
NOTES ON SCHRÖDINGER MAPS

BENJAMIN DODSON

Abstract. These are the notes for a course in Senegal.

1. The differentiated Schrödinger maps equation

In this course we will consider the Schrödinger map initial value problem

(1.1) ∂tϕ = ϕ×∆ϕ, on R× Rd, ϕ(0) = ϕ0,

where ϕ : R × Rd → S2 ↪→ R3. The Schrödinger map problem has a rich geometric structure and
arises in several different ways. For instance, it arises in ferromagnetism as the Heisenberg model
for the ferromagnetic spin system whose classical spin ϕ, which belongs to S2 ↪→ R3 is given by
(1.1) in dimensions d = 1, 2, 3. See [CSU00], [NSU03], [PT91], and [TH13] for more details. On the
mathematical side, this problem may be thought of as a generalization of the usual free Schrödinger
equation,

(1.2) ut = i∆u, u(0, x) = u0.

This is because the manifold S2 is a Kähler manifold with the complex structure v ∈ TϕS2 7→ ϕ× v.

Remark 1. To see why, suppose without loss of generality that ϕ = −→e1 and v = −→e2 . Then ϕ×v = −→e3
and ϕ× (ϕ× v) = −−→e2 . Thus, if J v = ϕ× v, J 2 = −I.

However, unlike (1.2), a solution to (1.1) is decidedly nonlinear. Indeed, if ϕ solves (1.1) then
|ϕ| = 1. Because of this, not only is it not true that if ϕ1 and ϕ2 are solutions to (1.1) then ϕ1 +ϕ2
is also a solution to (1.1), but it is unclear what ϕ1 + ϕ2 even means in the context of (1.1), since
ϕ1 +ϕ2 will almost certainly not lie on S2. For this reason it is useful to consider the differentiated
Schrödinger map equation. Such an equation will still be nonlinear, but the derivate of a solution
to (1.1) will at least lie in the space TϕS2, which is a linear space.

Let ϕ : Rd×(−T, T ) → S2 be a smooth function that satisfies (1.1). Then consider the derivatives

(1.3) ∂mϕ(x, t), for m = 1, ..., d+ 1, ∂d+1 = ∂t.

These are tangent vectors to the sphere at ϕ(x, t). Suppose we have a smooth orthonormal frame
(v(t, x), w(t, x)) in Tϕ(x,t)S2. Then we can introduce the differentiated variables

(1.4) ψm =t v · ∂mϕ+ itw · ∂mϕ.

Thus,

(1.5) ∂mϕ = vRe(ψm) + wIm(ψm).
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In order to write the equations for ψm we need to know how v(x, t) and w(x, t) vary as functions
of (x, t). For this reason, we introduce the real coeffcients

(1.6) Am =t w · ∂mv.

Since |ϕ| = |v| = |w| = 1 for all (x, t), ⟨∂mϕ, ϕ⟩ = ⟨∂mv, v⟩ = ⟨∂mw,w⟩ = 0 and ⟨∂mv, ϕ⟩ =
−⟨ϕmϕ, v⟩, ⟨∂mv, w⟩ = −⟨∂mw, v⟩, ⟨∂mw, ϕ⟩ = −⟨∂mϕ,w⟩. Thus,

(1.7) ∂mv = −ϕRe(ψm) + wAm, ∂mw = −ϕIm(ψm)− vAm.

Lemma 1. The variables ψm satisfy the curl type relation,

(1.8) (∂l + iAl)ψm = (∂m + iAm)ψl.

Proof. By direct calculation,

(1.9)

(∂l + iAl)ψm = (∂l + iAl)(
tv · ∂mϕ+ itw · ∂mϕ)

= (tv · ∂l∂mϕ+ itw · ∂l∂mϕ) + (t∂lv · ∂mϕ+ it∂lw · ∂mϕ)
+i(tw · ∂lv)(tv · ∂mϕ)− (tw · ∂lv)(tw · ∂mϕ) = (tv · ∂l∂mϕ+ itw · ∂l∂mϕ).

The last step uses the fact that t∂lv · ∂mϕ = (tw · ∂lv)(tv · ∂mϕ) and ∂lw · ∂mϕ = −(tw · ∂lv)(tv ·
∂mϕ). □

Thus, with the notation Dm = ∂m + iAm, (1.8) is equivalent to

(1.10) Dlψm = Dmψl.

Next, by direct computation and using the fact that (∂lw·∂mv = (w·∂lϕ)(v ·∂mϕ) = Im(ψl)Re(ψm),

(1.11) ∂lAm − ∂mAl = (t∂lw · ∂mv −t ∂mw · ∂lv) = Im(ψlψm) = qlm.

Thus, the curvature of the connection is given by

(1.12) DlDm −DmDl = iqlm.

Now suppose that the smooth function ϕ satisfies the Schrödinger map equation (1.1). By direct
computation using (1.8), (1.9), (1.11), ϕ× v = w, and ϕ× w = −v,
(1.13)

ψd+1 =t v ·∂d+1ϕ+ i
tw ·∂d+1ϕ =t v ·(ϕ×∆ϕ)+ itw ·(ϕ×∆ϕ) = −(tw ·∆ϕ)+ i(tv ·∆ϕ) = i

d∑
l=1

Dlψl.

Using (1.10) and (1.12),

(1.14) Dd+1ψm = Dmψd+1 = iDm

d∑
l=1

Dlψl = i

d∑
l=1

DlDlψm +

d∑
l=1

qlmψl,

which is equivalent to

(1.15) ∂tψm+ iAd+1ψm = i∆ψm− 2

d∑
l=1

Al∂lψm−
d∑

l=1

(∂lAl)ψm− i(
d∑

l=1

A2
l )ψm+

d∑
l=1

Im(ψlψm)ψl.

Doing some algebra,

(1.16) (i∂t +∆x)ψm = −2i

n∑
l=1

Al∂lψm + (An+1 +

n∑
l=1

(A2
l − i∂lAl))ψm − i

n∑
l=1

Im(ψlψm)ψl.
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Remark 2. The reason writing the last term in (1.16) in this way is to highlight the focusing nature
the differentiated equation. Indeed,

(1.17) −iIm(ψlψm)ψl = −1

2
|ψl|2ψm +

1

2
ψmψ

2
l ,

which is a negative definite operator on ψm. If the terms with Al’s in them could somehow be
removed, it is likely that (1.16) could be analyzed in a manner analogous to [Dod15].

