Applications of the Endoscopic Classification to Statistics of Cohomological Automorphic Representations on Unitary Groups

Rahul Dalal
(Joint work w/ Mathilde Gerbelli-Gauthier)

Johns Hopkins

April 5, 2023
• Anything in gray is a technical detail not relevant to this particular topic
• Anything in orange I will only explain intuitively and imprecisely due to time constraints.
Outline

- Motivation: Understanding AR_{disc}.
- Statement of Results
- Background: Arthur’s Classification
- Background: Taïbi’s Inductive Analysis
- Tricks for computation

See ArXiv for details.

WARNING: This work depends on Arthur’s classification for non-quasisplit unitary groups! This uses unpublished/unwritten references.
What is an Automorphic Representation?

Modular Forms:
- Functions on upper-half plane $\text{symmetric space } \text{GL}_2^\mathbb{R}/\text{O}_2^\mathbb{R}$
- w/ symmetries translation by “arithmetic” lattice in $\text{GL}_2^\mathbb{R}$

Automorphic Representations: generalize beyond GL_2
- Exact generalization very non-obvious: black box for this talk
- Representations: notion of newform doesn’t generalize, analog of space generated by newform
Why do we care?

Just like modular forms:

- They have a lot of handles to grab onto when studying
 - representation theory of reductive groups
 - harmonic analysis
- They mysteriously encode information about so much else:
 - **Number Theory**: Galois representations (Langlands conjectures)
 - **Computer Science**: expander graphs/higher-dimensional expanders
 - **Differential Geometry**: spectra of Laplacians on locally symmetric spaces
 - **Combinatorics**: identities for the partition function
 - **Finite Groups**: representation theory of large sporadic simple groups (moonshine)
 - **Mathematical Physics**: representations of infinite-dimensional Lie algebras, certain scattering amplitudes in string theory
Black-Box Definition

Definition

Let G be a reductive group over a number field F. A discrete automorphic representation for G is an irreducible subrepresentation of $L^2(G(F) \backslash G(\mathbb{A}_F), \chi)$.

- **Reductive group**: algebraic group with nice representation theory (root and weight theory works).
 - ex. $\text{GL}_n, \text{SL}_n, \text{U}_n, \text{SO}_n, \text{Sp}_n$.
 - Non ex. Upper triangular matrices.

- L^2: square-integrable functions as a unitary representation of $G(\mathbb{A}_F)$ under right-translation.

- $\mathbb{A}_F = \prod_v F_v$ ($\mathbb{A}_Q = \mathbb{R} \times \prod_p \mathbb{Q}_p$)

- **Intuition**: \mathbb{Z} is to \mathbb{R} as F is to \mathbb{A}_F.

- **Subrepresentation**: analysis issue—infinite-dimensional representations can be direct integrals instead of direct sums.
Perspective on Automorphic Representations

- What does G do?
 - G_∞: determines symmetric space G_∞/K_∞
 - G^∞: determines possible lattices Γ: “Levels”

- Factor into local components:

$$\pi = \bigotimes'_{v} \pi_v,$$

- π_∞: “qualitative type” of the representation: modular vs. Maass, holomorphic, algebraic, cohomological.
- π^∞: information analogous to level and Hecke eigenvalues
Key Problem: Which combinations of π_v actually produce an automorphic representation?

- e.g. which combinations of Hecke eigenvalues do the modular forms of weight k and level N have?

Most Basic Version: counts/statistics w/ local restrictions

- e.g. what fraction modular forms of weight k have Hecke eigenvalue at p with norm bigger than something as level $N \to \infty$?
Complexity Ranking

Informal ranking of complexity based on qualitative type π_∞:

- **Discrete-at-∞**: π_∞ discrete inside $L^2(G(F_\infty))$.
- **Cohomological**: π_∞ regular, integral infinitesimal character
- **Algebraic**: π_∞ integral infinitesimal character
- **General**: all π_∞

Different application need different generality:

- Cohomology of locally symmetric spaces
- Galois Representations
Example: Modular Forms

Fix $G = \text{GL}_2/\mathbb{Q}$

- Automorphic Representations on $G \approx$ classical modular and Maass forms
- Discrete-at-∞: modular forms of weight ≥ 2
- Cohomological: add in the trivial rep, (there is more to add on other groups)
- Algebraic: add in weight 1 modular and Maass forms
- General: add in other Maass forms
Answering Key Question

