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Abstract. Gerstenhaber and Rauch proposed the problem of constructing the
Teichmiiller map by a maximum-minimum approach involving harmonic maps. In
this paper, we show that the Teichmiiller map can be constructed by this variational
characterization. The key idea is to consider a class of metrics on the target which
include singular metrics and use the harmonic map theory in this setting.

1. Introduction

Let ¥1 and X5 be Riemann surfaces of the same genus > 2 and [ : X1 — X9
be an orientation preserving homeomorphism. For a sufficiently smooth f, we
measure the deviation of the map from conformality at each point z € ¥; by the
dilatation Ky(z), defined by the ratio of the axes of the infinitesimal ellipse into
which f takes an infinitesimal circle around z. (See [Ah1] for more details.) Let
K[f] = sup,cx, Ky(2):

Given an orientation preserving homeomorphism h : 3; — X5, let K* be
the infimum of K[f] amongst all quasiconformal maps homotopic to h. The Te-
ichmiiller’s Theorem asserts the existence of a unique map fy with the property
that Ky, (2) = K* everywhere except at isolated points. The extremal map fo
can be described analytically by two holomorphic quadratic differentials ® and ¥
defined on ¥; and X5 respectively; for local parameters z = x + iy and w = u + v
so that ® = dz? and ¥ = dw?, fo(z,y) = (u(x,y),v(x,y)) is expressed by u = Kz
and v = y. The Teichmiiller distance between Y1 and X, relative to the homo-
topy class of h, is defined by log K*. This distance function makes Teichmiiller
space (an equivalence class of conformal structures on a compact surface where
two conformal structures are considered to be equivalent if there exists a conformal
diffeomorphism between them which is homotopic to the identity map) into a met-
ric space. The Riemann-Roch theorem and the fundamental relation between the
Teichmiiller space and the space of holomorphic quadratic differentials show that
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2 A VARIATIONAL CONSTRUCTION OF THE TEICHMULLER MAP

the Teichmiiller space is homeomorphic to the Eucliean space of dimension 6g — 6.
The topological structure of the Teichmiiller space was already known [FK] since
the early 20th century, but Teichmiiller realized its connection with holomorphic
quadratic differentials in the 1940’s. Complete details of Teichmiiller’s claims were
worked out by L.V. Ahlfors [Ah2] and L. Bers [Be] in the 1950’s and 60’s.

In their 1954 paper [GR], Gerstenhaber and Rauch proposed an alternative
approach; they attempted to characterize the Teichmiiller map via a variational
characterization using harmonic maps. Reich [Re] and Reich-Strebel [RS] have
conducted a careful investigation of this principle when the two Riemann surfaces
Y1 and Yo are unit disks. This paper is a completion of the Gerstenhaber-Rauch
program for maps between closed, compact Riemann surfaces.

Gerstenhaber and Rauch consider the following: Let g = p|dw|? be a conformal
metric on Yy so that

/ plw)dudv =1 (w=u+iv).
2

Let M be a family of such metrics and F};, be a family of maps from ¥; to X,
homotopic to a given homeomorphism h. We assume that ¢ € M and f € F}, are
sufficiently nice so that the Dirichlet energy of f with respect to g = p|dw|?,

"B = [ pFNLE + |feP)dndy (2 =+ i),
¥
makes sense. Gerstenhaber and Rauch conjectured that

1 1
sup inf 9E/ == [ K* + )
ge}& fEFN 2 ( K*

and proposed constructing the Teichmiiller map via this variational characteriza-
tion. The above equality was later proved by E. Kuwert [Ku] assuming the existence
of the Teichmiiller map. In this paper, we prove the existence of the Teichmiiller
map using the theory of harmonic maps as suggested by [GR] and [Ku]. This
problem is also mentioned in on harmonic maps by Eells and Lemaire [EL].

The idea to make this variational method work is to enlarge the class of target
metrics by allowing singular surfaces. The study of harmonic maps from a smooth
domain to singular targets, particularly Alexandrov spaces of curvature bounded
from above, was initiated by the work of Gromov and Schoen [GS] who developed
the general existence theory and regularity theory for harmonic maps into non-
positively curved Riemannian simplicial complexes. Korevaar and Schoen [KS1]
and Jost [Jo] have further generalized the setting in which we consider harmonic
map theory. The method of this paper is a natural application of this theory.

A key to any variational construction is a compactness property; more precisely,
a limit of a maximizing or a minimizing sequence of a given functional in a chosen
set must also belongs to that set. We take a maximizing sequence of metrics for
the functional

g inf 9E7
fe€Fn
in the set M, , of (possibly singular and degenerate) metrics with a normalized
area of a > 0 and an upper curvature bound of x > 0. A compactness theorem for
these metrics and a compactness theorem for energy minimizing maps were proved
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in [Me2] and [Me3]. Using these compactness results, we can obtain a metric go
and a map fy which satisfy
g9opfo = sup inf IES.
gEMq, . FEFR

The latter part of this paper is devoted to proving that the map fy is a Teichmiiller
map if k > 0. To accomplish this, we show that a first variation type argument
remains valid in this singular setting. We outline this argument below: If Ky, (z) >
K* for some zp € X;, then Ky > K™ in a neighborhood of zy by the lower
semicontinuity of the dilatation function. We bump-up the metric go = po|dwl|?
in this neighborhood to construct a one-parameter family of metrics g; = p;|dw]|?
with py > po near zy for ¢ > 0. In doing so, we are careful to control the upper
curvature bound k(t) of g:. Let a(t) be the area of ¥y with respect to g:. Next, we
check that there is a sequence t; — 0 so that if f;, is the energy minimizing maps
with respect to the metric g;,, then {Ky, } converges a.e. to Ky,

This is the key to showing the first variation type inequality;

9y pfy — gopfo 1 . 1 ,
ll{fljgft—i >3 (K + K*) a'(0).

