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Abstract. Recent developments extend much of the known theory of classical

harmonic maps between smooth Riemannian manifolds to the case when the
target is a metric space of curvature bounded from above. In particular, the

existence and regularity theorems for harmonic maps into these singular spaces

have been successfully generalized. Furthermore, the uniqueness of harmonic
maps is known when the domain has a boundary (with a smallness of image

condition if the target curvature is bounded from above by a positive number).

In this paper, we will address the question of uniqueness when the domain
space is without a boundary in two cases: one, when the curvature of the

target is strictly negative and two, for a map between surfaces with nonpositive

target curvature.

1. Introduction

The theory of harmonic maps into smooth Riemannian manifolds of nonposi-
tive curvature began with the work of J. Eells and H. Sampson [ES] and S.I. Al’ber
[Al]. Using a heat flow approach, they constructed a harmonic map in a given ho-
motopy class. Later, R. Hamilton was able to extend their theory to manifolds with
boundary [Hm]. The uniqueness theorem for harmonic maps between Riemannian
manifolds is due to Al’ber [Al] and P. Hartman [Hr]:

Theorem 1 (Uniqueness of harmonic maps). Let M and N be smooth Rie-
mannian manifolds and u0, u1 : M → N be homotopic harmonic maps which agree
on ∂M . If ∂M 6= ∅ and N has nonpositive curvature, then u0 ≡ u1. If ∂M = ∅
and N has negative sectional curvature, then u0 ≡ u1 unless u0(M) is contained in
a geodesic.

More recently, progress has been made on the harmonic map theory with non-
smooth target spaces. In the paper [GS], M. Gromov and R. Schoen initiated the
study of harmonic maps into singular spaces by considering locally compact poly-
hedral targets of nonpositive curvature. This work was substantially generalized by
N. Korevaar and R. Schoen [KS1] [KS2] [KS3] and J. Jost [Jo1] [Jo2] [Jo3] [Jo4]
[Jo5]. In particular, Korevaar and Schoen developed the Sobolev space theory
for maps into complete metric spaces and constructed Lipschitz energy minimizing
maps for the Dirichlet, homotopy, and equivariant problems. It is in this general
framework that we consider the uniqueness question (see Theorem 2 and Theorem
3 below). We note that it is straightforward to extend the arguments to energy

∗The author is supported by research grant NSF DMS 0072483 and by the Woodrow Wilson

National Fellowship Foundation.

1
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minimizing maps from domains with locally bounded measurable metrics following
the work of G. Gregori [G] or to consider maps between Riemannian polyhedra as
in the work of J. Eells and B. Fuglede [EF]. The work of Jost considers the possi-
bility that the domain space may be a metric space equipped with a measure. Jost
also claims some uniqueness results in [Jo5], but we will give a counter example to
his argument (see Remark 16, Example 17, and Remark 19 below).

The key to the uniqueness theorem is the convexity of energy statement. First,
consider the case where M and N are smooth Riemannian manifolds. Let F :
M × [0, 1] → N be a C2 map and set ut(x) = F (x, t) for x ∈ M . We then have the
following formula which can be found in [ES]:

d2

dt2
Eut = 2

∫
M

(∑
α

|∇′eα
V |2 −KN (V, F∗eα)+ < ∇′eα

∇′∂
∂t

V, F∗eα >

)
dµ. (1)

Here, Eut is the energy of ut, V = F∗
∂
∂t , ∇

′ is the pullback connection from TN ,
KN (V, F∗eα) is the sectional curvature of the tangent plane defined by V and F∗eα

in N, and {eα} is an orthonormal basis for TM . If F is a geodesic homotopy, i.e.
t 7→ ut(x) is a geodesic curve, then ∇′∂

∂t

V = 0 and the last term on the right drops
off. Thus, if N has nonpositive sectional curvature, the map t 7→ Eut is a convex
function. Moreover, if u0 and u1 are energy minimizing in a class of homotopic
maps, then t 7→ Eut has slope zero at 0 and 1 and hence d2

dt2 Eut ≡ 0. Therefore,
equation (1) implies

|∇′eα
V | ≡ 0 and KN (V, F∗eα) ≡ 0.

Theorem 5 can now be proved by the following argument: The first identity implies
that |V (x)| is a constant. If ∂M 6= ∅, then |V (x)| = 0 for x ∈ ∂M since u0 = u1

on ∂M . Thus |V (x)| = 0 for all x ∈ M and this implies u0 ≡ u1. If ∂M = ∅ and
u0, u1 are distinct maps, then |V (x)| is nowhere zero. Therefore, if N has negative
curvature, V and F∗eα are parallel for all α. Consequently, we can deduce that u0

maps onto a geodesic.
Now let (X, d) be a metric space of nonpositive curvature and consider maps u :

M → X. The difficulty in working in the generality of metric spaces is contending
with the lack of smoothness. For example, the formula given in equation (1) utilizes
the curvature tensor; to define the curvature tensor in a Riemannian manifold,
the Riemannian metric must be at least twice differentiable. For maps with a
metric space target, we must find an alternative way to express the geometric
information contained in equation (1). This obstacle can be overcome by a careful
use of the quadrilateral comparison property of nonpositively curved metric spaces.
The quadrilateral comparison states that for any quadrilateral Q in X (i.e. ordered
points P,Q,R, S ∈ X and geodesics between two consecutive points), there exists
a convex quadrilateral V in R2 and a distance decreasing map ϕ : V → X so that
ϕ is an acrlength preserving map of ∂V to Q (see [Re]). By applying this property
for quadrilaterals formed by u0(x), u1(x), u1(y), u0(y) ∈ X, x, y ∈ M , we obtain
the inequality

d2(ut(x), ut(y)) ≤ (1− t)d(u0(x), u0(y)) + td(u1(x), u1(x))
−t(1− t)(d(u0(x), u1(x))− d(u0(y), u1(y))2.
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Using the Korevaar-Schoen definition of energy, this inequality leads to the energy
convexity statement,

Eut ≤ (1− t)Eu0 + tEu1 − t(1− t)
∫

M

|∇d(u0, u1)|2dµ.

In [KS1], existence and regularity theorems of energy minimizing map into nonpos-
itively curved metric spaces are proved by exploiting this type of (similar, but more
general) convexity statements. The boundary regularity of these maps were proved
by T. Serbinowski [Se1]. The existence and regularity of the Dirichlet problem
when the target metric space has curvature bounded from above by κ > 0 (with
a smallness of image assumption) was also proved by T. Serbinowski [Se2]. The
uniqueness of these solutions when ∂M 6= ∅ also follows from the convexity of
energy statement in the analogous fashion as described above.

In this paper, we consider the uniqueness question in the case when ∂M = ∅.
We will first assume that the target space has an upper curvature bound of κ < 0.
In the smooth case, we can deduce that the energy function is strictly convex from
equation (1) if the map is not everywhere rank ≤ 1. We will make sense of this
statement in the singular setting; we improve the convexity statement of Korevaar-
Schoen by using the stricter curvature bound and prove the uniqueness statement
without using the boundary information. In doing so, we will analyze quadrilaterals
in hyperbolic surfaces and use the suitable quadrilateral comparison property. We
show:

Theorem 2. Let M be a compact Riemannian manifold, (X, d) be a metric
space of curvature bounded from above by κ < 0 and ρ be an isometric action of the
fundamental group Γ of M on X. If u0, u1 : M̃ → X are a ρ-equivariant energy
minimizing maps, then u0 ≡ u1 unless u0(M) is contained in a geodesic.

A special case of Theorem 2 is the following.

Theorem 3. Let M be a compact Riemannian manifold and N be a compact
metric space whose univeral cover X is a metric space of curvature bounded from
above by κ < 0. If u0, u1 : M → N are energy minimizing maps in its homotopy
class, then u0 ≡ u1 unless u0(M) is contained in a geodesic.

In the second part of the paper, we will show the uniqueness property of maps
between compact surfaces. Recall a theorem of J. Jost and R. Schoen [JS] which
states that any diffeomorphism between two Riemannian surfaces Σ1 and Σ2 is
homotopic to a harmonic diffeomorphism. For genus ≥ 2, J.M. Coron and F.
Hélein [CH] showed that the Jost-Schoen diffeomorphism is the unique minimizer
in its homotopy class. We will prove that this uniqueness statement is true when
the target surface is equipped with a singular metric of nonpositive curvature.