The solution ψm for the above system (1.10), (1.11), and (1.16) cannot be uniquely determined
as it depends on the choice of the orthonormal frame (v(x, t), w(x, t)). If w = ϕ× v, the system is
invariant with respect to a coordinate rotation in TϕS2. Under such a rotation,
(1.18)
ψm = cos θ(tv·∂mϕ)+sin θ(tw·∂mϕ)+i cos θ(tw·∂mϕ)−i sin θ(tv·∂mϕ) = (cos θ−i sin θ)ψm = e−iθψm.

Plugging (1.18) into (1.6),
(1.19)
((cos θ)w− (sin θ)v)t · ∂m((cos θ)v + (sin θ)w) = wt · ∂mv − sin2 θ(∂mθ)− cos2 θ(∂mθ) = Am − ∂mθ.

In order to obtain a well–posed system, one needs to make a choice which uniquely determines the
gauge. Ideally, one may hope that this choice uniquely determines the A′

m in terms of the ψm’s so
that the nonlinearity is perturbative.

1.1. Homework.

(1) Prove the dispersive estimates for a solution to (1.2).

2. The Coulomb gauge

One natural choice is the Coulomb gauge, where one adds the equation

(2.1)

d∑
m=1

∂mAm = 0.

In view of (1.11), (2.1) leads to

(2.2) Am = ∆−1
d∑

l=1

∂lIm(ψlψm).

Thus, for a given gauge Ãm, let θ solve the elliptic partial differential equation

(2.3) ∆θ = −
d∑

m=1

∂mÃm,

and then if Am = Ãm+∂mθ, (2.1) holds. We only need to find a gauge Ãm with sufficient regularity
such that it is reasonable to discuss a solution to (2.3).

To that end, assume n ∈ [1,∞) ∩ Z, a1, ..., an ∈ [0,∞), and let

(2.4) Dn = [−a1, a1]× ...× [−an, an].
For n = 0 let D0 = {0}.

Lemma 2. Assume n ≥ 0 and ϕ : Dn → S2 is a continuous function. Then there is a continuous
function v : Dn → S2 with the property that

(2.5) ϕ(x) · v(x) = 0, for any x ∈ Dn.
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Proof. We argue by induction over n, the case when n = 0 is trivial. Since ϕ is continuous, there
is ϵ > 0 with the property that

(2.6) |ϕ(x)− ϕ(y)| ≤ 2−10, for any x, y ∈ Dn, with |x− y| ≤ ϵ.

For x ∈ Dn we can write x = (x′, xn) ∈ Dn−1 × [−an, an]. For any b ∈ [−an, an] let Dn
b =

Dn−1 × [−an, b] = {x = (x′, xn) ∈ Dn : xn ∈ [−an, b]}. By the induction hypothesis we can define
v : Dn

−an
→ S2 continuous such that

(2.7) ϕ(x) · v(x) = 0, for any x ∈ Dn
−an

.

Now extend the function ϕ to Dn. For ϵ as in (2.6) it suffices to prove that if b, b′ ∈ [−an, an],
0 ≤ b′ − b ≤ ϵ, v : Dn

b → S2 is continuous, and ϕ(x) · v(x) = 0 for any x ∈ Dn
b , then v can be

extended to a continuous function ṽ : Dn
b′ → S2 such that ϕ(x) · ṽ(x) = 0 for any x ∈ Dn

b′ .
Now let

(2.8) R = {(u1, u2) ∈ R3 × R3 : |u1|, |u2| ∈ (
1

2
, 2) and |u1 · u2| < 2−5},

and let N : R → S2 denote the smooth function lying in the plane generated by u1 and u2 and
orthogonal to u2. We do this via the Gram–Schmidt orthogonalization process,

(2.9) N [u1, u2] =
u1 − (u1·u2)

|u2|2 u2

|u1 − (u1·u2)
|u2|2 u2|

.

Now construct the extension ṽ : Dn
b′ → S2. For x′ ∈ Dn−1 and xn ∈ [−an, b′], let

(2.10) ṽ(x′, xn) =

{
N [v(x′, b), ϕ(x′, xn)] if xn ∈ [b, b′],
v(x′, xn) if xn ∈ [−an, b].

In view of (2.6), the function ṽ : Dn
b′ → S2 is well–defined, continuous, and ϕ(x) · ṽ(x) = 0 for any

x ∈ Dn
b′ . □

It is possible to extend this argument to all of Rn on a compact time interval [−T, T ] if ϕ(x, t)
converges to some Q ∈ S2 as |x| → ∞ for any fixed t ∈ [−T, T ].

Lemma 3. Assume T ∈ [0, 2], Q,Q′ ∈ S2, Q ·Q′ = 0, and ϕ : Rd × [−T, T ] → S2 is a continuous
function with the property that

(2.11) lim
x→∞

ϕ(x, t) = Q, uniformly in t ∈ [−T, T ].

Then there is a continuous function v : Rd × [−T, T ] → S2 with the property that

(2.12)

{
ϕ(x, t) · v(x, t) = 0, for any (x, t) ∈ Rd × [−T, T ],
limx→∞ v(x, t) = Q′ uniformly in t ∈ [−T, T ].

Proof. Fix R > 0 such that

(2.13) |ϕ(x, t)−Q| ≤ 2−10, if |x| ≥ R, and t ∈ [−T, T ].

Using Lemma 2, we can define a continuous function v0 : BR × [−T, T ] → S2 such that ϕ(x, t) ·
v0(x, t) = 0 for (x, t) ∈ BR × [−T, T ], where BR = {x ∈ Rd : |x| ≤ R}.