Let
E(a,k) = sup inf 9IE7.
(a,) Sup nf
By the definition of £(a, k), a — &£(a, k) and k — &(a, k) are monotone func-
tions so &(a, k) is differentiable for a.e. a and a.e. k. (In fact, it is not difficult to
see that a — &(a, k) is a linear map.) Therefore, for a.e. pair (a, k), we have
d 9t; pft; — 90 pio

715 (a(®), ()= = lim inf 0

where a(0) = a and £(0) = k. Hence, by the chain rule,

@0 R(0) - '(0) + 5o (a0 0) 0) > 3 (K 4+ 1) 0. ()

Recall that curvature bound can be adjusted by re-scaling the metric. Rescaling
the metric just changes the area of the metric, and we see that

(’95 1 0E
8/% =~ kda (2)

for a.e. pair (a, k).
Because we can control the curvature bound, #'(0) can be made sufficiently
small and inequalities (1) and (2) then imply

o _1( ., 1
da ~3 <K K*)

for a.e. a. Since a — &(a, k) is a linear map with lim,_.o £(a, k) = 0, we have

1
(a, k) /—d > — (K* K*)a.

On the other hand, if f* is an extremal map (i.e. K[f*] = K*), then

* 1
E(a, k su inf 97 < su Ipl” < (K* + )a.
( ) gGMI: o fEFR - gEMIZ,K, - K*
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This contradiction shows that Ky < K* for all z € ¥;. A similar argument shows
&(a,k) = (K* + #=) a, which in turn implies that Ky, = K* a.e. This is enough
to show that fy is a Teichmiiller map.

2. Energy of maps into metric spaces

In [KS1], Korevaar and Schoen define the energy of maps into complete metric
spaces. Let (M, g) be a compact Riemannian manifold, da; be the distance function
on M induced by g and (X,d) be a complete metric space. For p > 1, a Borel
measurable map f: M — X is said to be in LP(M, X) if

/M dP(f(z), P)du < oo

for some P € X. By the triangle inequality, this definition is independent of P
chosen.

Let M. = {z € M : dpy(z,0M) > €}, Se(z) = {y € M : dy(z,y) = €}
and dog, . be the induced volume form on S(x). For u € L?(Q, X), construct an
e—approximate energy density function e. : M — R by setting

d? (u(x ,U do—x,e
ec(x) = i sz(x) weﬁ for z € M,
0 for x € M — M,

where w,, is the volume of the unit n-sphere. Define a linear functional FE. :
C.(M) — R on the set of continuous functions with compact support in M by
setting

Ec(p) = /weedu-
The map u € LP(M, X) has finite p-energy (or u € WHP(M, X)) if

E* = sup limsup E.(p) < co.
PEC(M),0<p<1  €—0

The quantity E* is defined to be the p-energy of the map u. If w has finite p-
energy, the measures e.(x)du(z) converge weakly to a measure which is absolutely
continuous with respect to the Lebesgue measure ([KS1] Theorem 1.10). Therefore,
there exists a function |Vul,, which we call the p-energy density function, so that
ee(z)dp — |Vulpdp.

The p-energy for p = 2 will be simply referred to as energy. In analogy to
the case of real-valued functions and maps into Riemannian manifolds, we write
|Vu|?(z) in place of |Vulz(z). In particular, for p = 2,

E“:/ |Vu|2dpu.
M

It is not true that |Vul? is equal to |Vu|? (c.f. comments after Theorem 1.10 of
[KS1)).

The map u is called energy minimizing if it is locally energy minimizing; i.e.
for any Lipschitz domain @ C M and map v : @ — X with v = v on 99 (here
u = v in the sense of [KS1] Theorem 1.12),

/|Vu|2du§/ |Vo|2dp.
Q Q
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Let T'(T'M) be the set of Lipschitz vector field on M. Then for V € T'(TM), the
directional energy measures can be defined as the weak* limit of measures Ve, (x)dx
where

v s
0 forx € M — M,.
and Z(x,€) denotes the flow along V at time € starting at point x. Again, it can
be shown that if u has finite energy, the measures Ve (x)du(x) converge weakly
to a measure which is absolutely continuous with respect to the Lebesgue measure
([KS1] Theorem 1.9.6). Therefore, there exists a function Ve, (x), which we call
the p-energy density function, so that Ve (x)duy — Ve, (z)du. If we write the direc-
tional energy function for p = 1 as |u.(Z)|, then Ve, = |u.(Z)|P ([KS1] Theorem
1.9.6, contrast with the fact that |V f|? is not equal to |V f|?). Furthermore,

ee(z)

{ @) o e

lim Vee(x) = Ju.(2)] ()

for almost every x € M. If {e1,€q,...,€,} is a local orthonormal frame on M and if
we identify S"~' C R™ with S?~! C TM, by

w= (W ... w") = we
then )
ep(@) = — / o () Pdor ().
Wn Joegn-1

Finally, if X has curvature bounded from above by k, then we can also make
sense of the notion of the pull back metric

Ta : T(TM) x T(TM) — L*(M)

for u € WH2(M, X) (see [Mel] Lemma 3.7 and Proposition 3.8 which extends the
result of [KS1] Lemma 2.3.1 and Theorem 2.3.2), defined by

1 1
wu(MW):Z|u*(V+W)\2—Z|u*(V—W)|2 for V,W € T(TM).