Theorem 4. Let (Σ1, z) and (Σ2, w) be compact Riemann surfaces with genus
g ≥ 2 and λ|dw|2 be a possibly degenerate and non-smooth metric with λ satisfying
4 log λ ≥ 0 weakly. Let ϕ : Σ1 → Σ2 be a diffeomorphism. If u0, u1 : Σ1 → Σ2 are
energy minimizings homotopic to ϕ, then u0 ≡ u1.

Metrics of the type described in Theorem 4 include flat metrics with conical
singularities and cone angles ≥ 2π. For example, if Φ = φdz2 is a quadratic holo-
morphic differential on a Riemann surface Σ2, then the metric defined by |φ||dz|2
is such a metric.
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In [Me], we show that we can construct an energy minimizing map u in a
homotopy class of ϕ as a limit of smooth diffeomorphism. Theorem 4 shows that
this is the only harmonic map in its homotopy class. The key to the proof of
Theorem 4 is the analysis of the local behavior of the map u. Using this analysis,
we show that if u0 and u1 are distinct energy minimizing maps, we can construct a
self-map of a Riemann surface of genus ≥ 2 homotopic to the identity without any
fixed points, a contradiction.

We finish with some immediate applications of the uniqueness theorem. First
is the generalization of the Preissman’s Theorem. This states that every ablelian
subgroup of the fundamental group of a compact metric space of curvature bounded
from above by κ < 0 is abelian. Here, we use the uniqueness statement in place
of the Bochner’s formula used in the smooth setting. Secondly, we will give a
necessary condition for the existence of equivariant maps representing isometric
actions of discrete groups on a negatively curved metric space. This complements
the sufficient condition established independently by Korevaar and Schoen [KS3]
and by Jost [Jo2] and generalizes the work of K. Corlette [C] and F. Labourie [L];
more precisely,

Theorem 5. If X is a metric space of curvature bounded from above by κ < 0,
ρ is an isometric action of the fundamental group Γ of a compact Riemannian
manifold M on X, if there exists a ρ−equivariant harmonic map whose image is
not contained in a geodesic, then there are no geodesic ray whose equivalence class
is fixed by ρ(Γ).

More generally, we can show

Theorem 6. Let ρ be an isometric action of the fundamental group Γ of a
compact Riemannian manifold M on X, a complete metric space of nonpositive
curvature, of finite rank and with no flat half-strip. There exists a ρ-equivariant
harmonic map if and only if ρ(Γ) is a reductive subgroup of Isom(X).

Here, we use the definition of no flat half-strip which adapts the definition used
in [L] to our setting (see Definition 26).

2. Energy of maps into metric spaces

We first outline the Sobolev space theory for maps into metric spaces developed
by Korevaar and Schoen [KS1]. Let (M, g) be a compact Riemannian manifold,
dM be the distance function on M induced by g and (X, d) be a complete metric
space. A Borel measurable map f : M → X is said to be in L2(M,X) if∫

M

d2(f(x), P )dµ < ∞

for some P ∈ X. By the triangle inequality, this definition is independent of P
chosen.

Let Mε = {x ∈ M : dM (x, ∂M) > ε}, Sε(x) = {y ∈ M : dM (x, y) = ε} and ωn

be the area form of the unit sphere. For u ∈ L2(Ω, X), construct an ε−approximate
energy function eε : M → R by setting

eε(x) =

{
1

ωn

∫
Sε(x)

d2(u(x),u(y))
ε2

dσ
εn−1 for x ∈ Mε

0 for x ∈ M −Mε.
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Define a linear functional Eε : Cc(M) → R on the set of continuous functions with
compact support in M by setting

Eε(ϕ) =
∫

ϕeεdµ.

The map u ∈ L2(M,X) has finite energy (or u ∈ W 1,2(M,X)) if

Eu ≡ sup
ϕ∈Cc(M),0≤ϕ≤1

lim sup
ε→0

Eε(ϕ) < ∞.

The quantity Eu is defined to be the energy of the map u. It can be shown
that if u has finite energy, the measures eε(x)dµ(x) converge weakly to a measure
which is absolutely continuous with respect to the Lebesgue measure. Therefore,
there exists a function e(x), which we call the energy density function, so that
eε(x)dµ ⇀ e(x)dµ. In analogy with the case of real-valued functions and maps into
Riemannian manifolds, we write |∇u|2(x) in place of e(x). In particular,

Eu =
∫

M

|∇u|2dµ.

Let Γ(TM) be the set of Lipschitz vector field on M . Then for V ∈ Γ(TM), the
directional energy measures can be defined as the weak∗ limit of measures V eε(x)dx
where

V eε(x) =

{
d2(u(x),u(x̄(x,ε))

ε2 for x ∈ Mε

0 for x ∈ M −Mε.

and x̄(x, ε) denotes the flow along V at time ε starting at point x. The energy
density measures can be written |u∗(V )|2dµ for an L2 function |u∗(V )| and for
almost every x ∈ M ,

lim
ε→0

V eε(x) = |u∗(Z)|2(x).

If {e1, e2, ..., en} is a local orthonormal frame on M and if we identify Sn−1 ⊂ Rn

with Sn−1
x ⊂ TMx by

ω = (ω1, ω2, ..., ωn) 7→ wiei

then
|∇u|2(x) =

1
ωn

∫
ω∈Sn−1

|u∗(ω)|2dσ(ω). (2)

3. Curvature bounds of metric spaces

A complete metric space (X, d) is said to have curvature bounded from above
by κ if its universal cover X̃ has the following properties:

(i) The space (X̃, d) is a length space. That is, for any two points P and Q in
X̃, there exists a rectifiable curve γPQ so that the length of γPQ is equal to d(P,Q)
(which we will sometimes denote by dPQ for simplicity). We call such distance
realizing curves geodesics.

(ii) Given P,Q,R ∈ X̃ (assume dPQ + dQR + dRP < π√
κ
) for κ > 0 and geo-

desic γQR between Q and R, let Qt be point of γQR so that dQQt
= tdQR. Then,

setting a =
√
|κ|,

cosh(adPQt
) ≤ sinh((1− t)adQR)

sinh(adQR)
cosh adPQ +

sinh(tadQR)
sinh(adQR)

cosh adPR (3)
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for κ < 0,
d2

PQt
≤ (1− t)d2

PQ + td2
PR − t(1− t)d2

QR

for κ = 0, and

cos(adPQt
) ≥ sin((1− t)adQR)

sin(adQR)
cos adPQ +

sin(tadQR)
sin(adQR)

cos adPR

for κ > 0.

Note that for a = 1 and t = 1
2 in inequality (3), we get

cosh dPQt
≤ cosh dPQ + cosh dPR

2 cosh dQR

2

. (4)

We will say that X is NPC (nonpositively curved) if it has curvature bounded from
above by 0. A simply connected space of curvature bounded from above by κ < 0
is also referred to as CAT (κ) spaces. The following important result is due to Y.G.
Reshetnyak:

Theorem 7 (Non-expanding maps into metric spaces [Re]). Let Sκ be a simply
connected surface of constant curvature κ. Let (X, d) be a metric space of curvature
bounded from above by κ and Γ be a closed rectifiable curve in X. Then there exists
a convex domain V in Sκ and a map ϕ : V → X such that ϕ restricted to ∂V is
an arclength preserving parameterization of Γ and ϕ is a distance decreasing map
in V (i.e. dSκ

(x, y) ≥ d(ϕ(x), ϕ(y)) for x, y,∈ V ).

Definition 8. Let P,Q,R, S ∈ X (with dPQ+dQR+dRS+dSP < π√
κ

if κ > 0).
We will denote the union of geodesics γPQ, γQR, γRS and γSP by Q(P,Q,R, S). Let
ϕ : V → X be as in Theorem 7 with Γ = Q(P,Q,R, S) and P̃ , Q̃, R̃, S̃ ∈ ∂V be
points corresponding to P,Q,R, S via ϕ. By the property of the map ϕ, it is clear
that ∂V is a union of geodesics γP̃ Q̃, γQ̃R̃, γR̃S̃ and γS̃P̃ . We will call the ordered
set {P̃ , Q̃, R̃, S̃} a κ-subembedding of {P,Q,R, S}. It is clear that V is unique up
to an isometry of Sκ. We define 6 κ(QPS) to be the angle made by γP̃ Q̃ and γP̃ S̃

in Sκ and Aκ(P,Q,R, S) to be the area of V in Sκ.

