ORDINARY DIFFERENTIAL EQUATIONS

BENJAMIN DODSON

Contents

1.	The method of integrating factors	2
2.	Separable differential equations	3
3.	Linear and nonlinear differential equations	4
4.	Exact differential equations and integrating factors	5
5.	Second order equations - reducible cases	6
6.	Homogeneous differential equations with constant coefficients	8
7.	Repeated roots: reduction of order	9
8.	Complex roots of the characteristic equation	10
9.	The Wronskian	10
10.	Nonhomogeneous equations: method of undetermined coefficients	12
11.	Variation of parameters	13
12.	Mechanical and electrical vibrations	14
13.	Vector spaces and linear transformations	15
14.	Basis and dimension	16
15.	Eigenvalues and eigenvectors	17
16.	The matrix exponential	18
17.	Generalized eigenvectors and the minimal polynomial	21
18.	Systems of first order linear equations	23
19.	Nonhomogeneous linear systems	24
20.	Variable coefficient systems	26
21.	Laplace Transform	28
22.	Initial value problems	30
23.	Convolution	30
24.	Heaviside function	33
25.	Impulse functions	35
26.	Existence and uniqueness of solutions	36
27.	Nonlinear ODEs : The phase plane	37
28.	Predator-prey equations	38
29.	Competing species equation	40
References		42

These class notes are primarily taken from $[\mathrm{BD65}]$ and $[\mathrm{Tay22}].$

1. The method of integrating factors

Let us consider an ordinary differential equation of the form

(1.1)
$$(4+t^2)\frac{dy}{dt} + 2ty = 4t.$$

Notice that by the product rule, (1.1) is equal to

(1.2)
$$\frac{d}{dt}((4+t^2)y(t)) = 4t$$

Then by the fundamental theorem of calculus,

(1.3)
$$(4+t^2)y(t) = 2t^2 + c.$$

Usually, such equations do not fit into this framework exactly, but it may be possible to use an integrating factor. Consider the differential equation

(1.4)
$$\frac{dy}{dt} + \frac{1}{2}y = \frac{1}{2}e^{t/3}.$$

Let us multiply the left and right hand sides by the function $\mu(t) > 0$.

(1.5)
$$\mu(t)\frac{dy}{dt} + \frac{1}{2}\mu(t)y(t) = \frac{1}{2}\mu(t)e^{t/3}.$$

If $\mu(t)$ solves the equation

(1.6)
$$\frac{d}{dt}\mu(t) = \frac{1}{2}\mu(t)$$

then

(1.7)
$$\frac{d}{dt}(\mu(t)y(t)) = \frac{1}{2}\mu(t)e^{t/3},$$

and we can therefore proceed as before. Computing,

(1.8)
$$\frac{1}{\mu(t)}\frac{d}{dt}\mu(t) = \frac{d}{dt}\ln\mu(t) = a,$$

and therefore,

(1.9)
$$\mu(t) = e^{at}.$$

Now let us try a more difficult problem.

(1.10)
$$t\frac{dy}{dt} + 2y(t) = 4t^2, \qquad y(1) = 2$$

By direct computation, we need $\mu(t)$ such that

(1.11)
$$\frac{d}{dt}\mu(t) = \frac{2}{t}\mu(t).$$

Then we compute

(1.12)
$$\frac{d}{dt}\ln|\mu(t)| = \frac{2}{t}.$$

Integrating the left and right hand sides,

(1.13)
$$\ln|\mu(t)| = 2\ln t + c.$$

Therefore, we may set

(1.14)

For a general equation

(1.15)
$$\frac{dy}{dt} + p(t)y(t) = q(t).$$

we take the integrating factor

(1.16)
$$\mu(t) = \exp(\int p(t)dt).$$

2. Separable differential equations

9

 $\mu(t) = t^2.$

Consider the general first-order differential equation

(2.1)
$$\frac{dy}{dx} = f(x,y).$$

Suppose such an equation is of the form

(2.2)
$$M(x) + N(y)\frac{dy}{dx} = 0$$

Such an equation is separable, because it can be written in the differential form

$$(2.3) M(x)dx + N(y)dy = 0$$

For example, solve the equation

(2.4)
$$\frac{dy}{dx} = \frac{x^2}{1-y^2}.$$

Then we can solve

(2.5)
$$\frac{1}{3}x^3 + c = y - \frac{y^3}{3}.$$

Next, solve

(2.6)
$$\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}, \qquad y(0) = -1$$

Solving this equation,

(2.7)

In this case we take c = 3.

 $y^2 - 2y = x^3 + 2x^2 + 2x + c.$

Now consider the separable differential equation

(2.8)
$$\frac{dy}{dx} = \frac{4x - x^3}{4 + y^3}, \qquad y(0) = 1.$$

In this case,

(2.9)
$$4y + \frac{y^4}{4} = 2x^2 - \frac{x^4}{4} + c.$$

and by direct computation, $c = \frac{17}{4}$.

Remark: If we have an equation of the form

(2.10)
$$\frac{dy}{dx} = f(y)g(x),$$

if $f(y_0) = 0$, then the solution to (2.10) is of the form $y(x) = y_0$. In this case we would not want to divide by f(y).

3. LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS

Theorem 1. If the functions p and g are continuous on an open interval $I : \alpha < t < \beta$ containing the point $t = t_0$, then there exists a unique function $y = \phi(t)$ that satisfies the differential equation

(3.1)
$$\frac{dy}{dt} + p(t)y(t) = g(t),$$

for each $t \in I$, and that also satisfies the initial condition $y(t_0) = y_0$.

Proof. Since p(t) is continuous, p(t) is integrable on a subinterval of I. Therefore,

(3.2)
$$\mu(t) = \exp(\int p(t)dt),$$

is well-defined.

Now then, suppose (3.1) has two solutions, $y_1(t)$ and $y_2(t)$. Then, let $y_1(t) - y_2(t) = y(t)$. Then,

(3.3)
$$\frac{dy}{dt} + p(t)y(t) = 0, \qquad y(t_0) = 0.$$

We can show that the only solution to (3.3) is y(t) = 0.

Theorem 2. Suppose f and $\frac{\partial f}{\partial y}$ are continuous in some rectangle $\alpha < t < \beta$, $\gamma < y < \delta$, containing (t_0, y_0) . Then there exists some interval $t_0 - h < t < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y(t) = \phi(t)$ of the initial value problem

(3.4)
$$\frac{dy}{dt} = f(t,y), \qquad y(t_0) = y_0.$$

We can apply this theorem to the initial value problem

(3.5)
$$ty'(t) + 2y(t) = 4t^2, \quad y(1) = 2$$

Doing some algebra, $p(t) = \frac{2}{t}$, which is continuous on $t \neq 0$.

Now consider the initial value problem

(3.6)
$$\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}, \qquad y(0) = -1.$$

In this case, f and $\frac{\partial f}{\partial y}$ are continuous on any rectangle that does not contain y = 1. If x = 0 and y = 1, we obtain

(3.7)
$$y^2 - 2y = x^3 + 2x^2 + 2x + c, \qquad c = -1.$$

For the equation,

(3.8)
$$\frac{dy}{dt} = y^{1/3}, \qquad y(0) = 0$$

we do not have a unique solution.

The initial value problem,

(3.9)
$$\frac{dy}{dt} = y^2, \qquad y(0) = 1,$$

has a solution on the interval (0, 1).

4. EXACT DIFFERENTIAL EQUATIONS AND INTEGRATING FACTORS

Now consider the differential equation

$$(4.1) 2x + y^2 + 2xy\frac{dy}{dx} = 0$$

Observe that if we did not have 2x,

is a separable equation. Here, notice that $2x + y^2 = \frac{\partial \psi}{\partial x}$ and $2xy = \frac{\partial \psi}{\partial y}$, where $\psi(x, y) = x^2 + xy^2$. Then,

(4.3)
$$\frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{dy}{dx} = 0$$

Then, (4.3) has the form,

(4.4)
$$\frac{d\psi}{dx}(x,y) = \frac{d}{dx}(x^2 + xy^2) = 0$$

Therefore,

(4.5)
$$\psi(x,y) = x^2 + xy^2 = c.$$

How do we know in general if this is possible? Observe that if

(4.6)
$$\frac{\partial \psi}{\partial x}(x,y) = M(x,y), \qquad \frac{\partial \psi}{\partial y}(x,y) = N(x,y),$$

then

(4.7)
$$\frac{\partial M}{\partial y}(x,y) = \frac{\partial N}{\partial x}(x,y).$$

Theorem 3. Suppose the functions M, N, M_y , and N_x are continuous in the rectangular region $\alpha < x < \beta, \ \gamma < y < \delta.$ Then,

(4.8)
$$M(x,y) + N(x,y)\frac{dy}{dx} = 0,$$

is an exact differential equation in R if and only if

$$(4.9) M_y(x,y) = N_x(x,y).$$

Proof. We can try integrating in x or in y. Take

(4.10)
$$\psi(x,y) = Q(x,y) + h(y), \qquad Q(x,y) = \int_{x_0}^x M(s,y) ds.$$

Differentiating (4.10) with respect to y,

(4.11)
$$\psi_y(x,y) = \frac{\partial Q}{\partial y}(x,y) + h'(y) = \int_{x_0}^x N_x(s,y)ds + h'(y) = N(x,y) - N(x_0,y) + h'(y).$$

Now then, since we want $\psi_y(x,y) = N(x,y)$, we need to solve $h'(y) = N(x_0,y)$. So take h(y) = $\int_{y_0}^y N(x_0, s) ds.$

,

First consider the equation

(4.12)
$$(y\cos x + 2xe^y) + (\sin x + x^2e^y - 1)\frac{dy}{dx} = 0$$

In this case, $\psi(x, y) = y \sin x + x^2 e^y - y$.

It is sometimes possible to convert a differential equation that is not exact to an exact differential equation by multiplying by a suitable integrating factor. Indeed, suppose we have the equation

(4.13)
$$M(x,y) + N(x,y)\frac{dy}{dx} = 0.$$

Multiplying by $\mu(x, y)$,

(4.14)
$$\mu(x,y)M(x,y) + \mu(x,y)N(x,y)\frac{dy}{dx} = 0.$$

Then (4.14) is exact if and only if

(4.15)
$$(\mu(x,y)M(x,y))_y = (\mu(x,y)N(x,y))_x.$$

Computing,

(4.16)
$$M\mu_y - N\mu_x + (M_y - N_x)\mu = 0.$$

For example, consider the equation

(4.17)
$$(3xy + y^2) + (x^2 + xy)\frac{dy}{dx} = 0$$

Then we wish to solve

(4.18)
$$(3xy + y^2)\mu_y - (x^2 + xy)\mu_x + (3x + 2y - 2x - y)\mu = 0$$

Simplifying by setting $\mu_y = 0$,

(4.19)
$$\frac{\mu_x}{\mu} = \frac{x+y}{x(x+y)} = \frac{1}{x}, \qquad \mu = x.$$

5. Second order equations - reducible cases

Second order differential equations have the form

(5.1)
$$\frac{dy^2}{dt^2} = f(t, y, \frac{dy}{dt}), \qquad y(t_0) = y_0, \qquad y'(t_0) = v_0.$$

There are some cases which reduce to first order equations for

(5.2)
$$v(t) = \frac{dy}{dt}.$$

For example, consider

$$y'' = f(t, y').$$

In this case, let v = y',

(5.4)
$$\frac{dv}{dt} = f(t, v), \qquad v(t_0) = v_0.$$

Solving for v(t),

(5.3)

(5.5)
$$y(t) = y_0 + \int_{t_0}^t v(s) ds.$$

For example, consider the equation

(5.6)
$$\frac{d^2y}{dt^2} = t\frac{dy}{dt}.$$

(5.7)
$$\frac{dv}{dt} = tv$$

so
$$v(t) = e^{t^2/2}$$
 and $y(t) = y_0 + \int_0^t e^{s^2/2} ds$

Now, consider the equation,

(5.8)
$$y'' = f(y, y').$$

Taking $v(t) = \frac{dy}{dt}$,

(5.9)
$$\frac{dv}{dt} = f(y, v),$$

which contains too many variables. Rewriting the equation as one for v as a function of y,

(5.10)
$$\frac{dv}{dt} = \frac{dv}{dy}\frac{dy}{dt} = v\frac{dv}{dx}$$

Substituting (5.10) into (5.8),

(5.11)
$$\frac{dv}{dy} = \frac{f(y,v)}{v}, \qquad v(y_0) = v_0.$$

For example, consider the equation

$$(5.12) y'' = f(y)$$

In this case,

(5.13)
$$\frac{dv}{dy} = \frac{f(y)}{v}$$

This equation is separable,

$$(5.14) vdv = f(y)dy$$

Therefore,

(5.15)
$$\frac{1}{2}v^2 = g(y) + C, \qquad \int f(y)dx = g(y) + C.$$

Therefore,

(5.16)
$$\frac{dy}{dt} = v(t) = \pm \sqrt{2g(x) + 2C}$$

This equation is also separable:

(5.17)
$$\pm \int \frac{dy}{\sqrt{2g(y) + 2C}} = t + C_2.$$

Take

$$\frac{d^2y}{dt^2} = y^2$$

Then,

(5.19)
$$\frac{dv}{dy} = \frac{y^2}{v}.$$

Therefore,

(5.20)
$$\frac{1}{2}v^2 = \frac{1}{3}y^3 + C.$$

Therefore,

(5.21)
$$\frac{dy}{dt} = v = \pm \sqrt{\frac{2}{3}y^3 + 2C}.$$

(5.22)
$$\pm \int \frac{dy}{\sqrt{\frac{2}{3}y^3 + 2C}} = t + C_2.$$

6. Homogeneous differential equations with constant coefficients

Consider the constant coefficient, second order linear differential equation

(6.1)
$$ay'' + by' + cy = 0.$$

Taking $y(t) = e^{rt}$, $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Substituting this into (6.1),

(6.2)
$$(ar^2 + br + c)e^{rt} = 0.$$

This condition is only satisfied when $ar^2 + br + c = 0$. This equation is called the characteristic equation.

