + fk(z)gk(z),

so

(24.13) |fk(z) + gk(z) + fk(z)gk(z)| ≤ 2Mk(K) +Mk(K)2.

Therefore,

(24.14)

∞∏
k=1

(1 + hk(z)) = H(z),

is a convergent infinite product, with H(z) holomorphic on Ω. Moreover, for any n,

(24.15)

n∏
k=1

(1 + fk(z))(1 + gk(z)) =

n∏
k=1

(1 + fk(z)) ·
n∏
k=1

(1 + gk(z)),

so therefore,

(24.16) F (z)G(z) = H(z).

Consider the infinite product

(24.17) S(z) = z

∞∏
k=1

(1− z2

k2
).

If K is contained in the set {z : |z| ≤ R}, Mk(K) ≤ R2

k2 , so S(z) is holomorphic on all of C.
Furthermore, S(z) = 0 if and only if z ∈ Z. Also, all zeros of S(z) are simple.

A familiar function which has the same zeros as S(z) is sin(πz). Since

(24.18) lim
z→0

1

z
S(z) = 1,
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compare S(z) to

(24.19) s(z) =
1

π
sin(πz).

Lemma 4. For S(z) as in (24.17),

(24.20) S(z − 1) = −S(z).

Proof. Since S(z) = limn→∞ Sn(z), where

(24.21)

Sn(z) = z

n∏
k=1

(1− z2

k2
) = z

n∏
k=1

(1− z

k
)(1 +

z

k
)

= z

n∏
k=1

(
k − z
k

) · (k + z

k
) =

(−1)n

(n!)2
(z − n)(z − n+ 1) · · · (z + n− 1)(z + n).

Plugging in z − 1,

(24.22) Sn(z − 1) =
(−1)n

(n!)2
(z − 1− n)(z − n) · · · (z + n− 2)(z + n− 1) =

z − n− 1

z + n
Sn(z).

Taking n→∞,

(24.23) S(z − 1) = −S(z).

�

Since sin(π(z − 1)) = − sin(πz), s(z − 1) = −s(z). Now take

(24.24) f(z) =
1

S(z)
− 1

s(z)
.

This function is holomorphic on C \ Z and satisfies f(z − 1) = −f(z). Furthermore,

(24.25) S(z) = zH(z), s(z) = zh(z),

with H and h holomorphic on C, with H(0) = h(0) = 1. Therefore, on some neighborhood O of 0,

(24.26)
1

H(z)
= 1 + zA(z),

1

h(z)
= 1 + za(z),

Consequently, on O \ 0,

(24.27)
1

S(z)
− 1

s(z)
=

1

z
(1 + zA(z))− 1

z
(1 + za(z)) = A(z)− a(z).

Thus, f(z) has a removable singularity at z = 0, setting f(0) = A(0) − a(0). Setting f(−k) =
(−1)k[A(0)− a(0)] for each k ∈ Z,

(24.28) f : C→ C, holomorphic.

Lemma 5. We have f(z)→ 0 as |z| → ∞, uniformly on the set

(24.29) {z ∈ C : 0 ≤ Re(z) ≤ 1}.
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Proof. Since

(24.30) sin(x+ iy) =
1

2i
(e−y+ix − ey−ix),

| sin(x+ iy)| → ∞ as |y| → ∞. Meanwhile, for S(z),

(24.31) |1− z2

k2
| ≥ 1 +

y2 − x2

k2
≥ 1 +

y2 − 1

k2
,

so |Re(z)| ≤ 1 and |Im(z)| ≥ 1 implies |S(z)| ≥ |z|. Therefore, |S(z)| → ∞ as |z| → ∞. �

Therefore, f(z) is bounded. Since f is holomorphic on C, f is constant. Finally, since f(z)→ 0
as |z| → ∞, 0 ≤ Re(z) ≤ 1, f(z) = 0. Therefore,

Proposition 40. For z ∈ C,

(24.32) sinπz = πz ·
∞∏
k=1

(1− z2

k2
).
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