The following two lemmas will be important later on.

Lemma 9. Let X be a metric space of curvature bounded from above by κ ≤ 0.
Let {P,Q,R, S} ⊂ X. For sufficiently small D > 0, there exists C > 0 so that if
dPQ + dQR + dRS + dSP < D, then

Aκ(P,Q,R, S) ≤ C(dPQdPS + dSRdSP )(sin 6 κ(QPS) + sin 6 κ(RSP )).

Proof. Let{P̃ , Q̃, R̃, S̃} ⊂ Sκ be a κ-subembedding and {P̄ , Q̄, R̄, S̄} ⊂ R2 be
a 0-subembedding of {P,Q,R, S}. Clearly Aκ ≤ A0. By elementary geometry on
the plane,

A0(P,Q,R, S) ≤ (dPQdPS + dRSdPS)(sin 6 0(QPS) + sin 6 0(RSP )).

Now since dPQ + dQR + dRS + dSP < D (which implies that Q(P̃ , Q̃, R̃, S̃) is
contained in a small region of Sκ), there exists C = C(D) so that sin 6 0(QPS) ≤
C sin 6 κ(QPS) and sin 6 0(RSP ) ≤ C sin 6 κ(RSP ). Thus,

Aκ(P,Q,R, S) ≤ A0(P,Q,R, S)
≤ (dPQdPS + dRSdPS)(sin 6 0(QPS) + sin 6 0(RSP ))



UNIQUENESS THEOREMS FOR HARMONIC MAPS INTO METRIC SPACES 7

≤ C(dPQdPS + dSRdSP )(sin 6 κ(QPS) + sin 6 κ(RSP ))

Lemma 10. Let X be a NPC (nonpositively curved) space. For {P,Q,R, S} ⊂
X, let Pt be the point on geodesic γPS so that dPPt

= tdPS and Qt be the point on
γQR so that dQQs

= tdQR. Then

d2
PtQt

≤ (1− t)d2
PQ + td2

RS − t(1− t)(α(dSP − dQR)2 + (1− α)(dRS − dPQ)2). (5)

Proof. The inequality is true if {P,Q,R, S} ⊂ R2 by an elementary computa-
tion on the plane. Hence the lemma follows by applying Theorem 7. See Corollary
2.1.3 of [KS1] for more details.

4. Convexity of energy and energy minimizing maps

Denote the fundamental group π1(M) by Γ and the universal cover of M by
M̃ . If X is a metric space and ρ : Γ →isom(X) a homomorphism, ρ is called an
isometric action of Γ on X (or a representation of Γ). For γ ∈ Γ, we will write
ρ(γ)P for ρ(γ)(P ). A map u : M̃ → X is said to be Γ-equivariant if

u(γx) = ρ(γ)u(x)

for all x ∈ M̃ and γ ∈ Γ. The energy of the map u is defined to be

Eu =
∫

M

|∇u|2dµ.

This integral is well-defined as long as M has finite volume. The map u is energy
minimizing if Eu ≤ Ev for any Γ-equivariant map v : M̃ → X. Commonly, a map
is called harmonic if it is stationary for the energy functional. Because of the con-
vexity of energy for maps with NPC targets (Theorem 11 below), stationary implies
minimizing. Hence, we will refer to energy minimizing maps as harmonic maps. As-
sume X is simply connected and suppose u0, u1 : M̃ → X are Γ-equivariant finite
energy maps. Let t 7→ ut(x), 0 ≤ t ≤ 1, be the constant speed parameterization
of the geodesic from u0(x) to u1(x). Then ut : M̃ → X is Γ-equivariant and the
function d(u0, u1)(x) = d(u0(x), u1(x)) is Γ-invariant. The following theorem is a
consequence of inequality (5). We refer to [KS1] for the proof.

Theorem 11 (Convexity of energy [KS1]). Let u0, u1 be finite energy Γ-
equivariant maps and ut as above. Then

Eut ≤ (1− t)Eu0 + tEu1 − t(1− t)
∫

M

|∇d(u0, u1)|2dµ.

The following corollaries follow immediately from Theorem 11.

Corollary 12. If u0 and u1 are harmonic maps, then d(u0, u1) is constant
for all x ∈ M̃ and Eut ≡ Eu0 for all 0 ≤ t ≤ 1.

Proof. Since u0 and u1 are energy minimizing,

(1− t)Eu0 + tEu1 ≤ Eut ≤ (1− t)Eu0 + tEu1 − t(1− t)
∫

M

|∇d(u0, u1)|2dµ.

Thus, ∫
M

|∇d(u0, u1)|2dµ = 0
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and this implies ∇d(u0, u1) = 0 a.e. x ∈ M̃ . Hence, d(u0, u1) is constant. Further-
more, we see that Eut = (1− t)Eu0 + tEu1 = Eu0 and this shows Eut is constant
for all t.

Corollary 13. If u0 and u1 are enery minimizing maps, then |(ut)∗(V )| =
|(u0)∗(V )| for any t ∈ [0, 1] and V ∈ Γ(TM̃).

Proof. Let P = u0(x), Q = u1(x), R = u1(x̄(x, ε)), S = u0(x̄(x, ε)) in inequal-
ity (5) with α = 0. If dt(x) = d(ut(x), ut(x̄(x, ε)), then

d2
t (x) ≤ (1− t)d2

0(x) + td2
1(x)− t(1− t)(d0(x)− d1(x))2.

Dividing by ε2 and letting ε → 0, this implies

|(ut)∗(V )|2 ≤ (1− t)|(u0)∗(V )|2 + t|(u1)∗(V )|2 − t(t− 1)(|(u1)∗|(V )− |(u0)∗(V )|)2.

Since Eut = Eu0 , we must have |(ut)∗(V )|2 = (1 − t)|(u0)∗(V )|2 + t|(u1)∗(V )|2.
Thus, |(u1)∗|(V ) = |(u0)∗(V )|.

5. Uniqueness property when the target has curvature bounded from
above by κ < 0.

If (X, d) has curvature bounded from above by κ < 0, then the metric space
(X,

√
−κd) has curvature bounded from above by −1. Hence, it is sufficient to

assume that our metric space has curvature bounded from above by −1. Metric
spaces of negative curvature can be compactified by equivalence classes of geodesic
rays (where a geodesic ray is an image of a map σ : [0,∞) → X with the property
that d(σ(t1), σ(t2)) = |t1 − t2|). Two geodesic rays σ1, σ2 are said to be equivalent
if the Hausdorff distance between them is finite. We have the following dichotomy
for the existence question of harmonic equivariant maps:

Theorem 14 (Existence of a harmonic equivariant map [KS2]). Let M be a
compact Riemannian manifold without boundary, X be a metric space of curvature
bounded from above by −1 and ρ : Γ →isom(X) be an isometric action of the funda-
mental group Γ of M on X. Either there is a geodesic ray in X whose equivalence
class is fixed by Γ, or there is a harmonic equivariant map from M̃ to X.

Our goal in this section is to prove Theorem 2, the uniqueness of equivariant
harmonic maps when it exists. We consider a model of S−1, the hyperbolic plane,
by taking the dot product · on R3 defined by (x0, y0, z0) · (x1, y1, z1) = −x0x1 +
y0y1 + z0z1 and a subset H2 = {(x, y, z) ⊂ R3 : −x2 + y2 + z2 = −1, x > 0}.
Let P,Q,R, S be a points in H2 and let α = 6 QPS and β = 6 RSP . Without
the loss of generality, we assume P = (1, 0, 0) and S = (cosh θ, sinh θ, 0). (Note
that cosh dH2(P, S) = −Q · R = cosh θ and hence dH2(P, S) = θ.) Let ϕ(t) =
(cosh t, sinh t, 0); that is, ϕ is the unit speed geodesic from P to S. Furthermore,
let γ (resp. σ) be the unit speed geodesic from P (resp. S) to Q (resp. R). We can
check that

γ(t) = (cosh t, cos α sinh t, sinα sinh t)

and

σ(s) = (− cos β sinh θ sinh s+cosh θ cosh s,− cos β cosh θ sinh s+sinh θ cosh s, sinβ sinh s).
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We now compute Θ = dH2(γ(t), σ(s)) in terms of t, s, α, β and θ.