Letting (21,2, ..., ) be the local coordinates and {0y, ds,...,0,} be its corre-
sponding tangent basis, if we write (m,)i; = 7.(9;,9;) then |Vu|?> = ¢"(m,)i;
([KS1] Theorem 2.3.2). Furthermore, if ¢ : M — M is a C1'! map, then writing
v = u 0 Y, we have the chain rule formula,

(mo)ij = (Wu)lmd),lzwzl (3)

We have the following compactness theorem of energy minimizing maps.

THEOREM 1. Let {d;} be distance functions on X with curvature bounded from
above by k. Assume X is compact with respect to the metric topology induced by
di. Let h : M — X be a continuous map and let f; : M — (X,d;) be continuous
energy minimizing maps in the homotopy class of h with f; = h on OM if OM # (.
Let §; be the pull back distance function of d; under f;, i.e.

8i(+ ) = di(fi(+), fil0))-
If the energy of f; is bounded from above by K for each i and if the distance functions
d; converge uniformly to a distance function dy, then there exists a subsequence
{i'} C {i} and an energy minimizing map fo with respect to dy so that the maps fi
converge pointwise to fo, the pull back distance functions 6y (-, ) converge uniformly

to do(fo(*), fo(*)) and the energies of fi converge to that fo. In fact, the energy
density functions of fi converge a.e. to that of fo.
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PrOOF. In [Me3], we have shown that there exists a subsequence {d;} and
an energy minimizing map fy with respect to dy so that the pull back distance
functions dy (fi (), fir(+)) converge uniformly to do(fo(-), fo(-)) and the energies
converge weakly as measures to that of fy. Since there is no loss of energy, the
directional energies of f;; converge weakly as measures to that of fy. Thus, for any
Z € TM and any ¢ € C°(M),

i [ ol (fo)e(2)Pdp = / ol(fo)-(2) 2dp

i/ —00

Furthermore, by the lower semicontinuity of (the p = 1 directional) energy ([KS1]
Theorem 1.6.1),

/@\(fo)*(Z)lgduS lg,rgioréf/@I(fo)*(Z)ll(fif)*(Z)\du (4)

Therefore,
iminf [ (o). (2)] = (). (2))) du
= timinf [ @ (02 + ()2 = 20 (DI (f)-(2)])

< [ 10D + (o) (2) = 20(fo).(2)P) d
= 0,
and we obtain
iminf [ (1(fo).(2)] = (). (2))? d =0,

Hence there exists a subsequence { f;~} so that
Jim [ ((0)o(2)] = (fir)o(2)) dps = 0,

ie. |(fir)*(Z2)] = |(fo)«(Z)|? in L?, which implies almost everywhere convergence
of |(fir)*(Z)| to |(fo)«(Z)|2. Finally, letting (z!, 22, ...,2™) be the local coordinates
and and {01, 02, .., O } the corresponding tangent basis, we have

IVil? = g™ (1(f)+ (00 + Om) P = [(f) (01 — 0m)[?)
and
IV fol? = ¢"™(1(f0)« (01 + 0)|* = |(f0)« (8 — Bn)[?)

which implies that |V fi|? converges to |V f|? almost everywhere. O

3. Metrics of curvature bounded from above on a surface

We consider (possibly singular and degenerate) metrics g on X5 with the prop-
erty that g = p|dw|? locally with p a non-negative bounded function satisfying

Alogp > —2kp weakly. (5)

The identity map of ¥p with a metric ¢ = p|dw|? on the target can be thought
of as a weakly conformal harmonic map with conformal factor p. By Theorem 4.1
of [Mel], p satisfies Ap > —2kp? weakly. Since p is locally bounded, there exist
smooth subharmonic functions s; and ss so that A(p 4 s1) > 0 and A(logp + s2)
weakly. We first prove a couple of lemmas regarding subharmonic functions.
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LEMMA 2. Let s be a non-negative weakly subharmonic function defined in an
open set 0 C R™ so that s is locally bounded from above and not identically equal
to —oo in any neighborhood. Then f € H (S2).

PRrROOF. Let K be a compactly contained subset of 2 and M be such that
f(x) < M for all x € K. For sufficiently small o and z € K, Af, > 0 where f, is
a mollification of f. It will be enough to show that f, has uniformly bounded H*
norm in K. Let K1 C Q be a set compactly containing K. Fix ¢ € C°(£2) so that
¢(=1in K and ¢ = 0 outside of K;. We have,

0 QUAU.
s/ﬂéf f

Integrating by parts and applying the Cauchy-Schwarz inequality, we obtain,
/ IV fs|* < / CIVf.|? §4M2/ V¢)?<C
K Q Q

where C' is a constant depending on K. O

LEMMA 3. Let s be a weakly subharmonic function defined in Q not identically
equal to —oo in any neighborhood. Then s € Wh(Q).

loc

PRrOOF. By the Riesz Representation Theorem, there exists a positive measure
1, a harmonic function h and a compact subset K of {2 so that

s(z) = / log |z — €]du(€) + h(z)

for all z = (2!, 22,...,2") € K. Differentiate with respect to x' to obtain
0s xt ¢t oh
ozt /K |z — ¢ dp(e) + oxt’
Then
1
/ Vs|(z)dz < 2/ du(€)dz + 2/ Vh|dz
K i Jalz—¢ K
1
< 2/ / dxdu(€) + 2/ |Vh|dx
ok v —¢ K
< C'/ du(€) + 2/ |Vh|dx
Q D
< o0
where C' is a constant dependent on the diameter of K. O

From Lemmas 2 and 3, we see that p and logp are H}. . and V[/licl functions
respectively. Although H} . functions are only defined up to a set of measure zero,
we will always consider p to be the representative function in its equivalence class
satisfying

. 1
for all wy € 3. Note that the above limit exists because of the subharmonicity of
p+ s1.