For example, take

(6.3)
$$y'' - y = 0, \qquad y(0) = 2, \qquad y'(0) = -1.$$

The characteristic equation is $r^2 - 1 = 0$, which has solutions $r = \pm 1$. A general solution of (6.3) is given by

(6.4)
$$y(t) = c_1 e^t + c_2 e^{-t}.$$

Now then, solving $c_1 + c_2 = 2$, $c_1 - c_2 = -1$, so $c_1 = \frac{1}{2}$, $c_2 = \frac{3}{2}$. Solve

(6.5)
$$y'' + 5y' + 6y = 0, \quad y(0) = 2, \quad y'(0) = 3.$$

Solve

(6.6)
$$4y'' - 8y' + 3y = 0, \quad y(0) = 2, \quad y'(0) = \frac{1}{2}.$$

7. Repeated roots: reduction of order

Suppose now that the characteristic equation has a repeated root. This occurs when the discriminant is zero,

(7.1)
$$b^2 - 4ac = 0$$

In this case,

(7.2)
$$r_1 = r_2 = -\frac{b}{2a}.$$

Let us first suppose that $r_1 = 0$. In that case, we have the equation,

(7.3)
$$y''(t) = 0.$$

We know how to solve this equation,

(7.4)
$$y(t) = c_1 t + c_2$$

Notice that in this case, $e^{r_1 t}$ is a constant function.

For a general equation with $r_1 = r_2$, we have an equation of the form

(7.5)
$$y'' - 2r_1y' + r_1^2y = 0.$$

In this case, $y_1(t) = e^{r_1 t}$ is a solution to our equation. Now let us try $y_2(t) = v(t)y_1(t) = e^{r_1 t}v(t)$. In this case, by the product rule,

(7.6)
$$v''(t)y_1(t) + 2v'(t)y_1'(t) + v(t)y_1''(t) - 2r_1v'(t)y_1(t) - 2r_1v(t)y_1'(t) + r_1^2v(t)y_1(t) = v''(t)y_1(t) + 2v'(t)y_1'(t) - 2r_1v'(t)y_1(t) = v''(t)y_1(t) = 0.$$

Therefore, in this case, $y_2(t) = c_2 t e^{r_1 t}$.

We can use the reduction of order for a general equation of the form

(7.7)
$$y'' + p(t)y' + q(t)y = 0$$

Suppose we know that there exists a solution $y_1(t)$ to (7.7), not everywhere zero. Set $v(t)y_1(t) = y(t)$. Plugging this into (7.7),

(7.8)
$$v''(t)y_1(t) + 2v'(t)y_1'(t) + v(t)y_1''(t) + p(t)v'(t)y_1(t) + p(t)v(t)y_1'(t) + q(t)v(t)y_1(t) = v''(t)y_1(t) + (2y_1'(t) + p(t)y_1(t))v'(t) = 0.$$

This equation is actually first order, if we substitute w(t) = v'(t).

Consider, for example, the equation

(7.9)
$$2t^2y'' + 3ty' - y = 0, \qquad t > 0.$$

Now then, we know that $y_1(t) = t^{-1}$ is a solution of (7.9). Now, set $y(t) = v(t)t^{-1}$. Then,

(7.10)
$$v''(t)t^{-1} - 2t^{-2}v'(t) + p(t)t^{-1}v'(t) = v''(t)t^{-1} - 2t^{-2}v'(t) + \frac{3}{2}t^{-2}v'(t) = 0.$$

Therefore,

$$(7.11) 2tv'' - v' = 0$$

Setting w = v', we wish to solve,

(7.12)
$$w' - \frac{1}{2t}w = 0.$$

Therefore,

(7.13)
$$w(t) = ct^{1/2}$$
, and $v(t) = \frac{2}{3}ct^{3/2} + k$.

8. Complex roots of the characteristic equation

Now consider the second order differential equation,

(8.1)
$$ay'' + by' + cy = 0.$$

Suppose this equation has the complex roots,

(8.2)
$$r_1 = \lambda + i\mu, \qquad r_2 = \lambda - i\mu.$$

In this case, we can try

(8.3)
$$y_1(t) = c_1 e^{r_1 t}, \qquad y_2(t) = c_2 e^{r_2 t}$$

Now let us make sense of e^{it} . Observe that

(8.4)
$$\frac{d}{dt}(e^{it}) = ie^{it}.$$

Therefore, $e^{it} = c(t) + is(t)$ solves an ordinary differential equation

(8.5)
$$\frac{d}{dt}y = iy, \qquad y(0) = 1.$$

Since i rotates by ninety degrees, y(t) travels at speed one counterclockwise along the unit circle. Thus,

(8.6)
$$e^{it} = \cos(t) + i\sin(t)$$

Therefore, the general solution has the form

(8.7)
$$y(t) = c_1 e^{-\lambda t} (\cos(\mu t) + i \sin(\mu t)) + c_2 e^{-\lambda t} (\cos(\mu t) - i \sin(\mu t)).$$

Doing some algebra,

(8.8)
$$y(t) = c_1 e^{-\lambda t} \cos(\mu t) + c_2 e^{-\lambda t} \sin(\mu t).$$

We can also use the power series expansion to obtain (8.6). In this case,

(8.9)
$$e^{it} = \sum_{k=0}^{\infty} \frac{i^k t^k}{k!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} \frac{t^{2n+1}}{(2n+1)!} = \cos(t) + i\sin(t).$$

9. The Wronskian

Let us define the concept of a differential operator. Suppose p(t) and q(t) are continuous functions. Then let

(9.1)
$$L[\phi] = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t).$$

With this equation, we associate a set of initial conditions,

(9.2)
$$y(t_0) = y_0, \qquad y'(t_0) = y'_0.$$

We have the existence and uniqueness theorem.

Theorem 4. Consider the initial value problem

(9.3)
$$y'' + p(t)y' + q(t)y = g(t), \qquad y(t_0) = y_0, \qquad y'(t_0) = y'_0.$$

where p, q, and g are continuous on an open interval I that contains the point t_0 . This problem has exactly one solution $y(t) = \phi(t)$, and the solution exists throughout the interval I.

Now then, L[cy] = cL[y] and $L[c_1y_1 + c_2y_2] = c_1L[y_1] + c_2L[y_2]$. Therefore, if $L[y_1] = 0$ and $L[y_2] = 0$, then $L[c_1y_1 + c_2y_2] = 0$.

Now we need to solve the system of equations,

(9.4)
$$c_1 y_1(t_0) + c_2 y_2(t_0) = y_0, c_1 y_1'(t_0) + c_2 y_2'(t_0) = y_0'.$$

This system is solvable if and only if

(9.5)
$$det \begin{pmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{pmatrix} \neq 0$$

Then we solve

$$(9.6) \qquad \begin{pmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{pmatrix}^{-1} \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix} = det \begin{pmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{pmatrix}^{-1} \begin{pmatrix} y'_2(t_0) & -y_2(t_0) \\ -y'_1(t_0) & y_1(t_0) \end{pmatrix} \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix}$$

Theorem 5. Suppose that y_1 and y_2 are two solutions to L[y] = 0, and that the initial conditions $y(t_0) = y_0$ and $y'(t_0) = y'_0$ are assigned. Then it is possible to choose constants c_1 , c_2 so that $y(t) = c_1y_1(t) + c_2y_2(t)$ satisfies the differential equation and the initial conditions if and only if the Wronskian $W[y_1, y_2]$ is not zero at t_0 .

Theorem 6 (Abel's theorem). If y_1 and y_2 are solutions of the second order linear differential equation,

(9.7)
$$L[y] = y'' + p(t)y' + q(t)y = 0,$$

where p and q are continuous on an open interval I, then the Wronskian $W[y_1, y_2](t)$ is given by

(9.8)
$$W[y_1, y_2](t) = c \exp(-\int p(t)dt).$$

Furthermore, $W[y_1, y_2](t)$ is either zero for all $t \in I$ or else is never zero on I.

Proof. By direct computation,

(9.9)
$$(y_1y_2'' - y_1''y_2) + p(t)(y_1y_2' - y_1'y_2) = 0.$$

Now then, observe that $W' = y_1 y_2'' - y_1'' y_2$, proving that

(9.10)
$$W' + p(t)W = 0$$

Thus,

(9.11)
$$W(t) = c \exp(-\int p(t)dt).$$

10. Nonhomogeneous equations: method of undetermined coefficients

Now turn attention to the nonhomogeneous second-order linear differential equations

(10.1)
$$L[y] = y'' + p(t)y' + q(t)y = g(t)$$

The equation,

(10.2)
$$L[y] = y'' + p(t)y' + q(t)y = 0$$

is called the homogeneous equation.

Theorem 7. If Y_1 and Y_2 are two solutions of the nonhomogeneous linear differential equation (10.1), then their difference $Y_1(t) - Y_2(t)$ is a solution to the corresponding homogeneous differential equation (10.2). Then,

(10.3)
$$Y_1(t) - Y_2(t) = c_1 y_1(t) + c_2 y_2(t).$$

Proof. Indeed,

(10.4)
$$L[Y_1](t) - L[Y_2](t) = g(t) - g(t) = 0.$$

Theorem 8. The general solution of the nonhomogeneous equation (10.1) can be written in the form,

(10.5) $y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t),$

where Y(t) is any solution to the nonhomogeneous equation (10.1).

Definition 1. The solution Y(t) is called the particular solution.

(10.6)
$$y'' - 3y' - 4y = 3e^{2t}.$$

Take the particular solution $Y(t) = Ae^{2t}$. In this case, $Y(t) = -\frac{1}{2}e^{2t}$.

(10.7)
$$y'' - 3y' - 4y = 2\sin t.$$

In this case, use the particular solution $Y(t) = A \sin t + B \cos t$. Indeed, we can decompose

(10.8)
$$2\sin t = \frac{1}{i}e^{it} + \frac{1}{i}e^{-it}.$$

Find the particular solution,

(10.9)
$$y'' - 3y' - 4y = -8e^{t}\cos(2t).$$

In this case,
(10.10)
$$Y(t) = Ae^{t}\cos(2t) + Be^{t}\sin(2t).$$

Here is a table.
(10.11)
$$P_{n}(t) = a_{0}t^{n} + \dots + a_{n}, \quad t^{s}(A_{0}t^{n} + \dots + A_{n}),$$

$$P_{n}(t)e^{\alpha t}, \quad t^{s}(A_{0}t^{n} + \dots + A_{n})e^{\alpha t},$$

$$P_{n}e^{\alpha t}(A_{1}\sin(\beta t) + A_{2}\cos(\beta t)), \quad t^{s}(A_{0}t^{n} + \dots + A_{n})e^{\alpha t}\cos(\beta t) + t^{s}(B_{0}t^{n} + \dots + B_{n})e^{\alpha t}\sin(\beta t).$$

11. VARIATION OF PARAMETERS

Consider the nonhomogeneous second order linear differential equation,

(11.1)
$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t).$$

Now then, reducing to a first order equation,

(11.2)
$$\frac{d}{dt} \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ q(t) & p(t) \end{pmatrix} \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} 0 \\ g(t) \end{pmatrix}.$$

To simplify notation, let

(11.3)
$$A(t) = \begin{pmatrix} 0 & -1 \\ q(t) & p(t) \end{pmatrix}.$$

Now let $\mu(t) = \exp(\int_0^t A(s) ds)$ to be the integrating factor. Then,

(11.4)
$$\frac{d}{dt}(\mu(t)\begin{pmatrix} y(t)\\y'(t)\end{pmatrix}) = \mu(t)\begin{pmatrix} 0\\g(t)\end{pmatrix}$$

Therefore,

(11.5)
$$\begin{pmatrix} y(t) \\ y'(t) \end{pmatrix} = \mu(t)^{-1} \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix} + \mu(t)^{-1} (\int_0^t \mu(s) \begin{pmatrix} 0 \\ g(s) \end{pmatrix} ds).$$

Now we need to compute $\mu(t)$ and $\mu(t)^{-1}$. First observe that

(11.6)
$$\mu(t)^{-1} \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix}$$

gives the solution to

y''(t) + p(t)y'(t) + q(t)y(t) = 0, $y(0) = y_0'.$ (11.7) $y(0) = y_0,$ Thus, if $y_1(t)$ and $y_2(t)$ are solutions to (11.7) with nonzero Wronskian,

$$(11.8) \quad \mu(t)^{-1} = \mu(t)^{-1} \begin{pmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{pmatrix} \begin{pmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{pmatrix}^{-1} = \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix} \begin{pmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{pmatrix}^{-1}.$$

Then, doing some algebra,

(11.9)
$$\mu(s) = \begin{pmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{pmatrix} \begin{pmatrix} y_1(s) & y_2(s) \\ y'_1(s) & y'_2(s) \end{pmatrix}^{-1}$$