How far can we go? **Basic Version:** use Arthur’s trace formula

- **Discrete-at-∞:** coarse info. [Art89], fine info. [Fer07].
 - Need: **orbital integrals, endoscopic transfers**
 - Exact counts: many, many results for low level on small rank
 - Statistics: most powerful/general [ST16] coarse, [Dal22] fine

- **Cohomological:** inductive arg. w/ endoscopic class. [Tai17]
 - Need: **orbital integrals, endoscopic transfers, stable transfers**
 - Exact counts: [Tai17] +Chenevier, Renard, Taïbi at level-1
 - Statistics: [MS19] + Marshall, Gerbelli-Gauthier upper bounds, *this work* many exact asymptotics and more upper bounds

- **Beyond:** very hard—asymptotic counts not known even for weight-1 modular forms :'(
Consider:

- Symmetric space $X = U(p, q)/(U(p) \times U(q))$
- A specific type of tower of arithmetic lattices $\cdots \subseteq \Gamma_2 \subseteq \Gamma_1$
- $h_n^i := H^i(\Gamma_n \backslash X, V_\lambda) = H^i(g, K; C_\infty(\Gamma_n \backslash G(\mathbb{R})) \otimes V_\lambda)$ as reps of $U(p, q)$.

Problem: Given π_0 unirrep of $G(R)$, understand asymptotics of count of $\pi_0 \in h_n^i$ weighted by arbitrary moment of Satake parameters.

- Analogue: weight-2 modular forms in $H^1(\Gamma(N))$ weighted by power of Hecke eigenvalue
- **Matsushima’s formula:** translate to counting $\pi \in \mathcal{AR}_{\text{disc}}(G)$ with $\pi_\infty = \pi_0$.
Main Result

Theorem

Let E/F be an unram. CM-extension and G an unram. inner form of $U_{E/F}(N)$. Fix π_0 cohom. on G_{∞}. Let \mathfrak{n} be an ideal of \mathcal{O}_F only divisible by primes split in E/F and f_S an unram. test function at some set of places S not dividing \mathfrak{n}. Then for good π_0

$$|\mathfrak{n}|^{-R(\pi_0)} L_{\pi_0}(\mathfrak{n})^{-1} \sum_{\pi \in \mathcal{AR}_{\text{disc}}(G)} \dim((\pi_{\infty})^{K(\mathfrak{n})}) \text{tr}_{\pi_S} f_S$$

$$= M(\pi_0) \mu_S^{pl}(\pi_0)(f_S) + O(|\mathfrak{n}|^{-C} q_S^{A+B\kappa(f_S)}).$$

- There are some strong conditions: E/F, level, and π_0
- Good π_0: Explicit: combinatorial data classifying π_0.

Theorem
Main Result Cont.

\[|n|^{-R(\pi_0)} L_{\pi_0}(n)^{-1} \sum_{\pi \in \mathcal{AR}_{\text{disc}}(G), \pi_{\infty} = \pi_0} \dim((\pi_{\infty})^K(n)) \text{tr}_{\pi_S} f_S \]

\[= M(\pi_0) \mu_S^{\text{pl}(\pi_0)}(f_S) + O(|n|^{-C} q_S A + B \kappa(f_S)). \]

- Asymptotic in \(n, S, f_S \)
- \(n \): Counting fixed vectors in aut. reps with component \(\pi_{\infty} = \pi_0 \) (i.e. aut. forms of level \(n \))
- \(f_S \): averaging a Satake parameter over these forms (e.g. moment of Hecke eigenvalue)
- Constants: combo. param. of \(\pi_0 \), Plancherel equidistribution
- Constants: Inexplicit
Example: parallel $U(N - 1, 1)$

Assume $\deg F/\mathbb{Q} = d$, $G_{\infty} \cong U(N - 1, 1)^d$ (if possible) $\pi_0 \cong \pi^d$

- Cohomological Reps of $U(N - 1, 1)$ at inf. char of trivial:
 - ordered partitions (a_1, \ldots, a_k) of N
 - one marked index $1 \leq m \leq k$, $a_i = 1$ for $i \neq m$.
 - Discrete series: all $a_i = 1$.