If we define

dg(wr,ws) = inf{/ V/pds : 7y is a smooth curve from wy to wa},
g
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then (X2,dy) is a metric space of curvature bounded from above by & in the sense
of Alexandrov. (See [Hu] or [Mel] for more details.) Simply connected metric
space of curvature bounded from above by k are referred to as CAT(k) spaces in
literature. We let A(g) be the area of X5 with respect to g; in other words,

A(g):/ pdudv.
P2

Let M, be the set of all metrics g = p|dw|? satisfying inequality (5) with A(g) = a.
We will say that a sequence g; converges to g in the sense of distance functions if the
corresponding distance functions d,, converges uniformly to dy. In [Me3], we have
shown that smooth, nondegenerate metrics are dense in Uaﬁ M« in the following
way:

LEMMA 4. For any g € M, ., there ezists a one-parameter family of non-
degenerate smooth metrics o — g%, o > 0, so that g° € Mgyo o with a® — a,
k% — K, and g° converging to g in the sense of distance functions.

In [Me2], we prove the theorem for distance functions.

THEOREM 5. Let {g;} be a sequence in Mg . There is a subsequence {g; }
converging to go € M, . in the sense of distance functions.

Let g = p|dw|*> € Mg . In general, the set {z : p(z) = 0} may be non-empty.
On the other hand, it is a set of Hausdorff dimension 0 by a property of subharmonic
functions (see [HK]). In fact, since log A is a Wlicl function, we have:

LEMMA 6. Let g = p|dw|? in a coordinate neighborhood U. For any set K
compactly supported in U, the perimeter and the measure of the set By = {z € K :
log p(z) < t} goes to zero as t — —oo where the perimeter P(E) of a set E C K is

P(E) = /K Vesldedy — supf /K pudivpdz - € CHU,R?), [¢] < 1}.

PROOF. Since logp € WH(K),

/ /\DcpEt|d:vdy dt:/ |V log A|dxdy < oo
—oo J K K

by the co-area formula for functions of bounded variation. The claims of the lemma
follows immediately. O

Let g € M, with g = p|dw|? in a coordinate chart U and sz a subharmonic
function so that Alog p+se > 0 weakly in U. By the Riesz representation theorem
for subharmonic functions, there exists a positive measure Xy in U so that for any
compactly supported subset K C U and w € K,

log p(w) + s2 = / log |w — z|dKC1(2) + h(w)
U
where h(w) is a harmonic function. Let Ky be the positive measure defined by

ICQ(E):/ Asodrdy
E

and IC = Ky — KCo. Although Ky and Ko are only defined in U and depends on the
choice of sy, the measure K is independent of this choice and is defined on all of
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Yp. We call K the curvature measure of g. If g = p|dw|? is a smooth metric, then

K(E) = /EAlogp(z)dxdy: —Q/EKG(Z)dMg

where K¢ is the Gauss curvature of the surface (22, g).
By the Hahn decomposition theorem, there exists two disjoint measurable sets
A and B with AU B = ¥ so that for any measurable set £ C Yo,

KE)>0if ECA
and
K(E)>0 if EC B.
For any measurable set F C Yo, we define
K_(E)=K(ENnA) and K. (F)=-K(ENB).

Thus, for any coordinate neighborhood U and a measurable set £ C BN U, we
have

K4 (B) = K4 (B) — K- (E) = ~K(E) = Ka(E) - K1 (E) < Ka(E).
Therefore, for any measuable set £ C U,
K+(E) =K+ (ENB) < Ko(ENB) = Ka(E). (6)

DEFINITION 7. The negative curvature set C is defined by

C ={wy € 3| for every € > 0, there exists Bs(w) C Be(wp) so that K(Bs(w)) > 0}.
LEMMA 8. The set C is closed.

PRrROOF. Let {w;} C C and w; — wy. For € > 0, there exists w; € B(wyp).

Choose ¢’ > 0 so that B (w;) C Be(wp). By the definition of C, there is Bs(w) C

Be(w;) with K(Bs(w)) > 0. Since Bs(w) C Be(wp), this shows wy € C. O
LEMMA 9. The support of the singular part of K_ is contained in C.

PROOF. Suppose not. Then, for some coordinate chart U C X, there exists
A C U so that m(A4) = 0 and K_(A) = a > 0 where m is the Lebesgue measure.
Let M be so that Asy < M where sy is the subharmonic function defined above.
Since C is closed, we may assume that A is at a positive distance from C and hence
there exists a countable collection of balls {B;} so that B; C U —C, A C |JB; and
m(UB;) < &. Then

a=K_(4) <k_(JBy)
and, by inequality 6,

K UB) < (B = /UBASQ <Mn(JB) <a.