Let SR = {y ∈ Rn : |y| = R} and S1Q = {x ∈ S2 : x ·Q = 0}. Then define the continuous function

(2.14) w : SR × [−T, T ] → S1Q, w(y, t) =
(ϕ(y, t) ·Q)v0(y, t)− (v0(y, t) ·Q)ϕ(y, t)

|(ϕ(y, t) ·Q)v0(y, t)− (v0(y, t) ·Q)ϕ(y, t)|
,
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so w(y, t) is a vector in S1Q and in the plane generated by ϕ(y, t) and v0(y, t). Since n ≥ 3, the space

SR×[−T, T ] is simply connected and compact, so the function w is homotopic to a constant function.
Thus, there is a continuous function w̃ : SR × [−T, T ] × [1, 2] → S1Q such that w̃(y, t, 1) = w(y, t)

and w̃(y, t, 2) ≡ Q′. Then define

(2.15) v1(x, t) = N [w̃(R
x

|x|
, t,

|x|
R

), ϕ(x, t)],

for |x| ∈ [R, 2R], and

(2.16) v2(x, t) = N [Q′, ϕ(x, t)],

for |x| ≥ 2R. The function v in Lemma 3 is obtained by gluing the functions v0, v1, and v2
together. □

Now we define some Sobolev spaces for functions ϕ : Rn × R → S2 ↪→ R3. For σ ≥ 0 and
d ∈ {1, 2, ...} let Hσ = Hσ(Rn;Cd) denote the Banach space of Cd–valued Sobolev functions on Rd,
i.e.

(2.17) Hσ = {f : Rn → Cd : ∥f∥Hσ = [

d∑
l=1

∥F(n)(fl) · (|ξ|2 + 1)σ/2∥2L2 ]1/2 <∞},

where F(n) denotes the Fourier transform on L2(Rn). For σ ≥ 0, d ∈ {1, 2, ...}, and f ∈ Hσ(Rn;Cd),
define

(2.18) ∥f∥Ḣσ = [

d∑
l=1

∥F(n)(fl)(ξ) · |ξ|σ∥2L2 ]1/2.

For σ ≥ 0 and Q = (Q1, Q2, Q3) ∈ S2 we define the complete metric space

(2.19) Hσ
Q = Hσ

Q(Rn;S2 ↪→ R3) = {f : Rn → R3 : |f(x)| ≡ 1, and f −Q ∈ Hσ},

with the induced distance

(2.20) dσQ(f, g) = ∥f − g∥Hσ .

Let ∥f∥Hσ
Q
= dσQ(f,Q) for f ∈ Hσ

Q. Let Z+ = {0, 1, ...}. For d ∈ {1, 2, ...} and Q ∈ S2 define the

complete metric spaces

(2.21) H∞ = H∞(Rn;Cd) = ∩σ∈Z+H
σ and H∞

Q = ∩σ∈Z+H
σ
Q,

with the induced distances.

2.1. Derivation of the modified Schrödinger map equations. Now suppose that T ∈ [0, 1],
Q,Q′ ∈ S2, and Q ·Q′ = 0. Also suppose that

(2.22)

{
ϕ ∈ C([−T, T ] : H∞

Q ),

∂tϕ ∈ C([−T, T ] : H∞).

Extend the function ϕ to a function ϕ̃ ∈ C([−T − 1, T + 1] : H∞
Q ) by setting ϕ̃(·, t) = ϕ(·, T ) if

t ∈ [T, T + 1] and ϕ̃(·, t) = ϕ(·,−T ) if t ∈ [−T − 1, T ]. The function ϕ̃ : Rn × [−T − 1, T + 1] → S2
is continuous and limx→∞ ϕ̃(x, t) = Q, uniformly in t. Apply Lemma 3 to construct a continuous

function ṽ : Rn × [−T − 1, T + 1] → S2 such that ϕ̃ · ṽ ≡ 0 and limx→∞ ṽ(x, t) = Q′ uniformly in t.
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Now regularize the function ṽ. Let φ : Rn × R → [0,∞) denote a smooth function supported
on the ball {(x, t) : |x|2 + t2 ≤ 1} with

∫
Rd×R φ(x, t)dxdt = 1. Since ṽ is a uniformly continuous

function, there exists ϵ(ṽ) with the property that

(2.23) |ṽ(x, t)− (ṽ ∗ φϵ)(x, t)| ≤ 2−20, for any (x, t) ∈ Rd × [−T − 1/2, T + 1/2],

where φϵ(x, t) = ϵ−d−1φ(xϵ ,
t
ϵ ). Using a partition of 1, we can smoothly replace (ṽ∗φϵ)(x, t) with Q

′

for |x| sufficiently large. Thus, we have constructed a smooth function v′ : Rn×(−T−1/2, T+1/2) →
R3 with the properties

(2.24)

 |v′(x, t)| ∈ [1− 2−10, 1 + 2−10] for any (x, t) ∈ Rn × [−T, T ],
|v′(x, t) · ϕ(x, t)| ≤ 2−10, for any (x, t) ∈ Rn × [−T, T ],
v′(x, t) = Q′ for |x| large enough and t ∈ [−T, T ].

Then define

(2.25) v(x, t) = N [v′(x, t), ϕ(x, t)],

with N as in (2.9). Therefore, the continuous function v : Rn × [−T, T ] → S2 is well–defined,
ϕ(x, t) · v(x, t) = 0, and

(2.26)

{
∂mv ∈ C([−T, T ] : H∞) for m = 1, ..., n,
∂tv ∈ C([−T, T ] : H∞).

Given ϕ satisfying (2.22) and v satisfying (2.26), define

(2.27) w(x, t) = ϕ(x, t)× v(x, t).

Since Hσ is an algebra for σ > n
2 , we have

(2.28)

{
∂mw ∈ C([−T, T ] : H∞) for m = 1, ..., n,
∂tw ∈ C([−T, T ] : H∞).

Therefore, to summarize, we have constructed continuous functions v, w : Rd × [−T, T ] → S2 such
that ϕ · v = ϕ · w = v · w ≡ 0 and (2.26) and (2.28) hold.

Plugging (2.26) and (2.28) into (2.3), let

(2.29) θ(x, t) = c

∫
Rn

eix·ξ|ξ|−2
n∑

m=1

(iξm)F(n)(Am)(ξ, t)dξ,

where Am = (∂mv) · w. This integral converges absolutely when n ≥ 3. Since

(2.30) Am = (∂mv) · w,

(2.31) ∂mχ, ∂tχ ∈ C([−T, T ] : H∞).

Replacing Am with Am + ∂mθ, we have proved the following.

Proposition 1. Assume T ∈ [0, 1], Q ∈ S2, and

(2.32)

{
ϕ ∈ C([−T, T ] : H∞

Q ),

∂tϕ ∈ C([−T, T ] : H∞).