Therefore,

(11.10)
$$\int_{0}^{t} \mu(t)^{-1} \mu(s) \begin{pmatrix} 0\\g(s) \end{pmatrix} ds = \int_{0}^{t} \begin{pmatrix} y_{1}(t) & y_{2}(t)\\y_{1}'(t) & y_{2}'(t) \end{pmatrix} \begin{pmatrix} y_{1}(s) & y_{2}(s)\\y_{1}'(s) & y_{2}'(s) \end{pmatrix}^{-1} \begin{pmatrix} 0\\g(s) \end{pmatrix} ds$$

$$= \int_0^t \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix} W(s)^{-1} \begin{pmatrix} y'_2(s) & -y_2(s) \\ -y'_1(s) & y_1(s) \end{pmatrix} \begin{pmatrix} 0 \\ g(s) \end{pmatrix} ds = \int_0^t \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix} W(s)^{-1} \begin{pmatrix} -y_2(s)g(s) \\ y_1(s)g(s) \end{pmatrix} ds.$$
Therefore, we have a particular solution

Therefore, we have a particular solution,

(11.12)
$$Y(t) = -y_1(t) \int_0^t \frac{y_2(s)g(s)}{W(s)} ds + y_2(t) \int_0^t \frac{y_1(s)g(s)}{W(s)} ds.$$

Therefore, the general solution is given by

(11.13)
$$y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t).$$

12. Mechanical and electrical vibrations

We know from physics that F = ma. Under Hooke's law, the force is given by -kx, where x is the displacement. Therefore, our equation is given by

(12.1)
$$m\frac{d^2x}{dt^2} + kx = 0.$$

The characteristic polynomial of (12.1) is given by

(12.2)
$$mr^2 + k = 0,$$

and the general solution is given by

(12.3)
$$c_1 \cos(\sqrt{\frac{k}{m}}t) + c_2 \sin(\sqrt{\frac{k}{m}}t)$$

Now let us add the force of damping to our equation. In this case, it is reasonable to think that there will be a damping force opposing the direction of motion. So then,

(12.4)
$$F = ma + \gamma v, \qquad \gamma > 0.$$

In this case we have

(12.5)
$$m\frac{d^2x}{dt^2} + \gamma\frac{dx}{dt} + kx = 0.$$

For this, the discriminant is given by

(12.6)
$$\gamma^2 - 4mk.$$

When $\gamma^2 - 4mk < 0$, our solutions are of the form

(12.7)
$$c_1 e^{-\frac{\gamma}{2m}t} \cos(\mu t) + c_2 e^{-\frac{\gamma}{2m}t} \sin(\mu t).$$

When $\gamma^2 - 4mk = 0$, our solution is of the form

(12.8)
$$c_1 e^{-\frac{\gamma}{2m}t} + c_2 t e^{-\frac{\gamma}{2m}t}$$

When $\gamma^2 - 4mk > 0$, observe that $\gamma - \sqrt{\gamma^2 - 4mk} > 0$, so we have a solution of the form

(12.9)
$$c_1 e^{-r_1 t} + c_2 e^{-r_2 t}, \quad r_1, r_2 > 0.$$

We can also add a forcing term.

We have an identical calculation for an RLC circuit. The voltage drop across a resistor is $RI = R \frac{dQ}{dt}$, the voltage drop across a capacitor is $\frac{Q}{C}$, and the voltage drop across an inductor is $L \frac{dI}{dt} = L \frac{d^2Q}{dt^2}$. Then by Kirchoff's law,

(12.10)
$$L\frac{d^{2}Q}{dt^{2}} + R\frac{dQ}{dt} + \frac{1}{C}Q = E(t).$$

13. Vector spaces and linear transformations

Recall the notion of vectors in \mathbb{R}^n . If v is such a vector,

(13.1)
$$v = (v_1, \dots, v_n).$$

We can add two vectors in \mathbb{R}^n .

(13.2)
$$v + w = (v_1 + w_1, \dots, v_n + w_n),$$

or multiply a vector by a scalar,

(13.3) $av = (av_1, ..., av_n).$

Remark 1. We are interested in vectors on \mathbb{R}^n , but we could also take vectors on \mathbb{C}^n .

We have laws for vector addition:

- (1) Commutative law u + v = v + u,
- (2) Associative law (u+v) + w = u + (v+w),
- (3) Zero vector, there exists $0 \in V$ such that v + 0 = v for any $v \in V$.
- (4) For any vector $v \in V$, there exists $-v \in V$ such that v + (-v) = 0.

We also have laws for multiplication by scalars.

- (1) Associative law, a(bv) = (ab)v,
- (2) Unit law. 1v = v.

Finally, we have the distributive property.

- $(1) \ a(u+v) = au + av,$
- (2) (a+b)u = au + bu.

There are other vector spaces, other than \mathbb{R}^n . For example, a subset W of a vector space is a linear subspace provided $w_i \in W$ implies $a_1w_1 + a_2w_2 \in W$ for any $a_1, a_2 \in \mathbb{R}$.

Remark 2. We can also generalize the notion of a vector space and consider, for example, the vector space of polynomials.

If V and W are vector spaces, a map

$$(13.4) T: V \to W,$$

is said to be a linear transformation provided

(13.5)
$$T(a_1v_1 + a_2v_2) = a_1Tv_1 + a_2Tv_2.$$

We say that $T \in \mathcal{L}(V, W)$.

The linear transformations also are a vector space. Indeed, linear transformations may be added,

(13.6)
$$T_1 + T_2 : V \to W, \qquad (T_1 + T_2)v = T_1v + T_2v,$$

or multiplied by a scalar,

(13.7)
$$aT: V \to W, \qquad (aT)v = a(Tv).$$

One important example of a linear transformation is a $n \times m$ matrix. Other examples include our differentiation and integration operators. Recall

(13.8)
$$L[\phi] = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t).$$

We can also compose linear transformations using matrix multiplication. Suppose A and B are matrices, $A = (a_{ij}), B = (b_{ij})$, and let

(13.9)
$$AB = (d_{ij}), \qquad d_{ij} = \sum_{l=1}^{n} a_{il} b_{lj}$$

14. Basis and dimension

For any linear transformation T there is the null space of T and the range of T,

(14.1)
$$\mathcal{N}(T) = \{ v \in V : Tv = 0 \},\$$

(14.2)
$$\mathcal{R}(T) = \{Tv : v \in V\}.$$

The null space is a subspace of V and the range is a subspace of W. If $\mathcal{N}(T) = \{0\}$, we say that T is an injection, or one-to-one. If $\mathcal{R}(T) = W$, we say that T is surjective or onto. If both are true, we say that T is an isomorphism. We also say that T is invertible.

Let $S = \{v_1, ..., v_k\}$ be a finite set in a vector space V. The span of S is the set of vectors in V that are of the form

$$(14.3) c_1v_1 + \dots + c_kv_k, c_k \in \mathbb{R}.$$

This set, Span(S) is a linear subspace of V.

Definition 2. The set S is said to be linearly dependent if and only if there exist scalars $c_1, ..., c_k$, not all zero, such that (14.3) = 0. Otherwise, S is said to be linearly independent.

Definition 3. If $\{v_1, ..., v_k\}$ is linearly independent, we say that S is a basis of span(S), and that k is the dimension of span(S). In particular, if span(S) = V, k = dim(V). Also, V has finite basis and is finite dimensional.

It remains to show that any two bases of a finite dimensional vector space V must have the same number of elements, and thus dim(V) is well-defined. Suppose V has a basis $S = \{v_1, ..., v_k\}$. Then define the linear transformation

by

(14.5)
$$A(c_1e_1 + \dots + c_ke_k) = c_1v_1 + \dots + c_kv_k,$$

where $\{e_1, ..., e_k\}$ is the standard basis of \mathbb{R}^k .

Linear independence of S is equivalent to the injectivity of A. The statement that S spans V is equivalent to the surjectivity of A. The statement that S is a basis of V is equivalent to the statement that A is an isomorphism, with inverse specified by

(14.6)
$$A^{-1}(c_1v_1 + \dots + c_kv_k) = c_1e_1 + \dots + c_ke_k.$$

We can show that dim(V) is well-defined.

Lemma 1. If $v_1, ..., v_{k+1}$ are vectors in \mathbb{R}^k , then they are linearly dependent.

Proof. This is clear for k = 1. Now we can suppose that the last component of some v_j is nonzero, since otherwise we are in \mathbb{R}^{k-1} . Reorder so that the last component of v_{k+1} is nonzero. We can assume it is equal to 1. Then take

(14.7)
$$w_j = v_j - v_{kj}v_{k+1}$$

Then by induction, there exist $a_1, ..., a_k$, not all zero such that $a_1w_1 + ... + a_kw_k = 0$. Therefore,

(14.8)
$$a_1v_1 + \dots + a_kv_k = (a_1v_{k1} + \dots + a_kv_{kk})v_{k+1},$$

which gives linear dependence.

Proposition 1. If V has a basis $\{v_1, ..., v_k\}$ with k elements and $\{w_1, ..., w_l\} \subset V$ is linearly independent, then $l \leq k$.

Proof. Take the isomorphism $A : \mathbb{R}^k \to V$. Then, $\{A^{-1}w_1, ..., A^{-1}w_l\}$ is linearly independent in \mathbb{R}^k , so $l \leq k$.

Corollary 1. If V is finite dimensional, then any two bases of V have the same number of elements. If V is isomorphic to W, these two spaces have the same dimension.

Proposition 2. Suppose V and W are finite dimensional vector spaces, and

is a linear map. Then,

(14.10) $\dim \mathcal{N}(A) + \dim \mathcal{R}(A) = \dim(V).$

Proof. Let $\{w_1, ..., w_l\}$ be a basis of $\mathcal{N}(A) \subset V$, and complete it to a basis of V,

(14.11) $\{w_1, ..., w_l, u_1, ..., u_m\}.$

Let $L = span\{u_1, ..., u_m\}$ and let $A_0 = A|_L$. Then,

(14.12)
$$\mathcal{R}(A_0) = \mathcal{R}(A),$$

and

(14.13)
$$\mathcal{N}(A_0) = \mathcal{N}(A) \cap L = 0$$

Therefore, $dim \mathcal{R}(A) = dim \mathcal{R}(A_0) = dim(L) = m$.

Corollary 2. Let V be finite dimensional and let $A: V \to V$ be linear. Then A is injective if and only if A is surjective if and only if A is an isomorphism.

Proposition 3. Let A be an $n \times n$ matrix defining $A : \mathbb{R}^n \to \mathbb{R}^n$. Then the following are equivalent. A is invertible, the columns of A are linearly independent, the columns of A span \mathbb{R}^n .

15. Eigenvalues and eigenvectors

Let $T: V \to V$ be linear. If there exists a nonzero $v \in V$ such that

(15.1)
$$Tv = \lambda_i v,$$

for some $\lambda \in \mathbb{F}$, then λ_i is an eigenvalue of T and v is an eigenvector.

Let $\mathcal{E}(T, \lambda_j)$ denote the set of vectors $v \in V$ such that (15.1) holds. Then $\mathcal{E}(T, \lambda_j)$ is a vector subspace of V and

(15.2)
$$T: \mathcal{E}(T, \lambda_j) \to \mathcal{E}(T, \lambda_j).$$

Definition 4. The set of $\lambda_i \in \mathbb{F}$ such that $\mathcal{E}(T, \lambda_i) \neq 0$ is denoted Spec(T).

If V is finite dimensional, then $\lambda_i \in Spec(T)$ if and only if

(15.3)
$$det(\lambda_j I - T) = 0.$$

Then, $K_T(\lambda) = det(\lambda I - T)$ is called the characteristic polynomial of T.

Proposition 4. If V is a finite dimensional vector space and $T \in \mathcal{L}(V)$, then T has at least one eigenvector in V.

Proof. Fundamental theorem of algebra.

A linear transformation might have only one eigenvector, up to scalar multiple. Consider

(15.4)
$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

In this case the characteristic polynomial is given by $(\lambda - 2)^3$. Now then, if

(15.5)
$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 2 \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix},$$

then $v_2 = v_3 = 0$.

Proposition 5. Suppose that the characteristic polynomial of $T \in \mathcal{L}(V)$ has k distinct roots $\lambda_1, ..., \lambda_k$ with eigenvectors $v_j \in \mathcal{E}(T, \lambda_j), 1 \leq j \leq k$. Then $\{v_1, ..., v_k\}$ is linearly independent. In particular, if $k = \dim(V)$, these vectors form a basis of V.

Proof. Suppose $\{v_1, ..., v_k\}$ is a linearly dependent set. Then

(15.6)
$$c_1v_1 + \dots + c_kv_k = 0$$

reordering so that $c_1 \neq 0$. Applying $T - \lambda_k I$ to (15.6) gives

(15.7)
$$c_1(\lambda_1 - \lambda_k)v_1 + \dots + c_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1} = 0.$$

Thus, $\{v_1, ..., v_{k-1}\}$ is linearly dependent. Arguing by induction, we obtain a contradiction. \Box

Observe that in the case that we have k linearly independent eigenvectors, the eigenvectors $\{v_1, ..., v_k\}$ form a natural basis of \mathbb{R}^k . Indeed, for any vector $v \in \mathbb{R}^k$,

(15.8)
$$T(c_1v_1 + \dots + c_kv_k) = c_1\lambda_1v_1 + \dots + c_k\lambda_kv_k.$$

16. The matrix exponential

Define the matrix exponential

(16.1)
$$e^A = \sum_{k=1}^{\infty} \frac{1}{k!} A^k$$

We can define the norm of a matrix,

(16.2)
$$||T|| = \sup\{|Tv| : |v| \le 1\}$$

18

Then, we can compute $||A^k|| \leq ||A||^k$, so the matrix exponential (16.1) converges. Therefore, by the ratio test, (16.1) converges. Similarly, we can define,

(16.3)
$$e^{tA} = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k,$$

which converges for any $t \in \mathbb{C}$.