Thus, K1 (| Bi) < K (U B;) which implies that K (B;) < K_(B;) for at least one

i. Therefore, C(B;) > 0 and this contradicts B; C U —C. O

LEMMA 10. Let wg € ¥o —C. There exists R > 0 so that po(w) > € > 0 for all
w e BR(w()).
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PROOF. Since wy € Yo — C, there exists 0 < 79 < 1 so that K(Bs(w)) <
0 for all (Bs(w)) C Byy(wo). In particular, for R = %2, K(By(w)) < 0 for all
w € Br(wy) and t < R. Fix w € Br(wg) and let ¢(t) = K(Bi(w)), ¥+ (t) =

K4 (Bi(w)) and ¢_(t) = K_(B¢(w)). Since t — K (By(w)) and t — K_(B(w))
are nondecreasing functions, 4 and v _ are differentiable for almost every ¢ and
hence 1) is differentiable for almost every t. Let

o(t) = /B()logrw ~ 2JdK(2),

600 = [ toglu - 2k o)
B (w)
and

b6 (1) = /B()log o — 2|dK_(2).

Since log |w — z| < 0, ¢4 and ¢_ are nonincreasing functions and are differentiable
for almost every t. Hence ¢ is differentiable for almost every ¢. Furthermore, since

oot == [ loglu - 2ldK(o),

Brte(w)—Br(w)

we have

log t(4(t+€) =y (1)) < @4 (t+€) =y (t) < log(t + €)(V4(t + €) — Y (1)).

Dividing by € and letting e — 0, we get ¢/, (t) = logty’, (t). Similarly, ¢’ (t) =
log ty’ (t) and hence ¢'(t) = logt’(t). Since the singular part of K is contained in
C, ¢ is a continuous function. Thus integrating ¢’'(t) = logt¢’(t) over [0, R] gives

R
/ log |lw — z|dK(z) = / logt@dt

R
= logR-w(R)~—}iir(1)logt~w(t)—/ Mdt.

0 t

Since ¥(t) = K(B(w)) <0,

_ / Fult) g 5
o t B
Furthermore,
P(t) = K(Bi(w))
= Ki(Bi(w)) — Ka2(Bi(w))
> —Kq(Bi(w))
- _/ Asodxdy
By (w)
> —Mnrt
Thus,

—tlirr(l)logt-w(t) > Mﬂ}irr(l)logt~t2 =0.
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Additionally,

/ log|w — z|dK(z) > / log |w — z|dK_(2)
By (wo)—Br(w) By (wo)—Br(w)

logR-K_ (Bro (wo) — BR(w)) .

V

v

Hence, for w € m,

p(w) = exp </B : )log |w — z|dK(z) + h(w))

exp < / + / log |w — z|dK(z) + h(w))

JBr(w)  JByy(wo)—Br(w)

> logR- 9 (R) +log R K_ (Byo(wo) — Balw))
> logR-v_(ro)
and pg is bounded below in Bg(wy). O

4. Energy minimizing maps into singular surfaces

For the rest of the paper, we will concentrate on maps between two Riemann
surfaces ¥; and ¥y of the same genus. Let g € M, , and d, be the distance
function defined by g = p|dw|?. We will denote the energy of a map f : $; — ¥
with respect to the distance function d, by

gEf:/ |V f|2dxdy
X1

where |V f|2dzdy is the energy density function and z = x + iy is the local coordi-
nates for 1. Note that because X is of dimension 2, energy 9E7 and the energy
density measure |V f|2dzdy are independent of the metric on X;.

The following is a restatement of Theorem 1 in our situation.

THEOREM 11. Let {g;} be a sequence in M, . and g € M, ,, so that g; converge
to go in the sense of the distance functions. Let f; be an energy minimizing map
with respect to g; and assume the energies 9 Efi are uniformly bounded. Then
there exists a subsequence {gi} and an energy minimizing map fo with respect to
go so that the pull back distance functions dg, (fi(-), fir(-)) converge uniformly to
dgo (fo(+), fo(+)) and the energies of fir converge to that of f. More specifically, the
energy density functions and directional energy density functions of f;; converge
a.e. to those of fy.

With this, we give an alternative proof of the existence of energy minimizing
maps between surfaces (cf. [KS1], [Ser]).

THEOREM 12. Let h : 31 — X5 be a homeomorphism, Fp, be the set of maps
homotopic to h, and g € M, . There exists an energy minimizing map f € Fp,
with respect to metric g which is a limit (in the sense of Theorem 11) of smooth
energy Mminimizing maps.

PRrOOF. This existence statement is an immediate corollary of Lemma 4 and
Theorem 11. To see this, let g° as in Lemma 4 and f° be an energy minimizing
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map with respect to g°. By Theorem 11, there exists a sequence o; so that f7:
converges to an energy minimizing map f with respect to g. O

We will assume that all energy minimizing maps in this paper were constructed
as limits of smooth energy minimizing maps as in Theorem 12.

5. The stretch function ky(z)

For any map f : X1 — Yo with weak partial derivatives, the stretch function
k¢(2) is defined by

)= 7

The dilatation (geometrically described in the introduction) is then given by
L+ kp(2) _ =]+ 1S
Ki(z) = kf = =
— kg(2) FEEVE
A mapping f is called quasiconformal if K;(z) is bounded from above, or equiv-
alently, there is a number k < 1 such that |fz| < k|f.|. Let h : 1 — 33 be a

orientation preserving homeomorphism and let Fj be the set of maps homotopic
to h. As in the introduction, we let

K*= inf K
f1€n.7:h, [ﬂ

where

K[f] = sup Ky(2).
zEX

We call f* an extremal map if K[f*] = K*. The existence of an extremal map f*
can be shown by using the Arzela-Ascoli Theorem (see [Be]).