Then there are continuous functions v, w : Rd × [−T, T ] → S2, ϕ · v ≡ 0, w = ϕ× v, such that

(2.33) ∂mv, ∂mw ∈ C([−T, T ] : H∞), for m = 0, 1, ..., d,
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where ∂0 = ∂t. In addition, if

(2.34) Am = (∂mv) · w, for m = 1, ..., d, then

n∑
m=1

∂mAm ≡ 0.

Then by (2.2),

(2.35) Am = ∇−1[

n∑
l=1

Rl[Im(ψmψl)],

where Rl denotes the Riesz transform defined by the Fourier multiplier ξ 7→ iξl
|ξ| and ∇−1 is the

operator defined by the Fourier multiplier ξ 7→ |ξ|−1. By direct computation, using (1.11), (2.34),
(1.13),

(2.36)

∆An+1 =

n∑
l=1

∂l∂lAn+1 =

n∑
l=1

∂l(∂n+1Al + Im(ψlψn+1)) =

n∑
l=1

∂lIm(ψlψn+1)

= −
n∑

l,m=1

∂lRe(ψlDmψm) = −
n∑

l,m=1

∂l∂mRe(ψlψm) +

n∑
l,m=1

∂lRe(Dmψlψm)

= −
n∑

l,m=1

∂l∂mRe(ψlψm) +
1

2

n∑
l,m=1

∂2l |ψm|2.

Therefore,

(2.37) An+1 =

n∑
l,m=1

RlRm(Re(ψlψm)) +
1

2

n∑
m=1

ψmψm.

2.2. Homework.

(1) Prove the paraproduct

(2.38) ∥∇1/2(fg)∥L2 ≤ C∥∇1/2f∥Lp1∥g∥Lp2 + ∥f∥Lq1 ∥∇1/2g∥Lq2 ,

where 1
p1

+ 1
p2

= 1
2 ,

1
q1

+ 1
q2

= 1
2 , and p1, p2, q1, q2 <∞.

3. A quantitative estimate on the initial data when n ≥ 3

Now we are ready to reprove the small data result of [BIK07]. Observe that a solution ϕ(x, t) to
(1.1) has the scaling symmetry

(3.1) ϕ(x, t) 7→ ϕ(
x

λ
,
t

λ2
).

That is, for any λ > 0, if ϕ(x, t) solves (1.1) then so does (3.1). Then the norm ∥ϕ0 −Q∥Ḣn/2(Rn)

is preserved under the scaling transformation (3.1).

Theorem 1. Assume n ≥ 3 and Q ∈ S2. Then there exists ϵ0(n) > 0 such that for any ϕ0 ∈ H∞
Q

with ∥ϕ0 −Q∥Ḣn/2 ≤ ϵ0 there is a unique solution

(3.2) ϕ = SQ(ϕ0) ∈ C(R : H∞
Q ),

of the initial value problem (1.1). Moreover,

(3.3) sup
t∈R

∥ϕ(t)−Q∥Ḣn/2 ≤ C∥ϕ0 −Q∥Ḣn/2 ,
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and

(3.4) sup
t∈[−T,T ]

∥ϕ(t)∥Hσ
Q
≤ C(σ, T, ∥ϕ0∥Hσ

Q
),

for any T ∈ [0,∞) and σ ∈ Z+.

The proof of Theorem 1 may be divided into three parts: a quantitative estimate on the initial
data, linear and bilinear estimates using the interaction Morawetz estimate, and a proof of the main
result.

Lemma 4. With the notation in the previous section, if ϕ0(x) = ϕ(x, 0) has the additional property
∥ϕ0 −Q∥Ḣn/2 ≤ 1 and σ0 = d+ 10 then, for m = 1, ..., n,

(3.5)

{
∥ψm(·, 0)∥

Ḣ
n−2
2

≤ C∥ϕ0 −Q∥Ḣn/2 ,

∥ψm(·, 0)∥Hσ′−1 ≤ C(∥ϕ0∥Hσ′
Q
), for any σ′ ∈ [1, σ0] ∩ Z.

Proof of Lemma 4. The main difficulty is that the construction does not give effective control of
the Sobolev norms of v and w in terms of ϕ. For σ ∈ [−1,∞), let ∇σ denote the operator defined
by the Fourier multiplier ξ 7→ |ξ|σ. For σ ∈ [− 1

2 ,
n
2 ] let pσ = n

σ+1 . Then, by the Sobolev embedding
theorem,

(3.6) ∥∇σf∥Lpσ ≤ C∥∇σ′
f∥Lp

σ′ if − 1

2
≤ σ ≤ σ′ ≤ n

2
, and f ∈ H∞.

Let ϕ0(x) = ϕ(x, 0), v0(x) = v(x, 0), w0(x) = w(x, 0), ψm,0(x) = ψm(x, 0), Am,0(x) = Am(x, 0),
and let ϵ0 = ∥ϕ0 −Q∥Ḣn/2 ≤ 1. Now then, by (1.4), (3.6), and the fact that |v0| = |w0| = 1,

(3.7) ∥ψm,0∥Lp0 ≤ Cϵ0, for m = 1, ..., n.

Then by (2.35),

(3.8) ∥∇1Am,0∥Lp1 ≤ Cϵ0, for m = 1, ..., n,

which by (3.6) implies that ∥Am,0∥Lp0 ≤ Cϵ0 for m = 1, ..., n. Combining (1.5), (1.7), and the fact
that for f ∈ H∞,

(3.9) ∥∇kf∥Lp ≡
∑

k1+...+kn=k

∥∂n1
1 · · · ∂kn

n f∥Lp , if k ∈ Z+ and p ∈ [pn/2, p−1/2].

Thus,

(3.10) ∥∇1v0∥Lp0 + ∥∇1w0∥Lp0 ≤ Cϵ0,

and

(3.11)

n∑
m=1

∥ψm,0∥Lp0 +

n∑
m=1

∥∇1Am,0∥Lp1 + ∥∇1v0∥Lp0 + ∥∇1w0∥Lp0 ≤ Cϵ0.