- “good” class: a_m is odd

- If π_0 d.s. $R(\pi_0) = N^2$, $M(\pi_0) = 1$. Otherwise:

$$R(\pi_0) = \frac{1}{2}(N^2 + (N - a_m)^2 - a_m^2) + 1$$

$$M(\pi_0) = \begin{cases}
N^{-d} \dim(\pi_{a_m\lambda_{m-1}})\tau'(G) & d \text{ even or } m \text{ correct parity} \\
0 & d \text{ odd and } m \text{ wrong parity}
\end{cases}$$

$(\pi_{a_m\lambda_{m-1}}$; f.d. rep. of GL_{N-a_m}, λ_i: ith fundamental weight)

- Vary m: different masses, growth rates
Main Result: other π_0

Remove conditions \implies upper bound instead of exact asymptotic:

Theorem

Recall the setup for the main result except E/F can be ramified. Let S_0 be a set of places containing all the ramified ones and disjoint from S and \mathfrak{n}. Let φ_{S_0} be a test function on G_{S_0}. Then for all π_0:

$$
\sum_{\pi \in \mathcal{AR}_{\text{disc}}(G), \pi_{\infty} = \pi_0} \dim((\pi^\infty)^K(n_i)) \operatorname{tr}_{\pi_S} f_S \operatorname{tr}_{\pi_{S_0}} \varphi_{S_0} = O(|n_i|^{R(\pi_0)} q_{S_1}^{A+B\kappa(f_S)}).
$$
Corollaries

This gives us many corollaries:

- **Sato-Tate equidistribution in families**
 - GL$_2$ version: Hecke eigenvalues over all primes over all of $S_k(N)$ follow semicircle rule
 - Prove: expectation from interpreting π with $\pi_\infty = \pi_0$ as *non-endoscopic* functorial transfers from smaller group depending on π_0

- **Sarnak density**
 - $R(\pi_0)$ achieves a certain bound depending on matrix coefficient decay of π_0, useful in analytic number theory applications
 - Prove: for all cohomological π_0 except a single rep. on $U(2, 2)$

- **Growth rates of** $H^{p,q}$ **of towers of locally symmetric spaces**
 - *Exact asymptotics*: e.g. every other degree for $U(N, 1)$ with certain towers of lattices
Overview

Goal: Parametrize discrete automorphic representations for G in terms of all automorphic representations on \GL_n.

\implies Known info on \GL_n gives info on G

- Moeglin-Waldspurger classification in terms of cuspidals
- Local Langlands

Stated in terms of two key concepts:

- **Parameters**: ψ: reps on \GL_n encoded in a way to emphasize known info
- **Packets**: $\psi \mapsto \Pi_\psi$: subsets of $\mathcal{AR}_{\text{disc}}(G)$ with determined structure of local components

G can be: \SO_n or \Sp_{2n} (Arthur), q-split $U_{E/F}(N)$ (Mok), General unitary groups [KMSW14].
Some details:

Definition

An elliptic A-parameter for $U_{E/F,+}(N)$ is a formal sum

$$\psi = \bigoplus_i \tau_i[d_i]$$

where each τ_i is a conjugate self-dual cuspidal automorphic representation of GL_{t_i}/E and $\sum_i t_i d_i = N$ and each τ_i has the appropriate parity.

- ψ determines local parameters ψ_v by LL + lots of work

$$\psi_v : L_{F_v} \times \text{SL}_2 \to L_{U_{E/F}}(N) : \bigoplus_i LL(\tau_{i,v}) \boxtimes [d_i]$$
Some details:

Theorem (KMSW classification)

Let G be an extended pure inner form of $G^* = U_{E/F}(N)$. To each elliptic parameter ψ of $U_{E/F}(N)$, there is an associated packet $\Pi^G_\psi \subseteq \mathcal{AR}_{\text{disc}}(G)$ such that for any test function f on $G(\mathbb{A})$:

$$\text{tr}_{\mathcal{AR}_{\text{disc}}(G)}(f) = \sum_{\psi \in \Psi_{\text{ell}}(G^*)} l_\psi(f) := \sum_{\psi \in \Psi_{\text{ell}}(G^*)} \sum_{\pi \in \Pi^G_\psi} \text{tr}_\pi(f)$$

- Π_ψ is a subset of a restricted product of local packets Π_{ψ_v} determined by a multiplicity formula.
Stable Multiplicity