− coshΘ = γ(t) · σ(s)
= cosh t sinh s sinh θ cos β − cosh t cosh s cosh θ

− sinh t sinh s cosh θ cos α cos β + cosh s sinh t sinh θ cos α

+sinh t sinh s sinα sinβ.

Rearranging terms, we obtain

− cosh s sinh t sinh θ cos α− cosh t sinh s sinh θ cos β

= coshΘ− cosh t cosh s cosh θ

− sinh t sinh s cosh θ cos α cos β + sinh t sinh s sinα sinβ.

We now expand some of the terms of the equation in variables t and s and denote
terms which are of order higher than degree 2 in t and s by o2(t, s).

− sinh t sinh θ cos α− sinh s sinh θ cos β

= coshΘ− cosh θ(1 +
1
2
(t2 + s2))

−ts cosh θ cos α cos β + ts sinα sinβ + o2(t, s).

Now assume θ = Θ. (In the application below, we will use θ = d(u0(x), u1(x)) and
Θ = d(u0(x̄(x, ε)), u1(x̄(x, ε))) so setting θ = Θ is justified by Corollary 12.) Then

− sinh t sinh θ cos α− sinh s sinh θ cos β

= −1
2
(t2 + s2) cosh θ

−ts cosh θ cos α cos β + ts sinα cos β + o2(t, s)

= −
(

1
2
(t2 + s2) + ts cos α cos β

)
cosh θ

+ts sinα sinβ + o2(t, s).

Adding and subtracting −
(

1
2 (t2 + s2) + ts cos α cos β

)
to the right side of the equa-

tion, we obtain

− sinh t sinh θ cos α− sinh s sinh θ cos β

= −
(

1
2
(t2 + s2) + ts cos α cos β

)
(cosh θ − 1)

−
(

1
2
(t2 + s2) + ts cos α cos β

)
+ ts sinα sinβ + o2(t, s).

Using the trig identity cos α cos β − sinα sinβ = cos(α + β), we obtain

− sinh t sinh θ cos α− sinh s sinh θ cos β

= −
(

1
2
(t2 + s2) + ts cos α cos β

)
(cosh θ − 1)

−1
2
(t2 + s2)− ts cos(α + β) + o2(t, s).
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Adding and subtracting ts(cosh θ−1) and ts to the right hand side of the equation,
we obtain

− sinh t sinh θ cos α− sinh s sinh θ cos β

= −1
2
(t2 + s2 − 2ts)(cosh θ − 1)− ts(1 + cos α cos β)(cosh θ − 1)

−1
2
(t2 + s2 − 2ts)− ts(1 + cos(α + β)) + o2(t, s)

= −1
2
(t− s)2(cosh θ − 1)− 1

2
(t− s)2

−ts(1 + cos α cos β)(cosh θ − 1)− ts(1 + cos(α + β)) + o2(t, s).

Therefore,

− sinh t sinh θ cos α− sinh s sinh θ cos β (6)

= −1
2
(t− s)2 cosh θ

−ts((1 + cos α cos β)(cosh θ − 1)− (1 + cos(α + β))) + o2(t, s).

Let V ∈ Γ(TM̃) and x̄(x, ε) as before. We will denote d(ut(x), ut(x̄(x, ε)) by
dt(x) and d(u0, u1) by θ. The triangle inequality (4) applied to geodesic triangle
defined by {u 1

2
(x), u0(x̄(x, ε)), u1(x̄(x, ε))} gives us

2 cosh d 1
2
≤ 1

cosh θ
2

(cosh d(u 1
2
(x), u0(x̄(x, ε))) + cosh d(u 1

2
(x), u1(x̄(x, ε)))). (7)

Now let {P,Q,R, S} ⊂ H2 be a hyperbolic subembedding of

{u0(x), u0(x̄(x, ε)), u1(x̄(x, ε)), u1(x)}.

Let α(x, ε) = 6 −1(u0(x̄(x, ε))u0(x)u1(x)) and β(x, ε) = 6 −1(u1(x̄(x, ε))u1(x)u0(x)).
(Recall that 6 κ(QPS) is the angle at P̃ of the quadrilateral defined by the κ-
subembedding {P̃ , Q̃, R̃, S̃} ⊂ Sκ of {P,Q,R, S} ⊂ X.) Then by the law of cosines
for the hyperbolic surface applied to triangles 4PQP 1

2
and 4SRP 1

2
, we have

cosh d(u 1
2
(x), u0(x̄(x, ε))) + cosh d(u 1

2
(x), u1(x̄(x, ε)))

≤ cosh d0 cosh
θ

2
− sinh d0 sinh

θ

2
cos α(x, ε)

+ cosh d1 cosh
θ

2
− sinh d1 sinh

θ

2
cos β(x, ε)

= (cosh d0 + cosh d1) cosh
θ

2

− 1
2 cosh θ

2

(sinh d0 sinh θ coshα(x, ε) + sinh d1 sinh θ cos β(x, ε))

Applying equation (6), we obtain

cosh d(u 1
2
(x), u0(x̄(x, ε))) + cosh d(u 1

2
(x), u1(x̄(x, ε)))

≤ (cosh d0 + cosh d1) cosh
θ

2
− cosh θ

4 cosh θ
2

(d0 − d1)2

− d0d1

2 cosh θ
2

T (V, x, ε) + o2(d0, d1)
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where

T (V, x, ε) = (1 + cos α(x, ε) cos β(x, ε))(cosh θ − 1) + (1 + cos(α(x, ε) + β(x, ε))).

Together with inequality (7), this implies

2 cosh d 1
2

≤ cosh d0 + cosh d1 −
cosh θ

4 cosh2 θ
2

(d0 − d1)2

− d0d1

2 cosh2 θ
2

T (V, x, ε) + o2(d0, d1).

This shows that

2d2
1
2
≤ d2

0 + d2
1 −

cosh θ

4 cosh2 θ
2

(d0 − d1)2 −
d0d1

2 cosh2 θ
2

T (V, x, ε) + o2(d0, d1) (8)

We now claim that for a.e. x ∈ M̃ , either

|(u0)∗(V )|2(x) = |(u1)∗(V )|2(x) = 0,

or the following: for any sequence εi → 0 so that

lim
i→∞

α(x, εi) = a and lim
i→∞

β(x, εi) = b

we either have
lim
ε→0

α(x, ε) = 0 and lim
ε→0

β(x, ε) = π

or
lim
ε→0

α(x, ε) = π and lim
ε→0

β(x, ε) = 0.

Suppose that this claim is not true. Then there exists a set A of positive measure
where |(u0)∗(V )|2 = |(u1)∗(V )|2 6= 0 and, for each x ∈ A, there exists a sequence
εi → 0 so that limi→∞ α(x, εi) = a and limi→∞ β(x, ε) = b with

a 6= 0 or b 6= π

and
a 6= π or b 6= 0.

Hence,

T = lim
εi→0

T (V, x, εi) = (1 + cos a cos b)(cosh θ − 1) + (1 + cos(a + b)) > 0.

Replacing ε by εi in inquality (8), dividing by ε2i , letting εi → 0, and noting that

lim
ε→0

(d0 − d1)2

ε2
= (|(u0)∗(V )| − |(u1)∗(V )|)2 = 0

by Corollary 13, we obtain

2|(u 1
2
)∗(V )|2 ≤ |(u0)∗(V )|2 + |(u1)∗(V )|2

− 1
2 cosh2 θ

2

|(u0)∗(V )||(u1)∗(V )|T

< |(u0)∗(V )|2 + |(u1)∗(V )|2

for a.e. x ∈ A. This contradicts Corollary 13 and we have proved our claim.
Choose an orthonormal frame in a coordinate neighborhood U ⊂ M̃ . Then for

a.e. x ∈ U and a.e. ω ∈ Sn−1
x , we have either

|(u0)∗(ω)| = |(u1)∗(ω)| = 0
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or
lim
ε→0

sinα(x, ε) = 0 and lim
ε→0

sinβ(x, ε) = 0.