Now prove by induction that

(3.12)

n∑
m=1

∥∇kψm,0∥Lpk +

n∑
m=1

∥∇k+1Am,0∥Lpk+1 + ∥∇k+1v0∥Lpk + ∥∇k+1w0∥Lpk ≤ Cϵ0,
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for any k ∈ Z ∩ [0, n−2
2 ]. The base case k = 0 was proved in (3.11). Now suppose k ≥ 1 and that

(3.12) holds for any k′ ∈ [0, k − 1] ∩ Z. Using (1.4), (3.11), and the induction hypothesis,

(3.13)

∥∇kψm,0∥Lpk ≤ C∥∇k+1ϕ0∥Lpk ∥v0∥L∞ + C

k−1∑
k′=0

∥∇k−k′
ϕ0∥Lp

k−k′−1 · ∥∇k′+1v0∥Lp
k′

+C∥∇k+1ϕ0∥Lpk ∥w0∥L∞ + C

k−1∑
k′=0

∥∇k−k′
ϕ0∥Lp

k−k′−1 · ∥∇k′+1w0∥Lp
k′ ,

which suffices to control the first term in (3.12).

For the second term, using (2.35) and (3.11),

(3.14) ∥∇k+1Am,0∥Lpk+1 ≤ C

n∑
l,l′=1

k∑
k′=0

∥∇k′
ψl,0∥Lp

k′ · ∥∇k−k′
ψl′,0∥Lp

k−k′ ,

which suffices in view of the induction hypothesis and the bound on the first term. The bound on
the other two terms in (3.13) is similar.

If n is even then Lemma 4 follows by taking k = n−2
2 . If n is odd, the bounds (3.12) hold with

k = n−3
2 ,

(3.15) ∥∇σ+1v0∥Lpσ + ∥∇σ+1w0∥Lpσ ≤ Cϵ0, for σ ∈ [−1

2
,
n− 3

2
].

In view of the hypothesis and (3.6), we also have the bound

(3.16) ∥∇σ+1ϕ0∥Lpσ ≤ Cϵ0, for σ ∈ [−1

2
,
n− 2

2
].

Now utilize the fractional Leibniz rule of [KPV93] (see also [Tay00]),

(3.17) ∥∇1/2(fg)− g∇1/2f∥L2 ≤ C∥∇1/2g∥Lq1∥f∥Lq2 ,

if 1
q1

+ 1
q2

= 1
2 and q1, q2 ∈ [pn/2, p−1/2]. Using (3.11) and (1.4),

(3.18) ∥∇
n−2
2 ψm,0∥L2 ≤ C

∑
u0∈{v0,w0}

n−3
2∑

k=0

∥∇1/2(∂mD
kϕ0 ·D

n−3
2 −ku0)∥L2 ,

where Dk denotes any derivatives of the form ∂k1
1 · · · ∂kn

n , with k1 + ... + kn = k. Then the first
inequality in (3.5) follows from (3.15)–(3.17) and the fact that |u0| ≡ 1.

For the second inequality in (3.5) observe that ∥ψm,0∥L2 ≤ C∥ϕ0∥H1
Q
, since |v0| ≡ |w0| ≡ 1. Now

then, suppose σ′ ≥ n+1
2 . Now then,

(3.19)
n∑

m=1

∥∇kψm,0∥L2∩L
p
k−σ′+n/2+

n∑
m=1

∥∇kAm,0∥L2∩L
p
k−σ′+n/2+

∑
u0∈{v0,w0}

∥∇k+1u0∥L2∩L
p
k−σ′+n/2 ≤ C(∥ϕ0∥Hσ′

Q
),

for any k ∈ [0, σ′−1]∩Z, where pσ = p−1/2 = 2n if σ ≤ − 1
2 . The bound (3.19) follows by induction

on k, using (1.5), (1.7), and (2.35), along with the inequalities (3.6), (3.11), and

(3.20)
∑

k1+...+kn≤σ′−n+1
2

∥∂k1
1 · · · ∂kn

n ϕ0∥L∞ ≤ C(∥ϕ0∥Hσ′
Q
).
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Thus, we have shown that for initial data small in the critical Sobolev norm Ḣn/2, the Coulomb

gauged initial data is small in Ḣ
n−2
2 . □

The main technical difficulty to using small data arguments to prove a global well–posedness

result to (1.16) lies in the quasilinear term −2i
∑d

l=1Al∂lψm. Indeed, suppose for a moment that
this term were not there, and that

(3.21) (i∂t +∆x)ψm = (An+1 +

n∑
l=1

(A2
l − i∂lAl))ψm − i

n∑
l=1

Im(ψlψm)ψl.

Remark 3. In the Coulomb gauge,
∑n

l=1 ∂lAl = 0. However, we will not use that fact here,
since this term could also be handled perturbatively using (2.2), and in any case, it is instructive to
perform the analysis even if we do not need to.

Since n ≥ 3, recall the usual Strichartz spaces

(3.22) S0(Rn × I) = L∞
t L

2
x(Rn × I) ∩ L2

tL
2n

n−2
x (I × Rn),

and for any σ ≥ 0,

(3.23) Sσ(Rn × I) = {f : ∇σf ∈ S0}.

Let N0 be the dual to S0 and let Nσ be the space of functions such that ∇σf ∈ N0. Using the
endpoint Strichartz estimates of [KT98] (since n ≥ 3), global well–posedness for (3.21) would follow
from

(3.24) ∥eit∆ψm,0∥
S

n−2
2 (I×Rn)

≲ ∥ψm,0∥
Ḣ

n−2
2

≤ Cϵ0,

and the bound

(3.25) ∥
∫ t

0

ei(t−τ)∆F (ψx)dτ∥
S

n−2
2 (I×Rn)

≲ ∥ψx∥3
S

n−2
2 (I×Rn)

,

where ψx is the vector ψx = (ψ1, ..., ψn)
t and F (ψx) is a vector with components m = 1, ..., n given

by

(3.26) (An+1 +

n∑
l=1

(A2
l − i∂lAl))ψm − i

n∑
l=1

Im(ψlψm)ψl.

For any m = 1, ..., n, by the product rule and the fractional Leibniz rule,

(3.27) ∥i
n∑

l=1

Im(ψlψm)ψl∥
N

n−2
2

≲ ∥ψx∥3
S

n−2
2
.

By a similar argument using the Littlewood–Paley theorem, (2.2), and (2.37),

(3.28) ∥ − iψm

n∑
l=1

∂lAl∥
N

n−2
2

+ ∥An+1ψm∥
N

n−2
2

≲ ∥ψx∥3
S

n−2
2
.