\(I_\psi \): summands of Arthur’s \(I_{\text{disc}} \rightarrow S_\psi \): summands of \(S_{\text{disc}} \)

- **Stabilization**: \(I_\psi^G = \sum_{H, \psi^H} S_{\psi^H}^H \), \(H \) smaller endoscopic groups

Formula:

\[
S_{\psi}^H(f) = \epsilon_\psi C_\psi \text{tr}_\psi(f)
\]

- very difficult sign attached to \(\psi \)
- easy constant attached to \(\psi \)
- Stable trace \(\sum_{\pi \in \Pi_\psi} \pm \text{tr}_\pi(f) \).
 - related to trace of a rep \(\pi_\psi \) on some twisted \(\text{GL}_n \)
 - \(\pi_\psi \) explicitly described as Langlands quotient of \(\pi_{\tau_i} \) with very complicated twist
AJ-packets

We care about a special kind of packet at ∞:

- Parameters ψ_{∞} at ∞ have associated infinitesimal characters.
- If the infinitesimal character is regular integral, then $\Pi_{\pi_{\infty}}$ is an Adams-Johnson packet \implies explicit combinatorial description of elements.
- Exactly that packets that contain cohomological representations.
- **Key property**: for cohom. π_0, there exists pseudocoefficient φ such that among the π that share an A-packet with π_0:

$$\text{tr}_{\pi} \varphi = 1_{\pi=\pi_0}$$
The inductive analysis depends on a key definition:

Definition

The refined shape Δ of A-parameter

$$\psi = \bigoplus_i \tau_i[d_i]$$

is $\Delta = (T_i, d_i, \lambda_i, \eta_i)_i$ where

- T_i is the dimension of τ_i
- λ_i is the infinitesimal character of $\tau_{i,\infty}$.

Key Property: Δ determines ψ_∞ among AJ-params if λ_i regular integral
Step 1: Induction Setup

Let $\psi_{i,\infty}$ be list of AJ-parameters such that $\pi_0 \in \prod_{\psi_{i,\infty}}$. Let $\Delta(\pi_0)$ be the set of Δ that determine ψ_∞ to be one of the $\psi_{i,\infty}$:

$$\sum_{\pi \in \text{AR}_{\text{disc}}(G)} \text{tr}_{\pi_\infty}(f_\infty) = \sum_{\Delta \in \Delta(\pi_0)} I_\Delta(\varphi f_\infty)$$

where

$$I_\Delta(f) := \sum_{\psi \in \Delta} \sum_{\pi \in \prod_{\psi}} \text{tr}_{\pi}(f)$$

- **Stabilization + hyperendoscopy**: Can switch freely between $I_\Delta(\varphi f_\infty), S_\Delta(EP_\lambda f_\infty)$ by adding lower order terms in n_i.
- **Goal**: Understand $S_\Delta(EP_\lambda f_\infty)$ for shapes Δ.
Induction: Base Case

What is the base case at the bottom?

- Arthur’s simple trace formula: Euler-Poincaré function EP_λ

\[
I^H(\text{EP}_\lambda f^\infty) = \sum_{\pi \in AR_{\text{disc}}(H) \atop \text{inf. char. } \pi^\infty = \lambda} \mathcal{L}(\pi^\infty) \text{tr}_{\pi^\infty}(f^\infty)
\]

(similar result holds for pseudocoefficient φ).

- Shin-Templier’s analysis: geometric expression for $I^H(\text{EP}_\lambda f^\infty)$ can be bounded very explicitly (error terms as in main theorem)

\[
f^\infty = 1_{K(n_i)} f_{S_1} \implies \text{tr}_{\pi^\infty}(f^\infty) = \dim((\pi^\infty)^K(n_i)) \text{tr}_{\pi_{S_1}} f_{S_1}.
\]

- Recall: we don’t care S^H vs. I^H
The Induction: Heuristic Dream

Trivial Shape: $\Sigma_{\lambda, \eta} = (T, 1, \lambda, \eta)$, cuspidal parameters on GL_n:

\[
S^H_{\Sigma, \lambda} (EP_{\lambda} f^\infty) = S^H(EP_{\lambda} f^\infty) - \sum_{\Delta \neq \Sigma, \text{inf. char. } \Delta = \lambda} S^H_{\Delta}(EP_{\lambda} f^\infty)
\]