Differentiating term by term,

(16.4)
$$\frac{d}{dt}e^{tA} = \sum_{k=1}^{\infty} k \frac{t^{k-1}}{k!} A^k = e^{tA} A = A e^{tA}.$$

Therefore, $v(t) = e^{tA}v_0$ solves the first order system

(16.5)
$$\frac{dv}{dt} = Av, \qquad v(0) = v_0.$$

This solution is unique. Indeed, let $u(t) = e^{-tA}v(t)$. Then $u(0) = v(0) = v_0$ and

(16.6)
$$\frac{d}{dt}u(t) = e^{-tA}Av(t) + e^{-tA}v'(t) = 0,$$

so $u(t) \equiv u(0) = v_0$. The same argument implies

(16.7)
$$\frac{d}{dt}(e^{tA}e^{-tA}) = 0, \quad \text{hence} \quad e^{tA}e^{-tA} = I,$$

so $v(t) = e^{tA}v_0$.

Proposition 6. Given $A \in M(n, \mathbb{C})$, $s, t \in \mathbb{R}$,

(16.8)
$$e^{(s+t)A} = e^{sA}e^{tA}.$$

Proof. Using the product rule,

(16.9)
$$\frac{d}{dt}(e^{(s+t)A}e^{-tA}) = e^{(s+t)A}Ae^{-tA} - e^{(s+t)A}Ae^{-tA} = 0.$$

Therefore, $e^{(s+t)A}e^{-tA}$ is independent of t, so (16.9) = e^{sA} . If we take s = 0, $e^{tA}e^{-tA} = I$, so multiplying the left and right hand sides by e^{tA} gives (16.8).

On the other hand, in general, it is not true that $e^{A+B} = e^A e^B$. However, it is true if AB = BA.

Proposition 7. Given $A, B \in M(n, \mathbb{C})$,

(16.10)
$$e^{A+B} = e^A e^B.$$

Proof.
(16.11)
$$\frac{d}{dt}(e^{t(A+B)}e^{-tB}e^{-tA}) = e^{t(A+B)}(A+B)e^{-tB}e^{-tA} - e^{t(A+B)}Be^{-tB}e^{-tA} - e^{t(A+B)}e^{-tB}Ae^{-tA}.$$

Since $AB^k = B^k A$ for any k, (16.11) = 0, which gives (16.10).

Let's do some computations.

(16.12)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Then,

(16.13)
$$e^{tA} = \begin{pmatrix} e^t & 0\\ 0 & e^{2t} \end{pmatrix}, \qquad e^{tB} = \begin{pmatrix} 1 & t\\ 0 & 1 \end{pmatrix}.$$

If we take

(16.14)
$$C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad e^{tC} = e^{tI}e^{tB} = \begin{pmatrix} e^t & te^t \\ 0 & e^t \end{pmatrix}.$$

Now suppose we have a basis of eigenvectors. Since $Av_j = \lambda_j v_j$,

(16.15)
$$e^{tA}v_j = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k v_j = e^{t\lambda_j} v_j.$$

For example, take

(16.16)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \lambda_1 = 1, \quad \lambda_2 = -1, \quad v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Then, $e^{tA}v_1 = e^tv_1$ and $e^{tA}v_2 = e^{-t}v_2$. Now then,

(16.17)
$$e^{tA}\begin{pmatrix}1\\0\end{pmatrix} = \frac{1}{2}e^{t}\begin{pmatrix}1\\1\end{pmatrix} + \frac{1}{2}e^{-t}\begin{pmatrix}1\\-1\end{pmatrix}, \quad e^{tA}\begin{pmatrix}0\\1\end{pmatrix} = \frac{1}{2}e^{t}\begin{pmatrix}1\\1\end{pmatrix} - \frac{1}{2}e^{-t}\begin{pmatrix}1\\-1\end{pmatrix}.$$

Therefore

Therefore,

(16.18)
$$e^{tA} = \begin{pmatrix} \cosh(t) & \sinh t \\ \sinh t & \cosh t \end{pmatrix}$$

Next, consider the matrix

(16.19)
$$A = \begin{pmatrix} 0 & -2 \\ 1 & 2 \end{pmatrix}.$$

The characteristic polynomial of A is

$$det(A - \lambda I) = \lambda^2 - 2\lambda + 2 = 0.$$

The eigenvalues of (16.20) are $\lambda_1 = 1 + i$ and $\lambda_2 = 1 - i$, with corresponding eigenvectors

(16.21)
$$v_1 = \begin{pmatrix} -2\\ 1+i \end{pmatrix}, \quad v_2 = \begin{pmatrix} -2\\ 1-i \end{pmatrix}.$$

Then,

(16.20)

(16.22)
$$e^{tA}v_1 = e^{(1+i)t}v_1, \qquad e^{tA}v_2 = e^{(1-i)t}v_2.$$

Doing some algebra,

(16.23)
$$\begin{pmatrix} 1\\0 \end{pmatrix} = -\frac{i+1}{4} \begin{pmatrix} -2\\1+i \end{pmatrix} + \frac{i-1}{4} \begin{pmatrix} -2\\1-i \end{pmatrix} \\ \begin{pmatrix} 0\\1 \end{pmatrix} = -\frac{i}{2} \begin{pmatrix} -2\\1+i \end{pmatrix} + \frac{i}{2} \begin{pmatrix} -2\\1-i \end{pmatrix}.$$

Now then,

(16.24)

$$-\frac{i+1}{4} \begin{pmatrix} -2\\1+i \end{pmatrix} e^{(1+i)t} + \frac{i-1}{4} \begin{pmatrix} -2\\1-i \end{pmatrix} e^{(1-i)t} = \frac{e^t}{4} \begin{pmatrix} (2i+2)e^{it} + (2-2i)e^{-it}\\-2ie^{it} + 2ie^{-it} \end{pmatrix} = e^t \begin{pmatrix} \cos t - \sin t\\\sin t \end{pmatrix}$$
 and

$$(16.25) \quad -\frac{i}{2}e^{(1+i)t} \begin{pmatrix} -2\\1+i \end{pmatrix} + \frac{i}{2}e^{(1-i)t} \begin{pmatrix} -2\\1-i \end{pmatrix} = \frac{e^t}{2} \begin{pmatrix} 2ie^{it} - 2ie^{-it}\\(1-i)e^{it} + (1+i)e^{-it} \end{pmatrix} = e^t \begin{pmatrix} -2\sin t\\\cos t + \sin t \end{pmatrix}$$
Therefore

Therefore,

(16.26)
$$e^{tA} = e^t \begin{pmatrix} \cos t - \sin t & -2\sin t\\ \sin t & \cos t + \sin t \end{pmatrix}$$

17. Generalized eigenvectors and the minimal polynomial

Recall that the matrix

(17.1)
$$A = \begin{pmatrix} 2 & 1 & 0\\ 0 & 2 & 1\\ 0 & 0 & 2 \end{pmatrix},$$

has just one eigenvalue 2 and one eigenvector e_1 . However,

(17.2)
$$(A-2I)^2 e_2 = 0, \qquad (A-2I)^3 e_3 = 0.$$

Definition 5. For $T \in \mathcal{L}(V)$, we say a nonzero $v \in V$ is a generalized λ_j eigenvector if there exists $k \in \mathbb{N}$ such that $(T - \lambda_j I)^k v = 0$.

Consider for example the matrix

$$(17.3) \qquad \qquad \begin{pmatrix} 0 & 1 \\ -4 & -4 \end{pmatrix}$$

This matrix has one eigenvalue, -2. Now then,

(17.4)
$$A = -2I + T, \qquad T = \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}.$$

In this case, $T\begin{pmatrix}1\\-2\end{pmatrix} = 0$, $T\begin{pmatrix}2\\1\end{pmatrix} = 5\begin{pmatrix}1\\-2\end{pmatrix}$. Therefore, $T^2 = 0$. Then,

(17.5)
$$e^{tA} = \exp(-2It + tT) = e^{-2t} \begin{pmatrix} 1+2t & t \\ -4t & 1-2t \end{pmatrix}.$$

Let $\mathcal{GE}(T, \lambda_j)$ be the set of vectors $v \in V$ such that $(T - \lambda_j I)^k v = 0$ for some $k \in \mathbb{N}$. Then, $\mathcal{GE}(T, \lambda_j)$ is a linear subspace of V and

(17.6)
$$T: \mathcal{GE}(T,\lambda_j) \to \mathcal{GE}(T,\lambda_j).$$

Lemma 2. For each $\lambda_j \in \mathbb{C}$ such that $\mathcal{GE}(T, \lambda_j) \neq 0$,

(17.7)
$$T - \mu I : \mathcal{GE}(T, \lambda_j) \to \mathcal{E}(T, \lambda_j),$$

is an isomorphism for all $\mu \neq \lambda_j$.

Proof. If $T - \mu I$ is not an isomorphism then $Tv = \mu v$ for some $v \in \mathcal{GE}(T, \lambda_j)$. But then, $(T - \lambda_j I)^k = (\mu - \lambda_j)^k v$ for any $k \in \mathbb{N}$, which cannot be true unless $\mu = \lambda_j$.

Lemma 3. If V is finite dimensional and $T \in \mathcal{L}(V)$, then there exists a nonzero polynomial p such that p(T) = 0.

Proof. If $dim(V) = n^2$ then $\{I, T, ..., T^{n^2}\}$ is linearly dependent.

Now let

(17.8)
$$\mathcal{I}_T = \{ p : p(T) = 0 \}.$$

Certainly we can add such polynomials together and get new polynomials that satisfy (17.8) or multiply them.

Lemma 4. Let p_1 be the polynomial with minimal degree among the nonzero polynomials in an ideal \mathcal{I} . Then any polynomial in \mathcal{I} is of the form $p_1(\lambda)q(\lambda)$ for some polynomial q.

Proof. Indeed, we can divide polynomials, so

(17.9)
$$p(\lambda) = p_1(\lambda)q(\lambda) + r(\lambda),$$

where $r(\lambda)$ has degree less than the degree of p_1 . Since the degree of p_1 is minimal, $r(\lambda) = 0$. \Box

The minimal polynomial of T is of the form

(17.10)
$$m_T(\lambda) = \prod_{j=1}^K (\lambda - \lambda_j)^{k_j}$$

Then let

(17.11)
$$p_l(\lambda) = \prod_{j \neq l} (\lambda - \lambda_j)^{k_j}$$

Proposition 8. If V is an n-dimensional complex vector space and $T \in \mathcal{L}(V)$, then for each $l \in \{1, ..., K\}$,

(17.12) $\mathcal{GE}(T,\lambda_l) = \mathcal{R}(p_l(T)).$

Proof. For any $v \in V$,

(17.13)
$$(T - \lambda_l)^{k_l} p_l(T) = 0$$

so $p_l(T): V \to \mathcal{GE}(T, \lambda_l)$. Also, each factor

(17.14)
$$(T - \lambda_j)^{k_j} : \mathcal{GE}(T, \lambda_l) \to \mathcal{GE}(T, \lambda_l)$$

for any $j \neq l$, is an isomorphism, so $p_l(T) : \mathcal{GE}(T, \lambda_l) \to \mathcal{GE}(T, \lambda_l)$ is an isomorphism.

Proposition 9. If V is an n-dimensional complex vector space and $T \in \mathcal{L}(V)$, then

(17.15)
$$V = \mathcal{GE}(T, \lambda_1) + \dots + \mathcal{GE}(T, \lambda_K).$$

Proof. We claim that the ideal generated by $p_1, ..., p_K$ is equal to all polynomials. Indeed, any ideal is generated by a minimal element, which must have a zero. But $p_1, ..., p_K$ have no common zeros. Therefore,

(17.16)
$$p_1(T)q_1(T) + \dots + p_K(T)q_K(T) = I.$$

Therefore,

(17.17)
$$v = p_1(T)q_1(T)v + \dots + p_K(T)q_K(T)v = v_1 + \dots + v_K.$$

Proposition 10. Let $\mathcal{GE}(T, \lambda_l)$ denote the generalized eigenspaces of T, and let $S_l = \{v_{l1}, ..., v_{l,d_l}\}$, with $d_l = \dim \mathcal{GE}(T, \lambda_l)$ be a basis of $\mathcal{GE}(T, \lambda_l)$. Then,

$$(17.18) S = S_1 \cup \ldots \cup S_K$$

is a basis of V.

Proof. We know that S spans V. We need to show that S is linearly independent. Suppose w_l are nonzero elements of $\mathcal{GE}(T, \lambda_l)$. We can apply the same argument as in the case of distinct eigenvalues, only we replace $(T - \lambda I)$ with $(T - \lambda I)^k$.

Definition 6. We say that $T \in \mathcal{L}(V)$ is nilpotent provided $T^k = 0$ for some $k \in \mathbb{N}$.