For the term
∑n

l=1A
2
l ψm, it is enough to prove ∥Al∥

S
n−2
2

≲ ∥ψx∥2
S

n−2
2

. Indeed, by the fractional

Leibniz rule, (2.35), and the Sobolev embedding theorem,

(3.29) ∥∇
n−2
2 Al∥S0 ≲ ∥∇

n−2
2 ψx∥

L2
tL

2n
n−2
x

∥ψx∥L∞
t Ln

x
,
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which implies that

(3.30) ∥ψm

n∑
l=1

A2
l ∥N n−2

2
≲ ∥ψx∥5

S
n−2
2

≲ ∥ψx∥3
S

n−2
2
.

Remark 4. The last inequality follows from the fact that the solution is small.

Therefore, by Picard iteration, the proof of global well–posedness of (3.21) is complete.

3.1. Homework problem.

(1) Prove (3.27)–(3.30).

4. Conservation Laws

The quasilinear term −2
∑n

l=1Al∂lψm is more difficult in the case when Al is at a low frequency
and ψm is at a high frequency. In that case, the 1

|∇| in Al will not cancel out the contribution

of ∂l to ψm. We would like to move the derivative from ψm to Al. The way to do that is to use
integration by parts and conservation laws.

A solution to (1.1) has two conserved quantities, the mass,

(4.1) E0(t) =

∫
|ϕ(t, x)−Q|2dx,

and the energy

(4.2) E1(t) =

∫ n∑
m=1

|∂mϕ(x, t)|2dx.

Indeed,

(4.3)
d

dt
E0(t) = 2

∫
⟨ϕ−Q,ϕ×∆ϕ⟩ = −2

∫
⟨Q,ϕ×∆ϕ⟩ = −2

∫
⟨Q,∇(ϕ×∇ϕ)⟩ = 0,

and

(4.4)
d

dt
E1(t) = 2

∫ n∑
m=1

⟨∂mϕ, ∂m(ϕ×∆ϕ)⟩ = −2

∫
⟨∆ϕ, ϕ×∆ϕ⟩ = 0.

In particular, (4.4) implies that

(4.5)
d

dt

∫ n∑
m=1

|ψm(x, t)|2dx = 0.

Now let Pk be the Littlewood–Paley projection to frequencies |ξ| ∼ 2k. Plugging (1.16) into (4.4)
with Pkψm replaced by ψm,
(4.6)

d

dt
∥Pkψm∥2L2 = 2⟨Pkψm, Pk(i∆ψm − 2

n∑
l=1

Al∂lψm − i(An+1 +

n∑
l=1

(A2
l − i∂lAl))ψm −

n∑
l=1

Im(ψlψm)ψl)⟩

= 2⟨Pkψm, Pk(−2

n∑
l=1

Al∂lψm − i(An+1 +

n∑
l=1

(A2
l − i∂lAl))ψm −

n∑
l=1

Im(ψlψm)ψl)⟩.
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Next, decompose

(4.7) Pk(−2

n∑
l=1

Al∂lψm− i(An+1+

n∑
l=1

(A2
l − i∂lAl))ψm−

n∑
l=1

Im(ψlψm)ψl) = Nk,1+Nk,2+Nk,3,

where

(4.8)

Nk,1 = Pk(i(An+1 +

n∑
l=1

(A2
l − i∂lAl))ψm −

n∑
l=1

Im(ψlψm)ψl),

Nk,2 = Pk(−2

n∑
l=1

Al∂lψm) + 2

n∑
l=1

Al∂lPkψm,

Nk,3 = −2

n∑
l=1

Al∂lPkψm.

To prove Theorem 1 it suffices to prove a bound on the terms in the right hand side of (4.8).

Theorem 2. Let αk denote the frequency envelope

(4.9) αk = sup
j

2−
1
10 |j−k|(2j

n−2
2 ∥Pjψx∥L2) = sup

j
2−

1
10 |j−k|∥Pjψx∥

Ḣ
n−2
2
.

Then if I is an interval for which (1.1) is locally well–posed and ∥ψx∥
L∞

t Ḣ
n−2
2

≤ 2∥ψx(0)∥
Ḣ

n−2
2

,

we have the bound,

(4.10) ∥Nk,1Pkψx∥L1
t,x(I)

+ ∥Nk,2Pkψx∥L1
t,x(I)

≲ ϵ22−k(n−2)α2
k.

Furthermore, for any σ ∈ Z+, σ >
n−2
2 , let

(4.11) αk(σ) = sup
j

2−
1
10 |j−k|(2jσ∥Pjψx∥L2) = sup

j
2−

1
10 |j−k|∥Pjψx∥Ḣσ .

Then we have the bound,

(4.12) ∥Nk,1Pkψx∥L1
t,x(I)

+ ∥Nk,2Pkψx∥L1
t,x(I)

≲ ϵ22−2kσαk(σ)
2.

Proof of Theorem 1. Using the result of [McG07], it is known that equation (1.1) is locally well–
posed for sufficiently regular initial data. Let I = [a, b] be the interval upon which local well–
posedness holds and ∥ψx∥

L∞
t Ḣ

n−2
2

≤ 2∥ψx(0)∥
Ḣ

n−2
2

. Plugging (4.10) into (4.6) and integrating by

parts,

(4.13) ∥Pkψx(t)∥2
Ḣ

n−2
2

≤ ∥Pkψx(0)∥2
Ḣ

n−2
2

+O(ϵ2α2
k).

Indeed, integrating by parts, the Coulomb gauge implies

(4.14) ⟨Pkψx,−2
∑
l

Al∂lPkψx⟩ = 0.

Remark 5. Even if we ignore for a moment the Coulomb gauge, after integrating by parts, a term
like (

∑
l ∂lAl)(Pkψx)

2 can be handled using the analysis of Nk,1.

Furthermore, by Young’s inequality and (4.9),
∑

k α
2
k ≲ ∥ψx(0)∥2

Ḣ
n−2
2

. Therefore, (4.13) implies

that

(4.15) ∥ψx(t)∥
L∞

t Ḣ
n−2
2 (I×Rn)

≤ 3

2
∥ψx(0)∥

Ḣ
n−2
2
.