For an energy minimizing map, the stretch function can be defined in the
following way. Let f :3; — X2 be an energy minimizing map with respect to d,.
Its Hopf differential ®; is defined locally by ¢¢dz? where

(99N (9 9N 45 (O O
vr= 0x’ Ox Oy’ Oy ox’ oy )~

Even when the target of f is nonsmooth, ¢ is holomorphic. To see this, we follow
the argument of [Sch]. Let Fi(z,y) = (z + tn(z,y),y) and f; = f o F; where
n(z,y) is a C* function with compact support in a coordinate neighborhood. By
equation 3,

/|Vft|2da:dy

/(Wft)n + (7y,)22dzdy

dédr

= /(ﬂ-f)ll(l + tnx)z + <7Tf)22 + 2(7Tf)12t77ym

Differntiating with respect to t and setting ¢t = 0, we get

0= /((Wf)u — (mp)22)n2 + 2(7f)12my drdy.
Similarly,
0= [ (p)us = (ms)ahm, — 2mp)uzn ddy

for all . In other words, ¢ satisfies the weak Cauchy-Riemann equation and by
Weyl’s lemma, ¢y is a smooth holomorphic function of z. Thus ®; = ¢ fd22 is a
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holomorphic quadratic differential on the Riemann surface ¥; and has finite zeroes
counting multiplicities. Locally, ®; can be written as

9\ 2
Oy = <m;— ) 2" dz?

where the integer m is the vanishing order of ®; at 0. The coordinate z is then
called the natural parameter of ®;. The integral curve of the distribution {v €
T%, : ®¢(v,v) < 0} is called the vertical trajectory. The Hopf differential gives a
geometric picture of harmonic maps as the vertical trajectories give the direction
of minimal stretch. Using the natural parameter z, we set

11
Kf(z): ?22
and
Ky—1
k = .
f(z) Kf+1

Using the results of [Me3] and following the arguments of [Ku], we can define
the stretch function kf by considering the stretch factor for the tangent map of f.
This stretch function can be written as

kp(2) = pp =1 —1 (7)

1 2
pp = i —1y(0), Iy(0) = /{ IRCCROT

for some constant C. To see the equivalence of the two definitions, note that the
natural parameter gives a normalization which requires that 717, — w99 = 1. Since
fiy = 11 + T2, this implies that

K T+ky  Jpp+1 ey
To =k -1

LEMMA 13. The function ks(z) is lower semicontinuous.

where

PrROOF. Let 7 the order function for f defined by

UfD (= |Vf|2dxdy
7=0rd = lim 0)
rd(zo) = =0 faD (20) d*(f, f(z0))ds

(See Sec 3 of [Me3] for a discussion regarding the order function in this setting.)
By the proof of Theorem 2.3 of [GS] along with the relevant properties of harmonic
maps into metric spaces of curvature bounded from above by & shown in [Me3],
we see that for some constant C,

eC’a

o / P (f(2), f(z0))ds.
oD,

7T0-27+1

is a non-decreasing function. Thus

eCU

fig = lim /a (). a)ds

-0 71—0—2T+1
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is an upper semicontinuous function since it is a non-increasing limit of a continuous

functions

eCo

To2TH /BDU d*(f(z), f(20))ds.

kp(z) =i — /i — 1
is lower semicontinous and satisfies

kr(z0) < liminf ky(2).
zZ—20

Hence,

By definition, ky = l_cf when 7 = # Furthermore, 7 < mT” and 7 < % at
2o implies k¢(29) = 0 by the argument of Lemma 5 of [Ku], this implies that ky is
lower semicontinous. O

o 2 _ mt2 g
By definition, fiy = |V f|* for almost every z where 7 = ™=, Since 1 < 7 <

mT” everywhere and m > 0 only at the finite zeroes of the Hopf differential ® ¢, we

have the following lemma:

LEMMA 14. If f; and fo are energy minimizing maps with respect to g; and go
respectively and the energies of f; converge to that of fo for almost every z then ky,
converges to kg, for almost every z.

6. The solution to the variational problem

Let f* be the extremal map as defined in the previous section and z = F*(w)
be the mapping inverse of w = f*(z). Then

\Fol +1Fg] [+ 2]

= Pult Wl _ V14 Vel gy < k7.
Fal =Pl ~ 1f20 =11

For any g = p|dw|? € Mg,

1 1 1 1
— [ K* + / dudv > 7/ (K (w) + ) dudv
2 < K* ) = P 2 s, F ( ) KF* (U}) 14

/ |[Fol® + [P 2
= [Ful? = [FG

V

pdudv

* |2 * |2
/ Wp(f%z»uff Sz dedy

/ p(17(2)) (S22 + 1 £217) dady

¥

= 9pI",
Thus the above inequality implies that for any g € M, .,

« 1 1
inf PE/ < 9T <Z(K* .
jem, = =2 ( - K*) ¢

and hence

1 1
su inf 97 <= (K*+ a.
QEMIZ,N feFn -2 ( K*>

Fix ag > 0 and kg > 0 and define
E: Mg, =R
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by setting

Let {g;} C Mg, x, be the maximizing sequence of E(-). In other words,

lim E(g;))= sup E(g)= sup inf 9E7,
t—ee g gEMaO,NO fE€Fn

ag,KQ
By Theorem 5, there exists a subsequence (which we will still call g; by an abuse
of notation) and go € M, x, so that g; converges uniformly to go in the sense of
distance functions. Let f; be an energy minimizing map with respect to g;. By
Theorem 11, there exists a subsequence (which again we will call g;) so that 9 Efi
converge to 9 E/o where f; is the energy minimizing map for go. Thus,

90 ppfo — lim 9 pfi — lim inf 9 E7

i—00 i—oo fEF},
and we have found fy and g¢ satisfying

9opfo=  sup inf IES. (8)
gEMag,ny FEFR

We will show that fy is the Teichmiiller map if kg > 0.