Proposition 11. If T is nilpotent then there is a basis of V for which T is strictly upper triangular.

Proof. Let $V_k = T^k(V)$, so $V = V_0 \supset V_1 \supset V_2 \supset ... \supset V_{k-1} \supset \{0\}$ with $V_{k-1} \neq 0$. Then, choose a basis for V_{k-1} , augment it to produce a basis for V_{k-2} , and so on. Then we have an upper triangular matrix.

Now decompose $V = V_1 + ... + V_l$, where $V_l = \mathcal{GE}(T, \lambda_l)$. Then,

$$(17.19) T_l: V_l \to V_l,$$

where $T_l = T|_{V_l}$. Then $Spec(T_l) = \{\lambda_l\}$, and we can take a basis of V_l for which T_l is strictly upper triangular. Now for any strictly upper triangular matrix T of dimension k, $T^k = 0$. Thus,

(17.20)
$$K_T(\lambda) = det(T - \lambda I) = \prod_{l=1}^{K} (\lambda - \lambda_l)^{d_l}, \qquad d_l = dim(V)$$

and $K_T(\lambda)$ is a polynomial multiple of $m_T(\lambda)$.

18. Systems of first order linear equations

A general system of n functions is given by

(18.1)
$$\begin{aligned} x_1'(t) &= p_{11}(t)x_1(t) + \dots + p_{1n}(t)x_n(t) + g_1(t), \\ x_2'(t) &= p_{21}(t)x_1(t) + \dots + p_{2n}(t)x_n(t) + g_2(t), \\ \dots \\ x_n'(t) &= p_{n1}(t)x_1(t) + \dots + p_{nn}(t)x_n(t) + g_n(t). \end{aligned}$$

Theorem 9. If the functions $p_{11}(t), ..., p_{nn}(t)$ and $g_1(t), ..., g_n(t)$ are continuous on an interval $I, \alpha < t < \beta$, then there exists a unique solution $x_1(t) = \phi_1(t), ..., x_n(t) = \phi_n(t)$ of the equation (18.1) that also satisfies the initial conditions $x_1(0) = x_1^0, ..., x_n(0) = x_n^0$.

Proof. Let A(t) denote the matrix

(18.2)
$$A(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) & \dots & p_{1n}(t) \\ p_{21}(t) & p_{22}(t) & \dots & p_{2n}(t) \\ \dots & \dots & \dots & \dots \\ p_{n1}(t) & p_{n2}(t) & \dots & p_{nn}(t) \end{pmatrix}.$$

Then,

(18.3)
$$\frac{d}{dt}\vec{x}(t) = A(t)\vec{x}(t) + \vec{g}(t).$$

Let S(t,0) be the solution operator to

(18.4)
$$\frac{d}{dt}\overrightarrow{x}(t) = A(t)\overrightarrow{x}(t).$$

That is, if $\overrightarrow{x}(t) = S(t,0)\overrightarrow{x}(0)$, then $\overrightarrow{x}(t)$ solves (18.4) with initial data $\overrightarrow{x}(0)$. Then,

(18.5)
$$\overrightarrow{x}(t) = S(t,0)\overrightarrow{x}(0) + \int_0^t S(t,s)\overrightarrow{g}(s)ds.$$

For example, let us consider the equation

(18.6)
$$\frac{d}{dt}\vec{x}(t) = \begin{pmatrix} 1 & 1\\ 4 & 1 \end{pmatrix}\vec{x}(t).$$

Then the solution has the form

(18.7)
$$\overrightarrow{x}(t) = c_1 \begin{pmatrix} 1\\2 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1\\-2 \end{pmatrix} e^{-t}.$$

Theorem 10. If the vector functions $\overrightarrow{x}^{(1)}(t)$, ..., $\overrightarrow{x}^{(n)}(t)$ are linearly independent solutions of the system (18.1) for each point in the interval $\alpha < t < \beta$, then each solution $\overrightarrow{x}(t)$ can be expressed as a linear combination of $\overrightarrow{x}^{(1)}(t)$, ..., $\overrightarrow{x}^{(n)}(t)$ in exactly one way.

Theorem 11 (Abel's theorem). If $x^{(1)}(t)$, ..., $x^{(n)}(t)$ are solutions to (18.1) on the interval $\alpha < t < \beta$, then in this interval, $W[x^{(1)}(t), ..., x^{(n)}(t)]$ is either identically zero or never vanishes.

Proof. Choose a basis such that W(t) is an upper triangular matrix. Now then, in any basis, $Tr(A(t)) = p_{11}(t) + ... + p_{nn}(t)$. Then by direct computation,

(18.8)
$$\frac{dW}{dt} = (p_{11}(t) + \dots + p_{nn}(t))W(t).$$

Another way to prove this is to remember that if we have one row that is the multiple of another, W(t) = 0. The same is true of two columns. This means that $det(A) \neq 0$ if and only if the rows and columns are linearly independent.

The only way to avoid that is if we have $p_{11}, ..., p_{nn}$.

19. Nonhomogeneous linear systems

Now let us consider the nonhomogeneous linear system

(19.1)
$$\frac{d}{dt}\vec{x}(t) = P(t)\vec{x}(t) + \vec{g}(t).$$

Then recall (18.5),

(19.2)

$$\overrightarrow{x}(t) = S(t,0)\overrightarrow{x}(0) + \int_0^t S(t,s)\overrightarrow{g}(s)ds$$
$$= S(t,0)\overrightarrow{x}(0) + \int_0^t S(t,0)S(0,s)\overrightarrow{g}(s)ds.$$

Remark 3. Note that $S(0,s) = S(s,0)^{-1}$.

Consider, for example, the system

(19.3)
$$\frac{d}{dt}\overrightarrow{x}(t) = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \overrightarrow{x}(t) + \begin{pmatrix} 2e^{-t}\\ 3t \end{pmatrix}.$$

In this case, since A(t) is constant,

(19.4)
$$\overrightarrow{x}(t) = e^{tA} \overrightarrow{x}(0) + \int_0^t e^{(t-s)A} \begin{pmatrix} 2e^{-s} \\ 3s \end{pmatrix} ds.$$

In this case, the eigenvalues are given by $\lambda = -1, -3$ with eigenvectors $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Then,

(19.5)
$$e^{tA} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}e^{-t} + \frac{1}{2}e^{-3t}\\ \frac{1}{2}e^{-t} - \frac{1}{2}e^{-3t} \end{pmatrix},$$

and

(19.6)
$$e^{tA}\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}e^{-t} - \frac{1}{2}e^{-3t}\\ \frac{1}{2}e^{-t} + \frac{1}{2}e^{-3t} \end{pmatrix}.$$

Therefore,

(19.7)
$$e^{tA} = \begin{pmatrix} \frac{1}{2}e^{-t} + \frac{1}{2}e^{-3t} & \frac{1}{2}e^{-t} - \frac{1}{2}e^{-3t} \\ \frac{1}{2}e^{-t} - \frac{1}{2}e^{-3t} & \frac{1}{2}e^{-t} + \frac{1}{2}e^{-3t} \end{pmatrix}.$$

Then,

(19.8)
$$\overrightarrow{x}(t) = e^{tA}\overrightarrow{x}(0) + \int_0^t \left(\frac{\frac{1}{2}e^{-(t-s)} + \frac{1}{2}e^{-3(t-s)}}{\frac{1}{2}e^{-(t-s)} - \frac{1}{2}e^{-3(t-s)}} \frac{1}{2}e^{-(t-s)} + \frac{1}{2}e^{-3(t-s)}}{\frac{1}{2}e^{-3(t-s)} + \frac{1}{2}e^{-3(t-s)}}\right) \begin{pmatrix} 2e^{-s} \\ 3s \end{pmatrix} ds.$$

We can convert an n-th order differential equation into a system of first order equations. Indeed, consider the n-th order differential equation

(19.9)
$$\frac{d^n y}{dt^n} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_1\frac{dy}{dt} + a_0y = 0.$$

Then $\overrightarrow{x}(t) = (x_0(t), ..., x_{n-1}(t))$ will satisfy

$$\frac{d}{dt}x_0(t) = x_1(t),$$

(19.10)

$$\frac{d}{dt}x_{n-2}(t) = x_{n-1}(t),$$

$$\frac{d}{dt}x_{n-1}(t) = -a_{n-1}x_{n-1}(t) - \dots - a_0x_0(t).$$

Equivalently,

(19.11)
$$\frac{d}{dt}\overrightarrow{x}(t) = A\overrightarrow{x}(t),$$

with

(19.12)
$$A = \begin{pmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & 1 \\ -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \end{pmatrix}$$

Definition 7. The matrix A given by (19.12) is called the companion matrix of the polynomial $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0.$ (19.13)

Proposition 12. If $p(\lambda)$ is a polynomial of the form (19.13), with companion matrix A given by (19.12), then

(19.14)
$$p(\lambda) = det(\lambda I - A).$$

Proof. The determinant of a matrix is equal to the determinant of the transpose. Then,

(19.15)
$$det(\lambda I - A) = \lambda det \begin{pmatrix} \lambda & -1 & \cdots & 0 & 0 \\ 0 & \lambda & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda & -1 \\ a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} \end{pmatrix} + (-1)^{n-1} a_0 (-1)^{n-1}.$$

Therefore,

(19.16)
$$det(\lambda I - A) = \lambda(\lambda^{n-1} + a_{n-1}\lambda^{n-1} + \dots + a_1) + a_0.$$

20. VARIABLE COEFFICIENT SYSTEMS

Consider a variable coefficient $n \times n$ first order system,

(20.1)
$$\frac{dx}{dt} = A(t)x, \qquad x(t_0) = x_0.$$

Then,
(20.2)
$$\overrightarrow{x}(t) = S(t, t_0)\overrightarrow{x}(t_0).$$
Now suppose that $\overrightarrow{x}_1(t_0), ..., \overrightarrow{x}_n(t_0)$ are linearly independent. Then, by Abel's theorem, if $\overrightarrow{x}_j(t)$
is a solution to (20.1) with initial data $\overrightarrow{x}_j(t_0)$. Then let $M(t)$ denote the matrix,

$$\begin{array}{ll} (20.3) & M(t) = (x_1(t), ..., x_n(t)). \\ \text{Then,} \\ (20.4) & M(t) = S(t, t_0)(x_1(t_0), ..., x_n(t_0)). \\ \text{Therefore,} \\ (20.5) & S(t, t_0) = M(t)(x_1(t_0), ..., x_n(t_0))^{-1}, \\ \text{and} \\ (20.6) & S(t_0, t) = (x_1(t_0), ..., x_n(t_0))M(t)^{-1}, \\ \text{and} \\ (20.7) & S(t, t_0)S(t_0, s) = M(t)M(s)^{-1}. \\ \text{Therefore, the solution to} \\ (20.8) & \frac{dx}{dt} = A(t)x + g(t), \quad x(t_0) = 0, \end{array}$$

(20.8)

so the solution to (20.8) is given by

(20.9)
$$x(t) = \int_{t_0}^t M(t)M(s)^{-1}g(s)ds.$$

For the ordinary differential equation,

(20.10)
$$\frac{d^n y}{dt^n} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_1\frac{dy}{dt} + a_0y = g(t)$$

We can use the variation of parameters and Cramer's rule to compute (20.11)

$$Y(t) = \int_0^t M(t)M(s)^{-1} \begin{pmatrix} 0\\0\\\cdots\\0\\g(s) \end{pmatrix} ds = \sum_{i=1}^n y_i(t) \int_0^t (M(s)^{-1} \begin{pmatrix} 0\\0\\\cdots\\0\\g(s) \end{pmatrix})_i ds = \sum_{i=1}^n y_i(t) \int_0^t \frac{1}{W(s)} (detM(s))_{ni} ds.$$

Lemma 5 (Cramer's rule). If A is a square matrix, then the inverse of A is given by the matrix M, where

(20.12)
$$M_{ij} = \frac{1}{det(M)} det(M)_{ij},$$

where $det(M)_{ij}$ is the determinant of the matrix with the *j*-th row replaced by the vector (0, ..., 0, 1, 0, ..., 0), with 1 in the *i*-th column and 0 everywhere else.

Case 1: In this case, we assume that (19.13) has n distinct real roots. Then $y_1(t) = e^{r_1 t}$, ..., $y_n(t) = e^{r_n t}$ form a nonzero Wronskian.

Case 2: If r is a complex root to (19.13) and (19.13) has only real coefficients, then \bar{r} is also a complex root. Thus, if (19.13) has n distinct complex roots, then

$$(20.13) \ e^{r_1 t}, e^{r_2 t}, \dots, e^{r_m t}, e^{r_m t}, e^{r_m + 1t} \sin(a_m t), e^{r_m + 1t} \cos(a_m t), \dots, e^{r_m + jt} \sin(a_m + jt), e^{r_m + jt} \cos(a_m + jt).$$

Case 3: If (19.13) has m repeated roots r, then we can choose a basis for A that is in Jordan canonical form. Then, e^{rt} , te^{rt} , t^2e^{rt} , ..., $t^{m-1}e^{rt}$ form m linearly independent solutions to (19.13). Indeed, if

(20.14)
$$N = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix},$$

then

(20.15)
$$e^{tN} = I + tN + \frac{1}{2}t^2N^2 + \dots + \frac{1}{(m-1)!}t^{m-1}N^{m-1}.$$

21. LAPLACE TRANSFORM

The computations in the previous section can be quite cumbersome, depending on g(t). In many cases, the Laplace transform is often useful.