- “Just” need to reduce S^H_{Δ} to S^H_{Σ} for smaller H_i.
- Step 1: “Stable transfer” $\epsilon \text{tr} \bigoplus_i \tau_i[d_i] f = \prod_i \text{tr} \tau_i[d_i] f_i$
- Step 2: “Speh transfer” $\text{tr} \tau_i[d_i] f_i = \text{tr} \tau_i f_i'$

Total:

\[
S^H_{(T_i, d_i, \lambda_i)} (EP_{\lambda} f^\infty) = \prod_i S^H_{(T_i, 1, \lambda_i)} (EP_{\lambda_i} (f^\infty)')
\]
The Induction: Reality

Stable transfer and Speh transfer are hard, open problems in general :(

- **Main work in analysis**: Find an easy special case where you can compute them!
- General idea: use relation to twisted representations on GL_n and Langlands quotients
- $\Delta^{\text{max}}(\pi_0)$: shapes with dominant-in-$|n_i|$ contribution, need transfers computed exactly here
- The rest of $\Delta(\pi_0)$: error term, only need upper bounds here.
- Rest of talk: explaining which easy special case we use
The ϵ-sign: $\epsilon_\psi C_\psi \text{tr}_\psi f$

For upper bounds:

- If ψ has one summand, then $\epsilon_\psi = 1$ and the signs in tr_ψ are all $+1$.
- \implies if $\text{tr}_{\pi_\infty}(f^\infty) \geq 0$ always, can take absolute value and get upper bound

$$\text{tr}_{\bigoplus_i \tau_i[d_i]} f = \prod_i \text{tr}_{\tau_i[d_i]} f_i \implies S^H_{\bigoplus_i \tau_i[d_i]}(f) \leq \prod_i S^H_{\tau_i[d_i]}(f_i)$$

For exact computation:

- If all the d_i are odd, then $\epsilon_\psi = 1$.
- **Restriction**: $\Delta^\text{max}(\pi_0)$ can only have shapes with all d_i odd.
Unramified Places: $\epsilon_\psi C_\psi \tr_\psi f$

At places ν where f_ν unramified:

- Π_{ψ_ν} has at most one unramified member $\pi^\ur_{\psi_\nu}$. This always has coefficient $+1$ in \tr_{ψ_ν}.
- $\tr_{\psi_\nu} f_\nu = \tr_{\pi^{\ur}_{\psi_\nu}} f_\nu$
- Its Satake parameters are determined explicitly by those of the unramified members in $\Pi_{\tau_i,\nu}$.

\Rightarrow can compute stable and Speh transfers of f_ν dual to transfer of Satake parameters through Satake isomorphism (analogy—full fundamental lemma).
Motivation

Results

End. Class.

Ind. Analysis

Computation

Split Places: $\epsilon_{\psi} C_{\psi} \text{tr}_{\psi} f$

At split v, $G_v \cong \text{GL}_N(F)$

- Check: stable transfer $=$ constant term ($=$end. trans.)
- Check: $\prod_{\psi_v} \text{singleton}$: from π_{ψ_v} from before on $\text{GL}_N(E)$.

Speh transfer upper bounds: If $\text{tr}_{\pi_v}(f_v) \geq 0$:

- Can bound trace against Langlands quotient $\text{tr}_{\pi_\tau}[d] f_v$ by trace against parabolic induction
- \implies constant term integral upper bounds

Speh transfer exact computation

- If $T_i = 1$, then $\pi_\tau[d]$ is a character \implies Speh transfer is integration against G^{der}.
- Restriction: $\Delta^{\text{max}}(\pi_0)$ can only have shapes where all summands have either $T_i = 1$ or $d_i = 1$.
These are the only cases we needed with our setup:

- f^∞ is only ramified at split places
- The “good” class of π_0 becomes π_0 such that for $\Delta \in \Delta^{\max}(\pi_0)$
- All summands have d_i odd
- All summands have $T_i = 1$ or $d_i = 1$
- There is a relatively simple equivalent combinatorial condition

Last Technicality: Need slightly stronger upper bounds of Marshall-Shin for $d_i = 2, 3$ to get that those terms are truly errors
Papers Mentioned

Rahul Dalal, *Sato–Tate equidistribution for families of automorphic representations through the stable trace formula*, Algebra Number Theory 16 (2022), no. 1, 59–137. MR 4384564

Contact info: dalal@jhu.edu