7. The map fj, is the Teichmiiller map

Our strategy in showing that fy is a Teichmiiller map is to first show that
kg, (z) < k* for every point z € Xy, where k* = sup ks~ (z). This implies that fy is
quasiconformal and hence its weak derivatives exist almost everywhere. Thus,

voplo = /2Po(fo(z))(\(fo)z\2+|(f0)5|2)d$dy

B GG o
— /Elpo(fo( ) R o)- 2 = o)+l oy

1+ k2 (2)
fo 2 2
= po(fo(2)) 57 (1(fo)=I" = |(fo)=[")dady
/El 0 0 1 _ k?o(z) 0)z 0)z
14 (k*)?
< X dudv. 9
< 1_(k*)2/2200uv (9)
Next, we will show
1+ (k*)? /
90 pfo — dud
T ()2 Jy,
This combined with inequality (9) shows that ks, = k* a.e.
We define ,
1+ k5(2)
Dy(z)= —12
! 1-k3(2)
and )
e LEG?
1— (k*)2

Proving that ky, < k* is equivalent to showing Dy, < D*. We also define

E(a,k) = sup inf 9IE7.
( ) gEMa, . FEFR
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Hence,
S(ao, Iio) = goEfo § D*ao. (10)

PART I: Proof that k; <k*.

A key step in setting up a variational problem in the smooth setting is to
establish the first variation formula for the functional. Because of the singular
nature of our problem, we consider the following weaker version and show that it
provides enough information for our purposes.

LEMMA 15. Let Br(wg) C Xo so that
D, (2) > C+e forall z € fy ' (Br(w)).
Assume that t — py, 0 <t < T, is a one-parameter family of functions on Br(wp)
satisfying the following conditions: p; > pg, pr — po uniformly, py = po near

OBr(wo), po = %pthzo is integrable and either %pt >0 or %pt < 0. Let g; be
defined by

[ peldw|? in Br(wo)
gt = 2
poldw|*  in Xg — Br(wy).

If fi € Fy, be the energy minimizing map with respect to metric g, as in Theorem 12,
then there exists a sequence t; — 0 so that

gt; pfey, — g0 gfo

. S )
htriIEBf —ti > (C + €) ag,
where € € (0,¢€),
d
as :/ pedudv  and ag = — ali=o-
o dt

Proor. If j—;pt > 0 then

/pdudvg/ ududvﬁ/ ududv,
E g t g T

and if ;Tipt < 0 then
/ ududv < / ududv < / pdudv
g T gt E
for any F C X5. Furthermore,

/ PT PO gy < oo and pdvdy < 0.
22 T 22

Hence, for k > 0 to be chosen later, there exists §; > 0 so that
/ PT PO o < Kk and / pdvdy < K
g T E
for any E C ¥ with m(E) < ;. Therefore, for any ¢ € (0,7),
/ pt%podudv < k whenever m(E) < d;. (11)
E

Let
Es = {w € Br(wo) : po(w) < 6}.
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By Lemma 6, m(Es) — 0 as § — 0. Since p; > pg, there exists d3 > 0 and a set O
of measure at most %1 so that, pi(w) > d3 for w € Br(wo) — O and ¢t < T.

By Theorem 11, there exists a sequence ¢; so that Dy, — Dy, for almost every
z € ¥;. For each t;, let s be a smooth function so that A(logp:, +s) > 0 weakly.
Therefore, for a symmetric smoothing function 7, (i.e. 7,(2) = Zzn(|z|) for a
smooth function  : RTU{0} - RTU{0} withnp=1for0<t < i, n=

and [n=1), we have
/ (log pt; (2 + ¢) + s(z + () 0o (Q)dsdr > log py, (2) + 5(2)
Let
pi, = exp ([ togpu (o +.0) 4 s(: + O Q) — 5(2))
Then pf, > py, > 0s. Let

o [ pfldw]? in Br(wy)
9t p0|dw|2 in Yo — BR(U)()).
for o sufficiently small and f{ be the map energy minimizing with respect to gf .
By Theorem 11, there exists a sequence o; so that D;’ — Dy,. The maps ftUJ

are Lipschitz with respect to metric gfj 7 with local Lipschitz constant L which is
independent of ¢; or o;. (L is only dependent on the total energy.) This implies
that for any C' C X1 and any ¢; and sufficiently small o,

(7€) -0) < [ s
[ (€)=0
S / o |Vfgj ‘26_]- dI’dy
C—=(£,)71(0) 9t
< L*m(C - (f7)""(0)).
In particular,
o; L2 oiN—1
m(f72(C) = 0) < S-m(C = (57)7(0). (12)

Let 5 = ‘12521 . By Egoroff’s Theorem, there exists a set A C X1 with m(A) < &3

so that Dy, — Dy, uniformly on ¥y — A. Hence for sufficiently small ¢;,

Dy, () > C+3

for all z € 31 — A.
Again by Egoroff’s Theorem, there exists a set B C X1 with m(B) < d5 so that