Definition 8 (Laplace transform). The Laplace transform of a function f(t) is given by

(21.1)
$$\mathcal{L}\lbrace f(t)\rbrace = F(s) = \int_0^\infty e^{-st} f(t) dt.$$

Theorem 12. Suppose that f is piecewise continuous on the interval $0 \le t \le A$ for any positive A > 0. Also suppose that there exist constants K > 0, a, and M > 0, such that

(21.2)
$$|f(t)| \le Ke^{at}, \quad when \quad t \ge M.$$

Then the Laplace transform $\mathcal{L}{f(t)} = F(s)$ exists for s > a.

Proof. We can compute

(21.3)
$$\int_{M}^{\infty} |f(t)|e^{-st}dt \leq \int_{M}^{\infty} Ke^{(a-s)t} \leq \frac{K}{s-a}.$$

We can compute Laplace transforms of some important functions.

(21.4)
$$\mathcal{L}\lbrace e^{at}\rbrace = \int_0^\infty e^{-st} e^{at} dt = \frac{1}{s-a}.$$

One of the important aspects of the Laplace transform is that we can take a Laplace transform of a function that is not continuous. Suppose f(t) = 1 for $0 \le t < 1$, f(t) = k for t = 1, and f(t) = 0 for t > 1. Then,

(21.5)
$$\int_0^\infty e^{-st} f(t) dt = \int_0^1 e^{-st} dt = -\frac{e^{-st}}{s} \Big|_0^1 = \frac{1 - e^{-s}}{s}, \qquad s > 0.$$

In general, \mathcal{L} is a linear functional. Indeed,

(21.6)
$$\mathcal{L}\{c_1f_1(t) + c_2f_2(t)\} = c_1\mathcal{L}\{f_1(t)\} + c_2\mathcal{L}\{f_2(t)\}.$$

We can use this to compute the Laplace transform of sin(at).

(21.7)
$$\mathcal{L}\{\sin(at)\} = \frac{1}{2i}\mathcal{L}\{e^{iat}\} - \frac{1}{2i}\mathcal{L}\{e^{-iat}\} = \frac{1}{2i}\frac{1}{s-ia} - \frac{1}{2i}\frac{1}{s+ia} = \frac{2ia}{2i(s^2+a^2)} = \frac{a}{s^2+a^2}$$

(21.8)
$$\mathcal{L}\{\cos(at)\} = \frac{1}{2}\mathcal{L}\{e^{iat}\} + \frac{1}{2}\mathcal{L}\{e^{-iat}\} = \frac{1}{2}\frac{1}{s-ia} + \frac{1}{2}\frac{1}{s+ia} = \frac{s}{s^2 + a^2}.$$

Next,

(21.9)
$$\int_0^\infty t^n e^{-st} dt = (-1)^n \frac{d^n}{d^n s} \int_0^\infty e^{-st} dt = (-1)^n \frac{d^n}{d^n s} (\frac{1}{s}) = \frac{n!}{s^{n+1}}.$$

More generally,

(21.10)
$$\int_0^\infty t^n e^{at} e^{-st} dt = \frac{n!}{(s-a)^{n+1}}$$

Indeed,

Theorem 13. If $F(s) = \mathcal{L}{f(t)}$ exists for $s > a \ge 0$ and if c is a constant,

(21.11)
$$\mathcal{L}\lbrace e^{ct}f(t)\rbrace = F(s-c), \qquad s > a+c.$$

Conversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then

(21.12)
$$e^{ct}f(t) = \mathcal{L}^{-1}\{F(s-c)\}$$

Proof.

(21.13)
$$\mathcal{L}\{e^{ct}f(t)\} = \int_0^\infty e^{-st} e^{ct}f(t)dt = \int_0^\infty e^{-(s-c)t}f(t)dt = F(s-c).$$

Now we examine the Laplace transform of a derivative.

Theorem 14. Suppose f is continuous and f' is piecewise continuous on any interval $0 \le t \le A$. Also suppose that there exist constants K, a, M such that $|f(t)| \le Ke^{at}$ for $t \ge M$. Then $\mathcal{L}{f'(t)}$ exists for s > a, and

(21.14)
$$\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0),$$

Proof. Integrating by parts,

(21.15)
$$\int_0^A e^{-st} f'(t) dt = e^{-st} f(t) |_0^A + s \int_0^A e^{-st} f(t) dt.$$

Taking the limit as $A \to \infty$,

(21.16)
$$\mathcal{L}\{f'(t)\} = -f(0) + s\mathcal{L}\{f(t)\}.$$

Corollary 3. Suppose that $f, f', ..., f^{(n-1)}$ are continuous and that $f^{(n)}$ is piecewise continuous on an interval $0 \le t \le A$. Also suppose that there exists constants K, a, and M such that $|f(t)| \le Ke^{at}$, and all the derivatives of f are bounded by Ke^{at} for $t \ge M$. Then,

(21.17)
$$\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0).$$

Now, solve the differential equation,

(21.18)
$$y'' - y' - 2y = 0, \quad y(0) = 1, \quad y'(0) = 0.$$

Doing the Laplace transform,

(21.19)
$$(s^2 - s - 2)\mathcal{L}\{y(t)\} - (s - 1)y(0) = 0.$$

Therefore, doing partial fractions,

(21.20)
$$\mathcal{L}\{y(t)\} = \frac{s-1}{(s-2)(s+1)} = \frac{1}{3(s-2)} + \frac{2}{3(s+1)}$$

Therefore,

(21.21)
$$y(t) = \frac{1}{3}e^{2t} + \frac{2}{3}e^{-t}.$$

22. Initial value problems

Now consider the initial value problem

(22.1)
$$\frac{d^n y}{dt^n} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_0 y(t) = 0, \qquad y(0) = c_0, \dots, y^{(n-1)}(0) = c_{n-1}.$$

Taking the Laplace transform of both sides,

(22.2)

$$\mathcal{L}\{y(t)\}\cdot\{s^{n}+a_{n-1}s^{n-1}+\ldots+a_{0}\}=s^{n-1}y(0)+\ldots+y^{(n-1)}(0)+a_{n-1}\{s^{n-2}y(0)+\ldots+y^{(n-2)}(0)\}+\ldots+a_{1}y(0)+\ldots+a_{n-1}$$

Therefore, doing some algebra,

(22.3)
$$\mathcal{L}\{y(t)\} = \frac{b_{n-1}s^{n-1} + \dots + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_0}.$$

By the fundamental theorem of algebra,

(22.4)
$$s^{n} + a_{n-1}s^{n-1} + \dots + a_{0} = (s - m_{1})\cdots(s - m_{n}) = \prod_{n=k_{1}+\dots+k_{l}}(s - m_{j})^{k_{j}}.$$

Then by partial fractions,

(22.5)
$$\mathcal{L}\{y(t)\} = \sum_{k_1 + \dots + k_l = n} \frac{p_j(s)}{(s - m_j)^{k_j}} = \sum_{n = k_1 + \dots + k_l} \sum_{1 \le i \le k_j} \frac{a_{ij}}{(s - m_j)^i}.$$

If (22.2) is real valued then $a_{ij} = \bar{a}_{ij'}$ when $m_j = \bar{m}_{j'}$. Then, doing the inverse Laplace transform,

(22.6)
$$\mathcal{L}^{-1}(\frac{a_{ij}}{(s-m_j)^i}) = \frac{a_{ij}}{(i-1)!}t^{i-1}e^{tm_j}$$

23. Convolution

We define the convolution,

(23.1)
$$h(t) = (f * g)(t) = \int_0^t f(t - \tau)g(\tau)d\tau = \int_0^t f(\tau)g(t - \tau)d\tau = (g * f)(t).$$

Theorem 15. If $F(s) = \mathcal{L}{f(t)}$ and $G(s) = \mathcal{L}{g(t)}$ both exist for $s > a \ge 0$, then (23.2) $H(s) = F(s)G(s) = \mathcal{L}{h(t)}, \quad s > a,$

where

(23.3)
$$h(t) = (f * g)(t) = (g * f)(t).$$

Proof. By direct computation,

(23.4)
$$F(s)G(s) = \int_0^\infty e^{-s\tau} f(\tau) \cdot \int_0^\infty e^{-s\xi} g(\xi) d\xi = \int_0^\infty f(\tau) \int_0^\infty e^{-s(\tau+\xi)} g(\xi) d\xi d\tau.$$

Setting $t = \tau + \xi$, $\xi = t - \tau$, so by a change of variables, since $\tau \leq t$,

(23.5)
$$F(s)G(s) = \int_0^\infty e^{-ts} \int_0^t f(\tau)g(t-\tau)d\tau dt = H(s).$$

We can use this computation to compute the inverse Laplace transform. Indeed, let

(23.6)
$$H(s) = \frac{a}{s^2(s+a)} = \frac{1}{s^2} \cdot \frac{a}{s^2 + a^2}.$$

We know that

(23.7)
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} = t, \qquad \mathcal{L}^{-1}\left\{\frac{a}{s^2 + a^2}\right\} = \sin(at).$$

Therefore,

(23.8)
$$h(t) = \int_0^t (t-\tau)\sin(a\tau)d\tau = -\frac{t}{a}\cos(at) + \frac{t}{a} + \frac{\tau}{a}\cos(a\tau)|_0^t - \frac{1}{a}\int_0^t \cos(a\tau)d\tau = \frac{t}{a} - \frac{\sin(at)}{a^2}.$$

Now find the solution of the initial value problem

(23.9)
$$y'' + 4y = g(t), \quad y(0) = 3, \quad y'(0) = -1.$$

Taking the Laplace transform of both sides,

(23.10)
$$(s^{2}+4)Y(s) - 3s + 1 = G(s).$$

Doing some algebra,

(23.11)
$$Y(s) = \frac{3s-1}{s^2+4} + \frac{G(s)}{s^2+4}.$$

Decomposing Y(s),

$$Y(s) = 3\frac{s}{s^2+4} - \frac{1}{2}\frac{2}{s^2+4} + \frac{1}{2}\frac{2}{s^2+4}G(s).$$

Therefore,

(23.12)

(23.13)
$$y(t) = 3\cos(2t) - \frac{1}{2}\sin(2t) + \frac{1}{2}\int_0^t \sin(2(t-\tau))g(\tau)d\tau$$

In general, suppose we have the initial value problem with the forcing function,

(23.14) $y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_0y(t) = g(t), \quad y(0) = c_0, \quad y^{(n-1)}(0) = c_{n-1}.$ Then if we let

(23.15)
$$H(s) = \frac{1}{s^n + a_{n-1}s^{n-1} + \dots + a_0},$$

(23.16)

$$Y(s) = (b_{n-1}s^{n-1} + \dots + b_0)H(s) + G(s)H(s).$$

Then if we let $h(t) = \mathcal{L}^{-1}{H(s)}$, then

(23.17)
$$\mathcal{L}^{-1}\{G(s)H(s)\} = \int_0^t h(t-\tau)g(\tau)d\tau.$$

Definition 9. The function H is called the transfer function.

We can use this formula to obtain the variation of parameters formula. Suppose we have a second order equation,

(23.18)
$$y'' + a_1 y' + a_0 y = g(t), \qquad y(0) = c_0, \qquad y'(0) = c_1.$$

Taking the Laplace transform of both sides,

(23.19)
$$(s^2 + a_1s + a_0)Y(s) = b_1s + b_0 + G(s).$$

Therefore,

(23.20)
$$y(t) = \mathcal{L}^{-1}\left\{\frac{b_1s + b_0}{s^2 + a_1s + a_0}\right\} + \mathcal{L}^{-1}\left\{\frac{G(s)}{s^2 + a_1s + a_0}\right\}.$$

Case 1, no real roots: In this case, $s^2 + a_0s + a_1 = (s-a)^2 + b^2$ for some real a and b. Then,

(23.21)
$$\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^2+b^2}\right\} = \frac{e^{at}}{b}\sin(bt).$$

Therefore, if $c_0 = c_1 = 0$,

(23.22)
$$y(t) = \int_0^t e^{a(t-\tau)} \sin(b(t-\tau))g(\tau)d\tau.$$

Meanwhile, doing the variation of parameters calculation,

(23.23)
$$y(t) = -e^{at}\cos(bt)\int_0^t \frac{e^{a\tau}\sin(b\tau)g(\tau)}{be^{2a\tau}}d\tau + e^{at}\sin(bt)\int_0^t \frac{e^{a\tau}\cos(b\tau)g(\tau)}{be^{2a\tau}}d\tau.$$

Case 2, one real root: In this case, $s^2 + a_0 s + a_1 = (s - a)^2$. In this case,

(23.24)
$$\mathcal{L}^{-1}\{\frac{1}{(s-a)^2}\} = te^{at},$$

so if $c_0 = c_1 = 0$,

(23.25)
$$y(t) = \int_0^t (t-\tau)e^{a(t-\tau)}g(\tau)d\tau$$

Doing the variation of parameters calculation,

(23.26)
$$y(t) = -e^{at} \int_0^t \frac{e^{a\tau} \tau g(\tau)}{e^{2a\tau}} d\tau + t e^{at} \int_0^t \frac{e^{a\tau} g(\tau)}{e^{2a\tau}} d\tau.$$