Let U ′ ⊂ U × Sn−1 be the set of pairs (x, ω) which satisfies the above.
Let γxy : [0, ty] → M̃ be an arclength parameterization of a geodesic between

x and y (with dM (x, y) = ty). For a fixed x ∈ U and for a.e. y ∈ Br(x) = {z ∈
M : dM (x, z) < r} ⊂ U , we see that (γxy(t), γ′xy(t)) ∈ U ′ for a.e. t ∈ [0, ty]. Choose
such y and let xt = γxy(t) and ωt = γ′xy(t).

Define B(t, s) to be A−1(u0(xt), u1(xt), u1(xs), u0(xs)) and let φ(t) = B(t, 0).
(Recall that Aκ(P,Q,R, S) is the area of the quadrilateral defined by κ−subembedding
{P̃ , Q̃, R̃, S̃} ⊂ Sκ of {P,Q,R, S} ⊂ X by Definition 8.) First, we claim that
limε→0

B(t+ε,t)
ε = 0. To see this, we let αt(ε) = α(ωt, xt, ε) and βt(ε) = β(ωt, xt, ε).

Again, we let θ = d(u0, u1). By Lemma 9,

A−1(u0(xt), u1(xt), u1(xs), u0(xs))
≤ C(d(u0(xt), u0(xt+ε))θ + d(u1(xt), u1(xt+ε))θ)(sinαt(ε) + θ sinβt(ε))

Thus,

lim
ε→0

B(t + ε, t)
ε

≤ C lim
ε→0

(
d(u0(xt), u0(xt+ε))

ε
+

d(u1(xt), u1(xt+ε))
ε

)
θ(sinαt(ε) + sinβt(ε))

≤ C(|(u0)∗(ωt)|(xt) + |(u1)∗(ωt)|(xt))θ lim
ε→0

(sinαt(ε) + sinβt(ε))

= 0

for a.e. t ∈ [0, ty]. Now let φ(t) = B(t, 0). Then

lim sup
ε→0

φ(t + ε)− φ(t)
ε

= lim sup
ε→0

B(t + ε, 0)−B(t, 0)
ε

= lim sup
ε→0

B(t + ε, t)
ε

.

Therefore, φ′(t) exists for a.e. t ∈ [0, ty] and is equal to 0. Thus B(ty, 0) = φ(ty) =∫ ty

0
φ′(t)dt = 0 which implies that

A−1(u0(y), u1(y), u1(x), u0(x)) = 0.

Hence, it must be that the union of geodesics γu0(x)u1(x) and γu0(y)u1(y) is another
geodesic. By continuity, this is true for any y ∈ U , u0(U) is contained in a geodesic.
This implies that u0(M̃) is contained in the geodesic.

Remark 15. Let N be a compact metric space whose universal cover X is a
metric space of curvature bounded from above by κ < 0. Let M be a compact
Riemannian manifold without boundary and f : M → N be a continuous map. For
a fixed x ∈ M , the map f induces the homomorphism f∗ : π1(M)x → π(N)f(x)

and we may lift f to a map f̃ : M̃ → X so f̃ is f∗ equivariant. If u0, u1 : M → N
are harmonic maps homotopic to f , then the lift ũ0, ũ1 : M̃ → X are harmonic f∗-
equivariant maps. Hence, the uniqueness statement for harmonic maps homotopic
to f (Theorem 3) follows from the uniqueness of f∗-equivariant harmonic maps.

Remark 16. In [Jo5], Jost also claims a uniqueness result for energy minimiz-
ing maps. But his proof is based on the assertion that if X is a NPC space space and
u0, u1 : M → X are energy minimizing maps, then d(u0(x), u0(y)) = d(u1(x), u1(y))
for x, y ∈ M . This assertion is incorrect as the following example shows. Note that,
on the contrary, the corresponding infinitesmal statement (Corollary 13) is true.
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Example 17. Let ι : Σ → N be a harmonic map from a compact Riemann
surface Σ to a compact Riemannian 3-manifold (N, g) of negative sectional curva-
ture with the following properties:

(1) ι is an immersion, and
(2) ι(Σ) is not totally geodesic.

The existence of such a map ι is well known, see for example [SY]. By using
the exponential map, we can extend ι to be an immersion I from a neighborhood
O of the zero section in the normal bundle of Σ where we identify the zero section
with Σ. The map I is a local diffeomorphism and we can pull back g to O using I.
Since ι is a harmonic map, it is clear that the map φ : Σ → (O, I∗g) defined to be
just the identity map of Σ to the copy of Σ in O is also a harmonic map.

Let dg(·, ·) be the distance function on O induced by the metric I∗g and let

Σt = {x ∈ O : dg(x, Σ) ≤ t}.
Then for sufficiently small values of t, the boundary ∂Σt is a smooth surface con-
taining two components which we will denote ∂Σ+

t and ∂Σ−t . Let Π : O → Σ be
the canonical projection map and Φt : Σ → O be the map defined by

Φt(x) =

 Π−1(x) ∩ ∂Σ+
t for t > 0

x for t = 0
Π−1(x) ∩ ∂Σ−t for t < 0

Since N , and hence O, has negative sectional curvature, the curvature of Σ is
negative by a theorem of Sampson [Sa]. Therefore, for sufficiently small t (say for
t ≤ t0), ∂Σt has nonpositive curvature.

We now note the following theorem of Alexander, Berg, and Bishop [ABB]
which gives a criterion of when a Riemannian manifold with boundary is a metric
space of curvature bounded from above:

Theorem 18 (Alexander, Berg, Bishop). Let M be a smooth Riemannian man-
ifold with a smooth boundary B and ρ0(·, ·) be the induced distance function on M
(i.e. for x, y ∈ M , ρ0(x, y) is the infimum of the lengths of curves in M that
joins these points). The sectional curvature of the interior of M and the sectional
curvature of the tangent sections of the boundary B which bends away from the
interior (i.e. 2-planes in the tangent space all of whose normal curvature vectors
point outward) are bounded from above by κ if and only if (M,ρ) is a metric space
of curvature bounded from above by κ.

For example, consider Σt ⊂ O for t ≤ t0 with ρ0 defined as in Theorem 18.
It follows from Theorem 18 that it is a NPC space since Σt has negative sectional
curvature in the interior and ∂Σt is nonpositively curved. The space Y = Σt ×R
with the distance function ρ defined by ρ2(p, q) = ρ2

0(x, y)+|t−s|2 for p = (x, t), q =
(y, s) ∈ Y is a nonpositively curved metric space since it is a product of two
nonpositively curved spaces.

Let f : [0,∞) → [0, t0) be an increasing function with f(0) = 0 and f ′′(x) < 0.
We define

X = {(x, t) ∈ Σt0 × [0,∞) : x ∈ Σf(t)} ⊂ Y.

Let d(·, ·) be the distance funtion defined by taking the infimum of lengths with
respect to ρ of curves in X. It is easy to check that (X, d) is a length space. We
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point out some properties of (X, d) that will be important.

(i) For p = (x, t) in the interior of X, there is a small neighborhood U ⊂ O of
x and a sufficiently small ε > 0 so that U × (t− ε, t + ε) is isometrically embedded
in a neighborhood of p. Here U comes with the Riemannian metric I∗g.
(ii) For any p, q ∈ X, d(p, q) ≥ ρ(p, q). Equality holds if and only if the geodesic
from p to q in X is the same as that in Y .
(iii) For pt = (x, t), qt = (y, t) ∈ Σf(t) × {t} ⊂ X and ps = (x, s), qs = (y, s) ∈
Σf(s) × {s} ⊂ X, d(pt, qt) ≥ d(ps, qs) when t ≤ s. We give two examples to illus-
trate this point. First, if the geodesics from pt to qt in Y and the geodesic from
ps to qs in Y are the same as those in X, then we have d(pt, qt) = ρ(pt, qt) =
ρ(ps, qs) = d(ps, qs). Second, if the geodesic from ps to qs in Y is the same as that
in X, but if some part of the geodesic from pt to qt in Y lies outside of X, then
d(pt, qt) > ρ(pt, qt) = ρ(ps, qs) = d(ps, qs).