NOTES ON SCHRÖDINGER MAPS 13

Then by the results of [McG07], the interval I must be both open and closed in R, and therefore
I = R. □

The estimates (4.13) rely heavily on bilinear estimates. Moreover, due to the presence of the
quasilinear term −

∑
lAl∂lψx, the proof will utilize the bilinear interaction Morawetz estimates of

[PV09], to take advantage of the conservation laws to integrate by parts.

To see this, define the Morawetz potential
(4.16)

M(t) =

∫ ∫
|u(t, y)|2 (x− y)

|x− y|
· Im[v̄∇v](t, x)dxdy +

∫ ∫
|v(t, y)|2 (x− y)

|x− y|
· Im[ū∇u](t, x)dxdy,

where u = Pjψx and v = Pkψx, j and k could be, but need not be, equal. By direct computation,
if u = v,

(4.17)

∫ T

0

d

dt
M(t) = 2∥|∇|

3−n
2 |u(t, x)|2∥2L2

t,x([0,T ]×Rn)

+

∫ T

0

∫
|v(t, y)|2 (x− y)

|x− y|
· Im[v̄∇(Nk,1 +Nk,2 +Nk,3)](t, x)dxdydt

+

∫ T

0

∫
|v(t, y)|2 (x− y)

|x− y|
· Im[Nk,1 +Nk,2 +Nk,3∇v](t, x)dxdydt

+2

∫ T

0

∫
Re[v̄(Nk,1 +Nk,2 +Nk,3)](t, y)

(x− y)

|x− y|
· Im[v̄∇v](t, x)dxdydt.

Now then, by (4.10), the contribution of Nk,1 and Nk,2 to (4.17) can be bounded by 2kϵ2α4
k.

Meanwhile, integrating by parts and using the Hardy–Littlewood–Sobolev inequality and Hardy’s
inequality, the contribution of Nk,3 is given by
(4.18)

−
∫

|v(t, y)|2 (x− y)

|x− y|
· Im[v̄∇

∑
l

Al∂lv]dxdydt+

∫
|v(t, y)|2 (x− y)

|x− y|
· Im[−

∑
l

Al∂lv∇v]dxdydt

+2

∫
Re[v̄(−

∑
l

Al∂lv)]
(x− y)

|x− y|
· Im[v̄∇v]dxdydt

= O(

∫
|v(t, y)|2 1

|x− y|
(A(t, x) +A(t, y))|v(t, x)|2|∇v(t, x)|dxdydt)

+O(

∫
|v(t, y)|2(∂A(t, y) + ∂A(t, x))|v(t, x)||∇v(t, x)|dxdydt) ≲ 2kϵ2α4

k.

Therefore, we have proved

(4.19) ∥Pkψx∥4L4
t,x

≲ α4
k2

k(n−2).

It is possible to wring even more information out of the interaction Morawetz estimates when j is not

equal to k. Specifically, using the arguments in [PV09] it is possible to replace 2∥|∇| 3−n
2 |u(t, x)|2∥2

L2
t,x([0,T ]×Rn)

with

(4.20)

∫
ω

∫
xω=yω

|∂ω(v(t, y)u(t, x))|2dxdydtdω.
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For any fixed ω, using the Littlewood–Paley potential, (4.20) combined with (4.18) implies that if
j ≤ k − 5,

(4.21)

∫
ω

∫
|∂ω(v(t, x)u(t, x))|2dxdtdω =

∫
|∇(v(t, x)u(t, x))|2dxdy ≲ 2k2j(n−1)α2

jα
2
j .

The proof of (4.10) will occupy the last lecture.

4.1. Homework problem.

(1) Prove the Littlewood–Paley theorem.

5. Proof of Theorem 2

First compute

(5.1)

∥(Pkψx)Pk(ψ
3
x)∥L1

t,x
≲ ∥Pkψx∥L4

t,x
∥P≥k−5ψx∥3L4

t,x
+ ∥P≥k−5ψx∥2L4

t,x
∥(Pkψx)(P≤k−5ψx)∥L2

t,x

+∥(Pkψx)(P≤k−5ψx)∥L2
t,x

∥(Pk−5≤·≤k+5ψx)(P≤k−5ψx)∥L2
t,x

≲ ∥P≥k−10ψx∥4L4
t,x

+
∑

k−5≤k1≤k+5

∥(Pk1
ψx)(P≤k1−5ψx)∥2L2

t,x
.

Replacing Nk,1 +Nk,2 +Nk,3 with (Pkψx)Pk(ψ
3
x), and plugging into (4.17)–(4.20), we have proved

that for any j ≤ k,

(5.2)

∥(Pjψx)(Pkψx)∥L2
t,x

≲ 2j
n−1
2 2−

k
2 ∥Pjψx∥L∞

t L2
x
∥Pkψx∥L∞

t L2
x

+2j
n−1
2 2−

k
2 ∥Pjψx∥L∞

t L2
x
∥P≥k−10ψx∥2L4

t,x
+ 2j

n−1
2 2−

k
2 ∥Pkψx∥L∞

t L2
x
∥P≥j−10ψx∥2L4

t,x

+2j
n−1
2 2−

k
2 ∥Pjψx∥L∞

t L2
x

∑
k−5≤k1≤k+5

∥(Pk1ψx)(P≤k1−5ψx)∥L2
t,x

+2j
n−1
2 2−

k
2 ∥Pkψx∥L∞

t L2
x

∑
j−5≤j1≤j+5

∥(P≥j1ψx)(P≤j1−5ψx)∥L2
t,x
.

Now then, if I is an interval upon which the local well–posedness result of [McG07] holds,

(5.3) ∥Pkψx∥Ḣσ ≲ αk(σ).

Furthermore, since ψx(0) ∈ H∞, if |I| is finite,

(5.4)
∑
k

22kσ∥(Pkψx)(P≤k−5ψx)∥2L2
t,x(I)

<∞.