Case 3, two real roots: In this case, $s^2 + a_0 s + a_1 = (s - r_1)(s - r_2)$. Doing the variation of parameters formula, (23.27)

$$y(t) = -e^{r_1 t} \int_0^t \frac{e^{r_2 \tau}}{(r_2 - r_1)e^{(r_1 + r_2)\tau}} g(\tau) d\tau + e^{r_2 t} \int_0^t \frac{g(\tau)e^{r_1 \tau}}{(r_2 - r_1)e^{(r_1 + r_2)\tau}} d\tau = \int_0^t \frac{g(\tau)}{r_2 - r_1} (e^{r_2(t - \tau)} - e^{r_1(t - \tau)}) d\tau.$$
More while, doing neutrical functions

Meanwhile, doing partial fractions,

(23.28)
$$\mathcal{L}^{-1}\left\{\frac{1}{(s-r_1)(s-r_2)}\right\} = \frac{1}{r_2 - r_1}e^{r_2 t} - \frac{1}{r_2 - r_1}e^{r_1 t}.$$

We can use the Laplace transform and convolution to solve a system of equations,

(23.29)
$$\frac{d}{dt}\overrightarrow{x}(t) = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \overrightarrow{x}(t) + \begin{pmatrix} 2e^{-t}\\ 3t \end{pmatrix}.$$

Taking the Laplace transform of both sides,

(23.30)
$$sX(s) - \overrightarrow{x}(0) = AX(s) + G(s),$$

where

(23.31)
$$G(s) = \begin{pmatrix} \frac{2}{s+1} \\ \frac{3}{s^2} \end{pmatrix}.$$

If $\overrightarrow{x}(0) = 0$, doing some algebra,

(23.32)
$$(sI - A)X(s) = G(s).$$

Doing some algebra,

(23.33)
$$X(s) = (sI - A)^{-1}G(s),$$

where

(23.34)
$$sI - A = \begin{pmatrix} s+2 & -1 \\ -1 & s+2 \end{pmatrix}, \quad (sI - A)^{-1} = \frac{1}{(s+1)(s+3)} \begin{pmatrix} s+2 & 1 \\ 1 & s+2 \end{pmatrix}.$$

Therefore,

(23.35)
$$X(s) = \begin{pmatrix} \frac{2(s+2)}{(s+1)^2(s+3)} + \frac{3}{s^2(s+1)(s+3)}\\ \frac{2}{(s+1)^2(s+3)} + \frac{3(s+2)}{s^2(s+1)(s+3)} \end{pmatrix}.$$

Therefore,

(23.36)
$$\overrightarrow{x}(t) = \begin{pmatrix} 2\\1 \end{pmatrix} e^{-t} - \frac{2}{3} \begin{pmatrix} 1\\-1 \end{pmatrix} e^{-3t} + \begin{pmatrix} 1\\1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 1\\2 \end{pmatrix} t - \frac{1}{3} \begin{pmatrix} 4\\5 \end{pmatrix}.$$

24. Heaviside function

Now consider the problem where the right hand side of (22.1) is not equal to zero and need not be continuous.

Definition 10 (Heaviside function). Let $u_c(t) = 0$ for t < c and $u_c(t) = 1$ for $t \ge c$.

(24.1)
$$\mathcal{L}\{u_c(t)\} = \int_0^\infty e^{-st} u_c(t) dt = \int_c^\infty e^{-st} = \frac{e^{-cs}}{s}.$$

The Laplace transform intertwines multiplication by an exponential and translation.

Theorem 16. If the Laplace transform of f(t), $F(s) = \mathcal{L}{f(t)}$ exists for $s > a \ge 0$, and if c is a positive constant, then

(24.2)
$$\mathcal{L}\{u_c(t)f(t-c)\} = e^{-cs}\mathcal{L}\{f(t)\} = e^{-cs}F(s), \qquad s > a$$

Conversely, if f(t) is the inverse Laplace transform of F(s), $f(t) = \mathcal{L}^{-1}{F(s)}$, then

(24.3)
$$u_c(t)f(t-c) = \mathcal{L}^{-1}\{e^{-cs}F(s)\}$$

Proof. By direct computation and a change of variables,

(24.4)
$$\mathcal{L}\{u_c(t)f(t-c)\} = \int_c^\infty e^{-st} f(t-c)dt = e^{-cs}F(s).$$

We can apply Theorem 16 to obtain (24.1). Also, if $f(t) = \sin(t) + u_{\frac{\pi}{4}}(t)\cos(t - \frac{\pi}{4})$, then

(24.5)
$$F(s) = \mathcal{L}\{\sin t\} + e^{-\pi s/4} \mathcal{L}\{\cos t\}.$$

On the other hand, if

(24.6)
$$F(s) = \frac{1 - e^{-2s}}{s^2}, \qquad f(t) = t - u_2(t)(t - 2).$$

Consider the ordinary differential equation

(24.7)
$$2y'' + y + 2y = g(t), \quad g(t) = u_5(t) - u_{20}(t), \quad y(0) = y'(0) = 0.$$

Taking the Laplace transform of both sides, let Y(s) be the Laplace transform of y(t).

(24.8)
$$(2s^2 + s + 2)Y(s) = \frac{1}{s}(e^{-5s} - e^{-20s})$$

Doing some algebra,

(24.9)
$$Y(s) = \frac{e^{-5s} - e^{-20s}}{s(2s^2 + s + 2)}.$$

Doing some partial fractions,

(24.10)
$$\frac{1}{s(2s^2+s+2)} = \frac{a}{s} + \frac{bs+c}{2s^2+s+2}, \qquad a = \frac{1}{2}, \qquad b = -1, \qquad c = -\frac{1}{2}.$$

-50

Then if

(24.11)
$$H(s) = \frac{1}{s(2s^2 + s + 2)}, \qquad h(t) = \frac{1}{2} - \mathcal{L}^{-1}\left\{\frac{(s + \frac{1}{4}) + \frac{1}{4}}{2((s + \frac{1}{4})^2 + \frac{15}{16})}\right\}.$$

Next,

(24.12)
$$-\mathcal{L}^{-1}\left\{\frac{(s+\frac{1}{4})}{2((s+\frac{1}{4})^2+\frac{15}{16})}\right\} = -\frac{1}{2}e^{-t/4}\cos(\frac{\sqrt{15}}{4}t).$$

$$(24.13) \qquad -\mathcal{L}^{-1}\left\{\frac{\frac{1}{4}}{2\left(\left(s+\frac{1}{4}\right)^2+\frac{15}{16}\right)}\right\} = -\frac{1}{\sqrt{15}}\mathcal{L}^{-1}\left\{\frac{\frac{\sqrt{15}}{4}}{2\left(\left(s+\frac{1}{4}\right)^2+\frac{15}{16}\right)}\right\} = -\frac{e^{-t/4}}{2\sqrt{15}}\sin(\frac{\sqrt{15}}{4}t).$$

Next, using Theorem 16,

(24.14)
$$y(t) = u_5(t)h(t) - u_{20}(t)h(t).$$

Next, consider the problem

(24.15)
$$y''(t) + 4y(t) = g(t),$$
 $g(t) = 0,$ $0 \le t < 5,$ $g(t) = \frac{1}{5}(t-5),$ $5 \le t < 10,$
 $g(t) = 1,$ $t \ge 10,$ $y(0) = y'(0) = 0.$

Taking the Laplace transform of both sides,

(24.16)
$$(s^2 + 4)Y(s) = \mathcal{L}\{g(t)\} = G(s).$$

Rewriting,

(24.17)
$$g(t) = \frac{1}{5}(u_5(t)(t-5) - u_{10}(t)(t-10)),$$

 \mathbf{SO}

(24.18)
$$G(s) = \frac{e^{-5s} - e^{-10s}}{5s^2}.$$

Doing some algebra,

(24.19)
$$Y(s) = \frac{e^{-5s} - e^{-10s}}{5} \cdot \frac{1}{s^2(s^2 + 4)}.$$

Now then,

(24.20)
$$\frac{1}{s^2}\frac{1}{s^2+4} = \frac{1/4}{s^2} - \frac{1/4}{s^2+4},$$

Now then,

(24.21)
$$\mathcal{L}^{-1}\left\{\frac{1/4}{s^2} - \frac{1/4}{s^2 + 4}\right\} = \frac{1}{4}t - \frac{1}{8}\sin(2t).$$

Therefore,

$$(24.22) \quad y(t) = \frac{1}{5} \left(\frac{1}{4} u_5(t)(t-5) - \frac{1}{8} u_5(t) \sin(2(t-5)) - \frac{1}{4} u_{10}(t)(t-10) + \frac{1}{8} u_{10}(t) \sin(2(t-10))\right).$$

25. Impulse functions

Consider the differential equation

(25.1)
$$ay'' + by' + cy = g(t),$$

where g(t) is large during a short interval $t_0 - \tau < t < t_0 + \tau$ for some $\tau > 0$, and zero otherwise. Now then, define the integral

(25.2)
$$I(\tau) = \int_{t_0 - \tau}^{t_0 + \tau} g(t) dt.$$

and since g(t) = 0 outside the interval $(t_0 - \tau, t_0 + \tau)$, then

(25.3)
$$I(\tau) = \int_{-\infty}^{\infty} g(t)dt.$$

For example, define

(25.4)
$$g(t) = d_{\tau}(t) = \frac{1}{2\tau}, \quad -\tau < t < \tau, \quad g(t) = 0, \quad \text{otherwise}.$$

Then,

(25.5)
$$\lim_{\tau \searrow 0} d_{\tau}(t) = 0, \qquad t \neq 0, \qquad \lim_{\tau \searrow 0} I(\tau) = 1.$$

Define the unit impulse function, $\delta(t)$, $\delta(t) = 0$, $t \neq 0$ and $\int_{-\infty}^{\infty} \delta(t) dt = 1$. This is called the Dirac delta function. Now then,

(25.6)
$$\mathcal{L}\{\delta(t-t_0)\} = \lim_{\tau \searrow 0} \mathcal{L}\{d_\tau(t-t_0)\} = \int_0^\infty e^{-st} d_\tau(t-t_0) dt = e^{-st_0}.$$

In general, for any continuous function f(t),

(25.7)
$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0).$$

For example, solve the differential equation,

(25.8)
$$2y'' + y' + 2y = \delta(t-5), \quad y(0) = y'(0) = 0.$$

Taking the Laplace transform of both sides,

(25.9)
$$(2s^2 + s + 2)Y(s) = e^{-5s}.$$

Taking the inverse Laplace transform of both sides,

(25.10)
$$\mathcal{L}^{-1}\left\{\frac{1}{2s^2+s+2}\right\} = \mathcal{L}^{-1}\left\{\frac{2}{\sqrt{15}}\frac{\frac{\sqrt{15}}{4}}{(s+\frac{1}{4})^2+\frac{15}{16}}\right\} = \frac{2}{\sqrt{15}}e^{-t/4}\sin(\frac{\sqrt{15}}{4}t).$$

Therefore,

(25.11)
$$y(t) = \frac{2}{\sqrt{15}} u_5(t) e^{-(t-5)/4} \sin(\frac{\sqrt{15}}{4}(t-5)).$$

26. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Consider the equation,

(26.1)
$$\frac{dx}{dt} = F(t,x), \qquad x(t_0) = x_0.$$

Also suppose that F(t, x) satisfies the Lipschitz condition,

(26.2)
$$||F(t,x) - F(t,y)|| \le L||x - y||.$$

We can achieve this bound if

(26.3)
$$||D_x F(t,x)|| \le L.$$

Proposition 13. Suppose $F : I \times \Omega \to \mathbb{R}^n$ is bounded and continuous and satisfies the Lipschitz condition and that $x_0 \in \Omega$. Then, there exists $T_0 > 0$ and a unique C^1 solution to (26.1) for $|t - t_0| < T_0$.

Proof. We prove this using Picard iteration. Indeed, a solution to (26.1) satisfies

(26.4)
$$x(t) = x_0 + \int_{t_0}^t F(s, x(s)) ds$$

Then by Picard iteration, define

(26.5)
$$x_{n+1}(t) = x_0 + \int_{t_0}^t F(s, x_n(s)) ds$$

We assume that there exists R > 0 such that $B_R(x_0) \subset \Omega$ and

(26.6)
$$||F(s,x)|| \le M,$$

for any $x \in \overline{B_R(x_0)}$. Clearly, $x_0(t) = x_0$ for all t. Also,

(26.7)
$$||x_{n+1}(t) - x_0|| \le M|t - t_0|,$$

so for $|t - t_0| < T_0$, T_0 sufficiently small, implies that $x_{n+1}(t)$ also takes values in $B_R(x_0)$. Now then, by the Lipschitz continuity,

(26.8)
$$\|x_{n+1}(t) - x_n(t)\| \le LT_0 \max_{|s-t_0| \le T_0} \|x_n(s) - x_{n-1}(s)\|.$$

Thus, for $T_0 \leq \frac{1}{2L}$,

(26.9)
$$\max_{|t-t_0| \le T_0} \|x_{n+1}(t) - x_n(t)\| \le 2^{-n} R,$$

so then, the infinite sequence,

(26.10)
$$x(t) = x_0 + \sum_{n=0}^{\infty} (x_{n+1}(t) - x_n(t)).$$

For each closed, bounded subset K of Ω , (26.2) and (26.6) hold. If a solution stays in K, then we can extend a solution.