We now wish to apply Theorem 18 to show that X is a NPC space. Unfortu-
nately, X does not satisfy the hypothesis of Theorem 18 since ∂X is not smooth.
In fact, ∂X consists of two parts ∂X1 and ∂X2 where

∂X1 = Σ× {0} and ∂X2 = {(x, t) : x ∈ ∂Σf(t), t > 0}.

Note that ∂X2 is a smooth manifold of dimension three while ∂X1 is two dimen-
sional; thus ∂X1 is the singular set of ∂X.

On the other hand, there is no difficulty in applying the analysis of [ABB] to
our situation. A crucial step in their analysis is to check that all geodesics which
touch the boundary and has vanishing acceleration satisfy a certain condition (that
all its normal generalized Jacobi fields are 0-convex, see [ABB] for precise defini-
tions); geodesics that lie in the interior of X automatically satisfyies this condition.
In our case, we show, by proving the following claim, that we need not be concerned
with ∂X1:

Claim: For any pair of points p, q ∈ X − ∂X1, the geodesic γ between them does
not touch ∂X1.

Proof. Let p = (x, t), q = (y, s) ∈ X − ∂X1 and assume t ≤ s. Define a map
Ψ : X → X to be the projection map of X onto X(t) = {(z, τ) ∈ X : τ ≥ t}, i.e.

Ψ(z, τ) =
{

(z, t) for τ < t
(z, τ) for τ ≥ t.

Let γ : [0, 1] → X be a geodesic between p and q. Then by property (iii), the curve
Ψ◦γ has length less than γ unless γ([0, 1]) ⊂ X(t). This shows γ does not intersect
∂X1.

The claim shows that ∂X1 does not play a role when applying the analysis
of [ABB] and we are left to check that the sectional curvatures of the tangent
2-setions of ∂X2 which bends away from the interior has curvature ≤ 0.

Fix (x0, t0) ∈ ∂X2. There are two types of 2-planes in T(x0,t0)∂X2 = Tx0∂Σf(t0)×
(Tx0∂Σf(t0))

⊥: the copy of Tx0∂Σf(t0) and 2-planes containing vectors perpendicu-
lar to Tx0∂Σf(t0). Recall that by construction ∂Σf(t0) has nonpositive curvature, so
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the sectional curvature of Tx0∂Σf(t0) is nonpositive. On the other hand, consider
that curve σ : [0,∞) → ∂X2 defined by

σ(t) = (Φf(t)(Π(x0)), t)

and note that σ(t0) = (x0, t0) and σ′(t0) is perpendicular to Tx0∂Σf(t0). Since
f ′′ < 0, the acceleration vector σ′′ points inwards; i.e. any tangent 2-plane con-
taining vectors perpendicular to Tx0∂Σf(t0) does not bend away from the interior.
Therefore, we conclude that (X, d) is of nonpositive curvature.

Recall that for every t ≥ 0, ∂Σf(t) contains a copy of Σ and that φ is the
identify map of Σ which is a harmonic map by construction. Define ut : Σ → X
by setting ut(x) = (φ(x), t). By property (i) and the fact that φ is harmonic, ut’s
are energy minimizing maps for t > 0. (In fact, this then shows that u0 is also
energy minimizing since the energies of u0 and ut are equal.) By the discussion in
property (iii) and by using condition (2) above, we can easily find points x, y ∈ Σ
so that d(ut(x), ut(y)) > d(us(x), us(y)) for some t, s with t < s.

Remark 19. We will now show where the arguments of [Jo5] fail. First, we
recall Jost’s formulation of the energy functional. Let (M,µ) be a measure space,
(X, d) be an NPC space, and h : M×M → R be a nonnegative, symmetric function.
The h-energy of u : M → X is

Eh(u) =
∫ ∫

h(x, y)d2(u(x), u(y))dµ(x)dµ(y).

Set
hε(x, y) = χBε(x)(y)

where χBε(x) is the characteristic function of the open ball Bε(x) = {z ∈ M :
dM (x, z) < ε}. Let Γ be a group acting on M preserving µ and let µΓ be the
induced measure on M/Γ. Let ρ : Γ → Isom(X) be a isometric action of Γ on X.
Select a ρ−equivariant map u0 : M → X and set

L2
ρ(M,X) = {v : M → X is ρ− equivariant with d(v, u0) < ∞}

where

d2(u, v) =
∫

d2(u(x), v(x))dµΓ(x).

The functional
Ehε

: L2
ρ(M,X) → R2 ∪∞

is defined by

Ehε
(u) =

∫ ∫
hε(x, y)d2(u(x), u(y))dµΓ(x)dµΓ(y).

The energy functional
E : L2

ρ(M,X) → R2 ∪∞
is defined as the Γ−limit (see [Jo5] for the definition) of normalized functionals
{ 1

ηε
Ehε} where

ηε = inf
v∈L2

ρ(M,X)
Ehε

(v).

To prove the uniqueness of energy minimizing map, [Jo5] employs the following
argument. For x, y ∈ M ,

d2(ut(x), ut(y)) ≤ (1− t)d2(u0(x), u0(y)) + td2(u1(x), u1(y)) (9)
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by inequality (5). Thus

Ehε(ut) =
∫ ∫

hε(x, y)d2(ut(x), ut(y))dµΓ(x)dµΓ(y)

≤
∫ ∫

hε(x, y)((1− t)d2(u0(x), u0(y)) + td2(u1(x), u1(y)))dµΓ(x)dµΓ(y)

≤ (1− t)Ehε
(u0) + tEhε

(u1).

If u0 and u1 are h-energy minimizers, then ut is also a h-energy minimizer and we
must have equality. [Jo5] then concludes we must have equality in (9) for almost
all x, y ∈ M . But line of argument is not correct since hε(x, y) = 0 if dM (x, y) > ε.
Now we can try another symmetric function in place of hε which is everywhere
positive, for example

h̃ε(x, y) = e
d2

M
(x,y)

ε .

But we then run into another problem in that if X is as in Example 17, h̃ε-energy
minimizers do not exist, although we have shown that minimizers of the energy
functional E exist. The non-existence of the h̃ε-energy minimizing maps can be
seen by noting (iii) which implies that h̃ε-energy of v : M → X, v(x) = (v1(x), t(x))
is greater than that of v̄ : M → X defined by v̄(x) = (v1(x), t(x)+ ε) for any ε > 0.
As this example illustrates, maps which minimize the energy functional E are not
necessarily a limit of a sequence of minimizing maps corresponding to a sequence
of approximating functionals of E. We note that Example 17 does not contradict
the existence result for ρ−equivariant h-energy minimizing maps (Theorem 4.2.1
of [Jo5]) since ρ as in Example 17 fixes an equivalence class of rays; namely ρ fixes
[γ] where γ : [0, t) → X is defined by γ(t) = (x, t) for a fixed x ∈ Σ.

6. Uniqueness of harmonic maps between surfaces

We now restrict our attention to maps between compact Riemann surfaces
(Σ1, z), (Σ2, w) of the same genus g ≥ 2. Here, z and w are the local complex
coordinates of Σ1 and Σ2 respectively. Consider a (possibly degenerate and non-
smooth) metric λ|dw|2 on Σ2 with λ a local function satisfying 4 log λ ≥ 0 weakly.
We remark that such a metric induces a NPC distance function d on Σ2 (see [Me]).
We have the following existence theorem for harmonic maps (see [Me]):

Theorem 20. Let φ : Σ1 → Σ2 be a diffeomorphism. There exists a map u :
Σ1 → Σ2 homotopic to φ and energy minimizing with respect to λ|dw|2. Moreover,
u can be constructed as a (pointwise) limit of diffeomorphism ui which are energy
minimizing maps with respect to smooth Riemannian metrics on Σ2 with nonpositive
curvature.

Let u : Σ1 → Σ2 be an energy minimizing map. Its Hopf differential Φ is
defined locally by ϕdz2 where

ϕ = π

(
∂

∂x
,

∂

∂x

)
− π

(
∂

∂y
,

∂

∂y

)
− 2iπ

(
∂

∂x
,

∂

∂y

)
.