Summing (5.2) in j and using (4.9) and the trivial bound αk ≲ ϵ,

(5.5)

∥Pkψx∥2L4
t,x

+ ∥(Pkψx)(P≤k−5ψx)∥L2
t,x

≲ 2−k n−2
2 ϵαk + αk∥P≥k−10ψx∥2L4

t,x

+αk

∑
k−5≤k1≤k+5

∥(Pk1
ψx)(P≤k1−5ψx)∥L2

t,x
+ 2−k n−1

2 αk

∑
j≤k−5

2j
n−1
2 ∥P≥j−10ψx∥2L4

t,x

+2−k n−1
2 αk

∑
j≤k−5

2j
n−1
2

∑
j−5≤j1≤j+5

∥(Pj1ψx)(P≤j1−5ψx)∥L2
t,x
.
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Squaring both sides, multiplying by 2k(n−2), and summing using Young’s inequality,

(5.6)

∑
k

2k(n−2)∥Pkψx∥4L4
t,x

+ 2k(n−2)∥(Pkψx)(P≤k−5ψx)∥2L2
t,x

≲ ϵ4 + ϵ2
∑
k

2k(n−2)∥P≥kψx∥4L4
t,x

+ ϵ2
∑
k

2k(n−2)∥(Pkψx)(P≤k−5ψx)∥2L2
t,x
.

Therefore, for ϵ > 0 sufficiently small,

(5.7)
∑
k

2k(n−2)∥Pkψx∥4L4
t,x

+ 2k(n−2)∥(Pkψx)(P≤k−5ψx)∥2L2
t,x

≲ ϵ4.

Plugging (5.7) into (5.2),

(5.8) ∥(Pkψx)(P≤k−5ψx)∥L2
t,x

≲ 2−k n−2
2 ϵαk,

and therefore,

(5.9) (5.1) ≲ ϵ2α2
k.

Now turn to (2.37). The contribution of
∑n

m=1 ψmψm to ∥(Pkψx)Pk(An+1ψx)∥L1
t,x

is identical

to the contribution of (5.1). Estimating the contribution of

(5.10) ∥(Pkψx)Pk(

n∑
l,m=1

RlRm(Re(ψlψm))ψx)∥L1
t,x

is complicated by the Riesz transforms. Decompose

(5.11) ψlψm = (P≤k−5ψx)
2 + 2(P≤k−5ψx)(P≥k−5ψx) + (P≥k−5ψx)

2.

The analysis of the second two terms is straightforward. Indeed,

(5.12)

∥(Pkψx)Pk(RlRm((P≤k−5ψx)(P≥k−5ψx)) · ψx)∥L1
t,x

≲
∑

k−5≤k1≤k+5

∥(Pk1ψx)(P≤k1−5ψx)∥L2
t,x

∥(Pkψx)(P≤k−5ψx)∥L2
t,x

+∥(Pkψx)(P≤k−5ψx)∥L2
t,x

∥(P≥k−10ψx)∥2L4
t,x
,

and
(5.13)
∥(Pkψx)Pk(RlRm((P≥k−5ψx)

2)ψx)∥L1
t,x

≲ ∥Pkψx∥L4
t,x

∥P≥k−5ψx∥3L4
t,x

+∥(Pkψx)(P≤k−5ψx)∥L2
t,x

∥P≥k−5ψx∥2L4
t,x
.

For the term

(5.14) ∥(Pkψx)Pk(RlRm((P≤k−5ψx)
2)ψx)∥L1

t,x
,

make a paraproduct of (P≤k−5ψx)
2,

(5.15) (P≤k−5ψx)
2 = 2

∑
j≤k−5

(Pjψx)(P≤j−5ψx) +
∑

j≤k−5

∑
j−5≤j1≤min{j+5,k−5}

(Pjψx)(Pj1ψx).

Since the term (Pjψx)(P≤j−5ψx) is localized to frequency |ξ| ∼ 2j , we can treat the Riesz projections
as L1 convolution kernels. Since the bilinear estimates are translation invariant, the same bounds
hold for the first term in the paraproduct. For the second term, we may use the fact that bounds
in (4.21) are smaller at lower frequencies. That is,

(5.16) ∥(Pkψx)
2Pj((Pj1ψx)

2)∥L1
t,x

≲ 2j(n−1)2−kα2
kα

2
j1 .
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Thus, similar bounds hold for

(5.17) ∥(Pkψx)Pk(An+1ψx)∥L1
t,x
,

as hold for (5.1). The contribution of Pk(−
∑

lAl∂lψx) is identical to the contribution of An+1ψx.

For the contribution of
∑n

l=1A
2
l ψx, decompose

(5.18) Ax ∼ 1

|∇|
((P≤k−5ψx)

2 + 2(P≤k−5ψx)(P≥k−5ψx) + (P≥k−5ψx)
2).

By the Sobolev embedding theorem,
(5.19)

∥ 1

|∇|
(2(P≤k−5ψx)(P≥k−5ψx)+(P≥k−5ψx)

2)∥L4
t,x

≲ ∥P≥k−5ψx∥L4
t,x

∥ψx∥
L∞

t Ḣ
n−2
2

≲ ϵ∥P≥k−5ψx∥L4
t,x
.

On the other hand, using analysis similar to (5.16),

(5.20) ∥(Pkψx)
1

|∇|
(P≤k−5ψx)

2∥L2
t,x

≲ 2−k n−2
2 ϵ2αk,

and

(5.21) ∥ 1

|∇|
((P≥k−5ψx)ψx) ·

1

|∇|
((P≤k−5ψx)

2)∥L2
t,x

≲ 2−k n−2
2 ϵ3αk.

This takes care of the contribution of Nk,1 to (5.10).

For Nk,2, observe that

(5.22) Pk(P≥k−5Al · ∂lψx)− P≥k−5Al · ∂lPkψx ∼ Pk(P≥k−5∇Al · ψx)− P≥k−5∇Al · Pkψk,

which can be handled in a manner similar to Nk,1. Finally, to handle

(5.23) Pk(P≤k−5Al · ∂lψx)− P≤k−5Al · ∂lPkψx,

observe that if ϕ(2−kξ) is the Fourier multiplier for Pk, the Fourier transform of (5.23) is given by

(5.24)

∫
η1+η2=ξ

ϕ(2−kξ)Âl(η1)η2,lψ̂x(η2)−
∫
η1+η2=ξ

ϕ(2−kη2)Âl(η1)η2,lψ̂x(η2)

≲
∫

2−k|η1|Âl(η1)η2,lψ̂x(η2) ∼ (∇P≤k−5A)P̃kψx,

where P̃k = Pk−1 + Pk + Pk+1. Thus, the contribution of Nk,2 has a similar bound. The proof is
therefore complete.
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