Proposition 14. Let F be as in Proposition 13 but with Lipschitz and boundedness conditions only holding on a closed, bounded set K. Assume that [a, b] is contained in the open interval I and that x(t) solves (26.4) for $t \in (a, b)$. Assume that there exists a closed, bounded set $K \subset \Omega$ such that $x(t) \in K$ for all $t \in (a, b)$. Then there exist $a_1 < a$ and $b_1 > b$ such that x(t) solves (26.1) for $t \in (a, b)$.

We can use this result to prove global existence. For example, consider the 2×2 system,

(26.11)
$$\frac{dy}{dt} = v, \qquad \frac{dv}{dt} = -y^3$$

In this case,

(26.12)
$$\frac{d}{dt}(\frac{v^2}{2} + \frac{y^4}{4}) = 0.$$

Therefore, the solution x(t) = (y(t), v(t)) lies on a level curve

(26.13)
$$\frac{y^4}{4} + \frac{v^2}{2} = C.$$

27. Nonlinear ODEs : The phase plane

We turn now to nonlinear ordinary differential equations of the form

.

(27.1)
$$\frac{dy}{dt} = f(y)$$

Such equations usually do not have a solution constructed of elementary functions.

Of particular importance are the critical points of (27.1). These are points y_0 such that $f(y_0) = 0$. In this case, of course, $y(t) = y_0$ is a solution to (27.1). Then, by Taylor's formula,

(27.2)
$$\frac{d(y-y_0)}{dt} = f(y) - f(y_0) = Df(y_0) \cdot (y-y_0) + o(y-y_0).$$

Then we study the eigenvalues and eigenvectors of $Df(y_0) = A$.

Definition 11. We say that a critical point is stable if, given any $\epsilon > 0$, there exists $\delta > 0$ such that if $||x(0) - x^0|| < \delta$, then the solution exists for all positive t and satisfies $||x(t) - x^0|| < \epsilon$. A point that is not stable is unstable. A solution is said to be asymptotically stable if, in addition to being stable,

(27.3)
$$\lim_{t \to \infty} x(t) = x_0.$$

Case 1: Real, unequal eigenvalues of the same sign. In this case, the solution to the linearized equation is

(27.4)
$$\overrightarrow{x}(t) = c_1 \xi^{(1)} e^{r_1 t} + c_2 \xi^{(2)} e^{r_2 t}.$$

Stable if negative, unstable if both positive.

Case 2: Real, unequal eigenvalues of opposite sign. In this case, we have a stable direction and an unstable direction, see (27.4).

Saddle point.

Case 3: Equal eigenvalues. In this case, we could have $Df(y_0) = \lambda I$, so then in that case we can again use (27.4). This is called a proper node. Otherwise, if we have one eigenvalue and a generalized eigenvalue, which is called an improper node,

(27.5)
$$\overrightarrow{x}(t) = c_1 \xi e^{rt} + c_2 (\xi t e^{rt} + \eta e^{rt}).$$

This is unstable if positive and stable if negative.

Case 4: Complex eigenvalues with nonzero real part. In this case, we may have either a spiral sink or a spiral source. In this case, the linearized equation is

(27.6)
$$\frac{dx}{dt} = \begin{pmatrix} \lambda & \mu \\ -\mu & \lambda \end{pmatrix} x,$$

and the matrix exponential is given by

(27.7)
$$e^{tA} = e^{\lambda t} \begin{pmatrix} \cos(\mu t) & \sin(\mu t) \\ -\sin(\mu t) & \cos(\mu t) \end{pmatrix}.$$

This is an unstable spiral if $\lambda > 0$ and a stable spiral if $\lambda < 0$.

Case 5: In this case, $\lambda = 0$, so we have a center. In this case,

(27.8)
$$\frac{dx}{dt} = \begin{pmatrix} 0 & \mu \\ -\mu & 0 \end{pmatrix} x,$$

and the matrix exponential is given by

(27.9)
$$e^{tA} = \begin{pmatrix} \cos(\mu t) & \sin(\mu t) \\ -\sin(\mu t) & \cos(\mu t) \end{pmatrix}.$$

This is a center, which is stable.

28. Predator-prey equations

The simplest model for a species population growth is

(28.1)
$$\frac{dx}{dt} = ax.$$

Remark 4. Of course, a population should be an integer.

The solution to this equation is

(28.2)
$$x(t) = e^{at}x(0)$$

Of course, resources are not unlimited. Instead, we consider the logistic population growth equation,

(28.3)
$$\frac{dx}{dt} = ax(1-bx), \qquad b = \frac{1}{K}.$$

This is a separable equation,

(28.4)
$$\frac{dx}{x(1-bx)} = adt.$$

By partial fractions,

(28.5)
$$\frac{1}{x(1-bx)} = \frac{1}{x} + \frac{K}{(1-bx)}$$

Integrating both sides,

(28.6)
$$\ln(x) - K^2 \ln(1 - bx) = at + C.$$

This equation has two critical points, x = 0 and $x = \frac{1}{b} = K$.

Now we turn to a 2×2 system of equations, the predator-prev equations. Let x(t) be the population of prey, y(t) the population of predator, and α the rate at which the predator eats the prey. Then we have the system of equations

(28.7)
$$\frac{dx}{dt} = ax - \alpha xy = x(a - \alpha y),$$
$$\frac{dy}{dt} = -cy + \gamma xy = y(-c + \gamma x).$$

In this case, if y = 0, then we have exponential growth of the prey. If x = 0, the population of the predator goes to zero.

This equation has two critical points, (x, y) = (0, 0), and $(x, y) = (\frac{c}{\gamma}, \frac{a}{\alpha})$.

The origin: (x, y) = (0, 0)

In this case, the linearization of (28.7) is given by

(28.8)
$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + O(x^2 + y^2).$$

In this case, the critical point is a saddle point.

The point
$$(x, y) = (\frac{c}{2}, \frac{a}{2})$$
:

To simplify the computations, consider the equation

(28.9)
$$\frac{dx}{dt} = x(1 - 0.5y),$$
$$\frac{dy}{dt} = y(-0.75 + 0.25x).$$

In this case, the critical point is (x, y) = (3, 2). Expanding around (3, 2), (28.10)

$$\frac{dx}{dt} = x(1 - 0.5y) = (3 + (x - 3))(1 - (0.5) * 2 - 0.5(y - 2)) = -1.5(y - 2) - 0.5(x - 3)(y - 2)$$

 $\frac{dy}{dt} = y(-0.75 + 0.25x) = (2 + (y - 2))(-0.75 + 0.25 * 3 + 0.25(x - 3)) = 0.5(x - 3) + 0.25(x - 3)(y - 2).$

Linearizing the matrix, we have

(28.11)
$$\frac{d}{dt} \begin{pmatrix} x-3\\ y-2 \end{pmatrix} = \begin{pmatrix} 0 & -1.5\\ 0.5 & 0 \end{pmatrix} \begin{pmatrix} x-3\\ y-2 \end{pmatrix} + O((x-3)^2 + (y-2)^2)$$

The matrix $\begin{pmatrix} 0 & -1.5\\ 0.5 & 0 \end{pmatrix}$ has two imaginary eigenvalues, so the linearization is periodic solution. For the nonlinear solution, observe that

(28.12)
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{y(-0.75 + 0.25x)}{x(1 - 0.5y)}.$$

This equation is separable, obtaining

(28.13)
$$\frac{dy}{y}(1-0.5y) = \frac{dx}{x}(-0.75+0.25x).$$

Integrating both sides,

(28.14)
$$\ln(y) - 0.5y + 0.75\ln(x) - 0.25x = C$$

Therefore, we have a trajectory that circles the critical point.

29. Competing species equation

Let x(t) and y(t) be two competing species,

(29.1)
$$\begin{aligned} \frac{dx}{dt} &= ax(1-bx) - cxy,\\ \frac{dy}{dt} &= \alpha y(1-\beta y) - \gamma xy. \end{aligned}$$

In this case, each population is governed by the logistic equation in the absence of the other species.

Let us consider the specific equation,

(29.2)
$$\frac{dx}{dt} = x(1 - x - y),$$
$$\frac{dy}{dt} = \frac{y}{4}(3 - 4y - 2x).$$

There are two critical points of the second equation when x = 0: y = 0 and $y = \frac{3}{4}$. There are two critical points of the first equation when y = 0: x = 1 and x = 0. Finally, we have the critical point:

(29.3)
$$1-x-y=0, \quad 3-4y-2x=0,$$

which has the fourth critical point $(\frac{1}{2}, \frac{1}{2})$.

In this case, we have the Jacobian

(29.4)
$$\begin{pmatrix} 1 - 2x - y & -x \\ -0.5y & 0.75 - 2y - 0.5x \end{pmatrix}.$$

At
$$(x, y) = (0, 0)$$
,

(29.5)
$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + O(x^2 + y^2).$$

This is an unstable equilibrium.

At $(x, y) = (0, \frac{3}{4}),$

(29.6)
$$\frac{d}{dt} \begin{pmatrix} x \\ y - \frac{3}{4} \end{pmatrix} = \begin{pmatrix} 0.25 & 0 \\ -0.375 & -0.75 \end{pmatrix} \begin{pmatrix} x \\ y - \frac{3}{4} \end{pmatrix} + O(x^2 + (y - \frac{3}{4})^2).$$

This is a saddle point. The eigenvalues and eigenvectors are

(29.7)
$$r_1 = \frac{1}{4}, \quad e_1 = \begin{pmatrix} 8 \\ -3 \end{pmatrix}, \quad r_2 = -\frac{3}{4}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

At
$$(x, y) = (1, 0),$$

(29.8)
$$\frac{d}{dt} \begin{pmatrix} x-1\\ y \end{pmatrix} = \begin{pmatrix} -1 & -1\\ 0 & 0.25 \end{pmatrix} \begin{pmatrix} x-1\\ y \end{pmatrix} + O((x-1)^2 + y^2).$$

The eigenvalues and eigenvectors are

(29.9)
$$r_1 = -1, \quad e_1 = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad r_2 = \frac{1}{4}, \quad \begin{pmatrix} 4\\ -5 \end{pmatrix}.$$

This is also a saddle point.

At $(x, y) = (\frac{1}{2}, \frac{1}{2}),$

(29.10)
$$\frac{d}{dt} \begin{pmatrix} x - \frac{1}{2} \\ y - \frac{1}{2} \end{pmatrix} = \begin{pmatrix} -0.5 & -0.5 \\ -0.25 & -0.5 \end{pmatrix} \begin{pmatrix} x - \frac{1}{2} \\ y - \frac{1}{2} \end{pmatrix} + O((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2)$$

The eigenvalues and eigenvectors are

(29.11)
$$r_1 = \frac{1}{4}(-2+\sqrt{2}), \quad e_1 = \begin{pmatrix} \sqrt{2} \\ -1 \end{pmatrix}, \quad r_2 = \frac{1}{4}(-2-\sqrt{2}), \quad e_2 = \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix}.$$

This is a stable critical point.

Now consider the system of equations

(29.12)
$$\frac{dx}{dt} = x(1 - x - y),$$
$$\frac{dy}{dt} = y(0.5 - 0.25y - 0.75x).$$

This has the critical points (0,0), (0,2), (1,0), and $(\frac{1}{2},\frac{1}{2})$. We have the Jacobian

(29.13)
$$\begin{pmatrix} 1-2x-y & -x \\ -0.75y & 0.5-0.5y-0.75x \end{pmatrix}.$$

At (x, y) = (0, 0), we have the Jacobian

(29.14)
$$\begin{pmatrix} 1 & 0 \\ 0 & 0.5 \end{pmatrix},$$

which is an unstable equilibrium.

At (x, y) = (0, 2), we have the Jacobian

(29.15)
$$\begin{pmatrix} -1 & 0 \\ -1.5 & -0.5 \end{pmatrix}$$
,

which has the eigenvalues $r_1 = -1$, $r_2 = -0.5$ and the eigenvectors $e_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Thus, (x, y) = (0, 2) is a stable equilibrium.

At (x, y) = (1, 0), we have the Jacobian

(29.16)
$$\begin{pmatrix} -1 & -1 \\ 0 & -0.25 \end{pmatrix}$$
,

which has the eigenvalues $r_1 = -1$ and $r_2 = -\frac{1}{4}$ and eigenvectors $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$. This is also a stable equilibrium.

At $(x, y) = (\frac{1}{2}, \frac{1}{2})$, the Jacobian is

(29.17)
$$\begin{pmatrix} -0.5 & -0.5\\ -0.375 & -0.125 \end{pmatrix}.$$

The eigenvalues and eigenvectors are (29.18)

$$r_1 = \frac{1}{16}(-5+\sqrt{57}), \qquad e_1 = \begin{pmatrix} 1\\ \frac{1}{8}(-3-\sqrt{57}) \end{pmatrix}, \qquad r_2 = \frac{1}{16}(-5-\sqrt{57}), \qquad e_2 = \begin{pmatrix} 1\\ \frac{1}{8}(-3+\sqrt{57}) \end{pmatrix}.$$

This critical point is a saddle point. This forms a separatrix.

References

- [BD65] William E. Boyce and Richard C. DiPrima. Elementary differential equations and boundary value problems. John Wiley & Sons, Inc., New York-London-Sydney, 1965.
- [Tay22] Michael E. Taylor. Introduction to differential equations, volume 52 of Pure and Applied Undergraduate Texts. American Mathematical Society, Providence, RI, second edition, [2022] ©2022.