Even when the target of u is nonsmooth, ϕ is holomorphic and Φ is a holomorphic
quadratic differential on the Riemann surface Σ1 (see for example [Sc] where the
proof of this property depends only on the domain variations). Since Φ is a holo-
morphic differential, it has finite zeroes counting multiplicities. For each p ∈ Σ1,
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there exists a natural parameter z with z(p) = 0 so that Φ can be written as

Φ =
(

m + 2
2

)2

zmdz2

in a neighborhood of p. Here, the integer m is the vanishing order Φ at 0. The
integral curves of the distribution {v ∈ TΣ1 : Φ(v, v) ≤ 0} is called the vertical
trajectory. The Hopf differential gives a geometric picture of harmonic maps as the
vertical trajectories give the direction of minimal stretch.

For any energy minimizing map u : Σ1 → Σ2 and a point p ∈ Σ1, we define a
tangent map u∗ at p by blowing up the map u. For p ∈ Σ1, we let z be a natural
parameter with z(p) = 0. We define

E(σ) =
∫
{|z|<σ}

|∇u|2dxdy,

I(σ) =
∫
{|z|=σ}

d2(u(z), u(0))ds

and

ord(σ) =
σE(σ)
I(σ)

.

The function σ 7→ ord(σ) is monotonically nondecreasing with τ = limσ→0 ord(σ) ≥
1 and the function σ 7→ σ−2τ−1I(σ) is nondecreasing (see [GS]). Consider the blow
up maps uσ : D → (Σ2, dσ) defined by uσ(z) = u(σz). Here the distance function
dσ on the set Σ2 is defined by

dσ(p, q) =
d(p, q)√

1
σ I(σ)

.

For any sequence σi → 0, there exists a subsequence {uσi′} of {uσi
} that converges

to a homogeneous energy minimizing map u∗ : D → (C, d0) (in the sense that the
pull back distance functions δi′(·, ·) = dσ(uσi′ (·), uσ′

i
(·)) converge to d0(u∗(·), u∗(·))

where d0 is the distance function induced by a cone metric α2|w|2(α−1)|dw|2 on the
complex plane C. (see [Me] for more details). We call u∗ a tangent map at p.

Tangent map u∗ at point p ∈ Σ1 can be classified by the following lemma due
to Kuwert (Lemma 3 of [Ku]).

Lemma 21. Let the reference map w0 : C → C be defined as follows:

w0(x) =

{
z for k = 0(

1
2

(
k−

1
2 z

m+2
2 + k

1
2 z̄

m+2
2

))
for 0 ≤ k ≤ 1.

Assume that u∗ is normalized so that its Hopf differential is given in terms of the
natural parameters. Then after a suitable rotation, one of the following alternatives
holds:

(a) u∗(z) = w0(z)
τ
α where k = 0, τ

α ∈ N
(b) u∗(z) = w0(z)

τ
α where 0 < k < 1, τ

α ∈ N and m = 2(τ − 1) ∈ N
(c) For l ∈ {1, 2, ...,m+2}, there exists ωl ∈ S1 such that u∗(reiθ0) = |w0(reiθ0)| τ

α ωl

for (l− 1
2 ) 2π

m+2 ≤ θ0 ≤ (l+ 1
2 ) 2π

m+2 where k = 1,m = 2(τ−1) ∈ N and 6 (ωl, ωl+1) ≥
π
α .
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Furthermore, following the proof of Lemma 5 of [Ku], we see that if m < ∞
where m is the vanishing order of the Hopf differential Φ at p, then either k = 0 or

k = µ−
√

µ− 1

where

µ = lim
σ→0

1
πσm+3

I(σ) = lim
σ→0

E(σ)
τπσm+2

. (10)

In particular, we see that all tangent maps at a given point have the same stretch
factor k. We will call k : Σ1 → [0, 1] the stretch function of u.

The function k gives the local behavior of the map u. More precisely, if k(p) < 1
then u−1(u(p)) is a single point and if k(p) = 1, then u−1(u(p)) is a union of vertical
trajectories. Using this analysis, we now prove Theorem 4.

Proof of Theorem 4. Let k0 and k1 be the stretch functions of u0 and u1

respectively. By Corollary 13, equation (2), equation (10), we see that k0 ≡ k1.
Hence, {p : k0(p) = 1} = {p : k1(p) = 1}. For q ∈ Σ2, let Pq = {p : u0(p) = q}.
Without the loss of generality assume that u0 is a limit of diffeomorphisms hence
the set Pq is connected. We have that k1(p) = k0(p) = 1 for all p ∈ Pq, hence u1

maps Pq to a single point. Therefore, the map u1 ◦ u−1
0 : Σ2 → Σ1 is a well-defined

map and is homotopic to the identity. Since genus of Σ2 is ≥ 2, u1 ◦ u2 must have
a fixed point q. Thus, for p ∈ u−1

0 (q), u0(p) = q = u1(p) and d(u0(p), u1(p)) = 0.
By Corollary 12, d(u0, d1) ≡ 0 and therefore u0 ≡ u1.

7. Applications

7.1. Preissman’s Theorem. An immediate consequence of the uniqueness
of equivariant harmonic maps is the Preissman’s Theorem for compact metric space
of curvature bounded from above by κ < 0.

Theorem 22 (Preissman’s Theorem). Let N be a compact metric space whose
univeral cover X is a metric space of curvature bounded from above by κ < 0. Then
every abelian subgroup of the fundamental group is infinite cyclic, i.e. isomorphic
to Z.

Proof. Let A ⊂ π1(N) be an abelian subgroup and α, β ∈ A. The homotopy
between αβ and βα induces a map g : T 2 → N from a two dimensional torus T 2.
Let a = g−1

∗ (α) and b = g−1
∗ (β). Let u : T 2 → N be a harmonic map homotopic to

g. The lift of ũ : R2 → X is a g∗-equivariant harmonic map. Furthermore, α ◦ ũ is
g∗-equivariant (where we consider α : R2 → R2 acting by deck transformation):

(α ◦ ũ)(ax) = α(ũ(ax))
= α(g∗(a)ũ(x))
= α ◦ α ◦ ũ(x)
= g∗(a)(α ◦ ũ)(x)

and

(α ◦ ũ)(bx) = α(ũ(bx))
= α(g∗(b)ũ(x))
= α ◦ β ◦ ũ(x)
= β ◦ α ◦ ũ(x)
= g∗(b)(α ◦ ũ)(x).
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Hence, by Theorem 2, ũ must maps into a geodesic. Thus, u maps into a closed
geodesic, say γ. Thus, ũ∗(a) and ũ∗(b) are multiples of γ and this shows α and
β are both contained in a cyclic group generated by γ. This cyclic group must
be infinite since if γk is equal to the identity element for some k ∈ N, then this
contradicts the uniqueness of geodesics.

7.2. Necessary condition for the existence of equivariant harmonic
maps. If X is a simply connected manifold of nonpositive curvature and has no
flat half-strip, F. Labourie [L] has shown that there exists a ρ−equivariant harmonic
map if and only if ρ(Γ) is a reductive subgroup of Isom(X). This generalized an
earlier result of K. Corlette [C] for equivariant harmonic maps into symmetric space
of noncompact type. Furthermore, Korevaar and Schoen [KS3] and Jost [Jo2] has
shown that the existence of ρ-equivariant harmonic map if X is of finite rank and if
ρ(Γ) ⊂ Isom(X) does not fix an equivalence class of geodesic rays. Using this result,
we will prove the generalization of Labourie’s theorem, Theorem 5 and Theorem 6.

Recall that a geodesic ray is a arclength parameterization of a geodesic from
the interval [0,∞) and a geodesic line is a arclength parameterization of a geodesic
from the real line R. Two geodesic rays γ1, γ2 (resp. geodesic lines γ̄1, γ̄2) are said
to be equivalent if the Hausdorff distance between γ1([0,∞)) and γ2([0,∞)) (resp.
γ1(R) and γ2(R)) is finite.

Denote the set of equivalent geodesic rays by R. If X is a locally compact
space, we set ∂X = R and there is a natural Hausdorff topology on X̄ = X ∪ ∂X
so that X̄ is the closure of X and X̄ is compact. Here, we are considering X that is
not necessarily locally compact, yet we still view R as points at infinity of X. It is
well known that for every P ∈ X, there exists a unique representative geodesic ray
σP in each equivalent class [σ] ∈ R with initial point P . A subgroup G of Isom(X)
is said to have a infinite fixed point if there exists [σ] ∈ R so that for every γ ∈ [σ]
and φ ∈ G, φ ◦ γ ∈ [σ].

Suppose G ⊂ Isom(X) fixes [σ] ∈ R. We define the a map which pushes points
in X toward the direcion of [σ]. For P ∈ X, let σP : [0,∞) → X the geodesic ray
with γP (0) = P . Define Φ[σ],ε : X → X by

Φ[σ],ε(P ) = σP (ε).

We show:

Lemma 23. The map Φ[σ],ε is distance decreasing.

Proof. Suppose d(Φ[σ],ε(P ),Φ[σ],ε(Q)) = d(P,Q) + δ for some P,Q ∈ X and
δ > 0. Then by the quadrilateral comparison,

d2(σP (ε), σQ(ε)) ≤
(
1− ε

t

)
d2(P,Q) +

ε

t
d2(σP (t), σQ(t))

=
(
1− ε

t

)
(σP (ε), σQ(ε)− δ) +

ε

t
d2(σP (t), σQ(t))

Let t →∞ to obtain

d2(σP (ε), σQ(ε)) ≤ d2(σP (ε), σQ(ε))− δ

which is a contradiction.

Lemma 24. Let [σ] ∈ R and I : X → X ∈ G. then Φ[σ],ε(I(P )) = I ◦Φ[σ],ε(P ).
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Proof. Let Q = I(P ). Then I(σP ) is a geodesic ray in the equivalence class of
σ starting at Q and I ◦Φ[σ],ε(P ) = I(σP (ε)) is a point on I(σP ) at a distance ε from
Q. Furthermore, Φ[σ],ε(I(P )) = σI(P )(ε) = σQ(ε) is a point on the geodesic ray in
the equivalence class of σ starting at Q at a distance ε from Q. By uniqueness
of the representation of σ which starts at the point Q, we have Φ[σ],ε(I(P )) =
I ◦ Φ[σ],ε(P ).

Proposition 25. Let M be a compact Riemannian manifold with fundamental
group Γ, X be a complete metric space of nonpositive curvature and ρ : Γ →
Isom(X) be a homomorphism. Assume G = ρ(Γ) fixes [σ] ∈ R. If u : M → X is a
ρ-equivariant harmonic map, then Φ[σ],t ◦ u is a harmonic map for all t.

Proof. By Lemma 23, d(Φ[σ],t ◦ u(x),Φ[σ],t ◦ u(y)) ≤ d(u(x), u(y)) for any
x, y ∈ X. Therefore, E(u) = E(Φ[σ],t ◦ u). Furthermore, for γ ∈ Γ, Φ[σ],t(u(γx)) =
Φ[σ],t(ρ(γ)u(x)) = ρ(γ)◦Φ[σ],t(u(x)) by Lemma 24 and thus Φ[σ],t◦u is ρ-equivariant.

Now Theorem 5 is an easy consequence of the uniqueness theorem: Suppose
ρ fixes [σ] ∈ R and u : M̃ → X is a ρ−equivariant harmonic map. Then since
Φ[σ],ε : X → X is distance decreasing, the energy of the map u is equal to the
energy of the map Φ[σ],ε ◦ u. By the uniqueness of ρ−equivariant harmonic map
into a CAT(−1) space, u maps onto a geodesic in X.

More generally, we prove Theorem 6. We first need to clarify the terminology
used in the statement of that theorem. If X is a smooth Riemannian manifold, then
X is said to have no flat half-strip if any Jacobi field along a geodesic line which
has constant norm for every t ≥ t0 has constant norm for any t. For example, neg-
atively curved manifolds and analytic manifolds possess this property. In absense
of smooth structures (hence Jacobi fields), we will make the following definition of
the condition of no flat half-strip.

Definition 26. A complete metric space of nonpositive curvature X is said to
have no flat half-strip if the following condition is satisfied: if F : [t0,∞)× [0, ε0] →
X has the property that t 7→ F (t, ε) is a geodesic for all ε ∈ [0, ε0] and the lengths
of the curves ε 7→ F (t, ε), 0 ≤ ε ≤ ε′0, has constant length for all t ∈ [t0,∞) and
all ε′0 ∈ [0, ε0], then there exists a map F̃ : R × [0, ε1] → X with ε1 ≤ ε0 so that
F̃ (t, ε) ≡ F (t, ε) for t ∈ [t0,∞) and ε ∈ [0, ε′1], t 7→ F̃ (t, ε) is a geodesic for all ε and
the lengths for the curves ε 7→ F̃ (t, ε), 0 ≤ ε ≤ ε′1, has constant length of all t ∈ R
and ε′1 ∈ [0, ε1].

If X is a smooth Riemannian manifold, then F∗( ∂
∂ε ) on the geodesic t → F (t, 0)

is a Jacobi field, and coveresely, all Jacobi field can be obained in this way. Hence
Definition 26 is equivalent to the definition of the no flat half strip property defined
in terms of Jacobi fields.

Definition 27. A subgroup G of Isom(X) is said to be reductive if there exists
a closed convex set Xc of X globally fixed by G so that Xc is isometric to X0

c ×Rn

for some subset X0
c of Xc, G = G1×G2 where G1 ⊂ Isom(X0

c ) and G2 ⊂ Isom(Rn)
and G1 no infinite fixed point.

Suppose G = ρ(Γ) has an infinite fixed point [σ] ∈ R. Let ut = Φ[σ],t ◦ u for
t ∈ [0,∞). By Proposition 25, ut : M̃ → X is a one-parameter family of harmonic
maps.
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For x, y ∈ M̃ , let ε0 = dM (x, y) and let σ : [0, ε0] → M be the geodesic
between x and y. Let F : [0,∞)× [0, ε0] → X be defined by F (t, ε) = ut(σ(ε)). By
construction t 7→ F (t, ε) is a geodesic ray for all ε ∈ [0, ε0] and length of the curves
ε 7→ F (t, ε), 0 ≤ ε ≤ ε0, is constant by Corollary 13. By the no half-strip property,
F extend to a map F̃ as in Definition 26.

Let Xc be the images of all geodesic lines asymptotic to γ(t) = F̃ (t, 0). The
Product Decomposition Theorem (2.14) of [BH] says that Xc is a convex subspace
of X. Furthermore, if Π is a restriction to Xc of the projection from X to γ̄x(R),
then X0

c = Π−1(γ̄x(0)) is convex and Xc is canonically isometric to the product
X0

c ×R. Since being asymptotic is an equivalence relationship on the set of geodesic
lines, u(M̃) ⊂ Xc. The map v = Π ◦ u is a harmonic map since a projection map
onto a convex set is distance decreasing in an nonpositively curved space.

For p ∈ X0
c , let σ̄p : R → X0

c ×R be the geodesic line asymptotic to γ̄x (where
Xc is identified with X0

c ×R) and so that σ̄p(0) = p. Thus, σ̄p(t) = (p, t) ∈ X0
c ×R.

For g ∈ G = ρ(Γ), g ◦ σ̄p is a geodesic line asymptotic to γ̄x and hence g ◦ σ̄p(R) ⊂
Xc = X0

c ×R and, for some q ∈ X0
c , we can write

g ◦ σ̄p(t) = (q, t′) = σ̄q(t′).

Therefore we can decompose an element g ∈ G, by g = (g1, g2) where g1(p) = q and
g2(t) = t′. In this way, G = G′

1 ×G′
2 where G′

1 ⊂ Isom(X0
c ) and G′

2 ⊂ Isom(R).
Moreover, if G′

1 fixes an equivalence class of geodesic rays of X0
c , then we can

decompose G′
1 in an analogous way as above using the harmonic map v. Thus,

we can continue inductively until G = G1 × G2 and Xc = X0 × Rn as in the
statement of the theorem. This shows the necessary condition for the existence of
a ρ−equivalent harmonic map. For the proof of the sufficient condition, we refer to
[KS3] or [Jo2].
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