D i Dy, uniformly on ¥; — B and for a sufficiently small ¢; and o3,
ti v

€
> e
(z) > C+4

for all z € ¥; — (AU B). Noting that ffj is a smooth map, we have

D

o
J
fti

o o o o o o o o
gti] Ef‘i] _ 9’ Efoj > gti] Efﬂqzj _ 9’ Ef‘i]

/ (o (f7 (2)) = pi” (S ) (U= + [(F7)2?) daedy

1
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> / (P2 (F5(2)) = po” (2 () (1UF))=1? + |(£7)=1?) daedy
1 —(AUB)

/ (o1 (J7.(2)) = pg” (DD g (1(£77)=1* = |(f)2I?) dewely
¥1—(AUB) i

Y

() [ ) — i ) (UL ~ ()2 dady
1 —(AUB)

c+:< 7 p%9)dud

( *4)/f;f@1_<,4u3))(p1 o7 )dudy

€ o o o o
(C + Z) (/ (pe] = po’ )dudv — /a_ (] — p&)dudv)
I ftiJ (AUB)

for sufficiently small ¢; and o;.

By inequality (12) and because d3 = ?Lé% )

m((f/(AUA)VO) < m(f/(A) = 0)+m(f’(B) - 0)+m(0)

L2 oiN—1 L2 oj\—1
< gm(A —( t ) (0)) + ?zm(B —( t; )~ (0)) +m(0)
- L%65  L28 571

A A
= J.
Hence, by inequality 11,

/ udud’u < / ududv < K.
£i(auB)  li FiauBuo L

o T

J J
Pt; “Po” Pt —pPo
t4

Furthermore, since —0aso; — 0,

i i

e = Py’ —
/ WP P PO g <
o t; t;
for sufficiently small o;. Therefore,
i) = Py’
/ i 0 qudv
i aup)
< / Pt; — Po dudv—i—/ Py, Po” Pt — Po dudv
s ti £7auB) L ti
- prl = pg’ -
< / udualv—f—/ Li 0 _ Pt PO gy
fiaup) b 2o ti ti
< 2K

for sufficiently small ;. This shows that

R B > (04 ) ( /
b

and letting o; — 0 and dividing by t;, we get

gt; ft; — 9o pfo _
uz(mg / P = P9 g — 2
ti 4 PP tl

(py? — pg’ )dudv — 2&)

2
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Therefore, letting xk = ﬁ, we have
4

9t; Bfe; — g0 gfo
liminf ———M > (C 6) (/ podudv — 2/{)
P

17— 00 t -

1
€\ . €.
> (C—FE)CLQ—gao

O

Let zp € X1. In order to show Dy, (2z9) < D*, we will assume that Dy, (z) >
D* + ¢ for some ¢ > 0, bump up the metric go in a neighborhood of f(zp), and
use Lemma 15 to seek a contradiction. In constructing a family of metrics which
perturb go, it is important to control the distortion of the area and the curvature
bound. For this construction, we will treat points in C and those not in C separately.

Case 1: f(z9) =wp € C.

For wy € C, we will use the following lemma to bump up the metrics go = po|dw|?
in the neighborhood of wq in the sense of Lemma 15 without losing the curvature
bound.

LEMMA 16. Let wg € %o and R > 0. There exists 0 < ro < R and ¢ €
C(Bgr(wp)) so that the following holds. If p is any measure satisfying supp p C

By (wg), @ = u(By,(wo)) >0, du > —F(w)dudv for F(w) > 0,

p = exp (/ loglw — z|du)

and vy is a measure so that

(top+p=)F = exp </ log |w — z|dv; + ht(z)> (13)

where hy is a harmonic function, then dv; > —F(w)dudv where 0 <t < 1.

PROOF. It is sufficient to prove the statement assuming that R = 1 and wg
is the origin of the unit disk. We let n : [0,1] — R be a smooth function and
d(w) = n(r) where r = |w|. Also let ¢ = |w|?. Then

7] 0

Vi) = 2ol Vow) =)y

Ap=4 Aé=n"(r)+ ()
Using A — |V|? = 2 Alogy = 0, we have
(p+¢)°Alog(p+v) = (p+P)A(B+¢) = |V(e+ )
PAD — Vo> + p Ay — |VY|? + 9Ah — 2Vip - Vo + A

1
= "+ ' = In'|* +4n — 3ry + .
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Let 1 be defined by

2ee? fort=0
n(t) = 2ee 2 —ce V/t for0<t<0.5
eel/(t=1) for 0.5 <t <1

0 fort=1

It is a straightforward computation to check that
4n — 3ty +t*n" > c1e > 0
for some constant ¢; and since nn” + Lnn’ — |n’|? is quadratic in e,
1
i+ S’ = '[P+ dn = 3ty + °0" > cae > 0

for some constant co for sufficiently small e. Now consider

2¢e 2 for 0 <t <ty
nto(t) = n (1t:2t§0) for to<t<1 — to,
0 for 1 -ty <1.
If we let 7 = {=52, then 9% = ;=5 and (5= = 7 + 4. Thus,

4Anyg, (t) — 3tny, (t) + tnj (1)
2
— 4n(T) — lfgto n' () + (ﬁ) n" (1)

2
= () = 30/ (7) + 7 (7) = P2 (7) + 12 () + (£ ) (7).

Thus, for tg > 0 and € > 0 sufficiently small,

1
Neo My + ;monéo — |, |? + dme, — 3tn), + 70} > c3e (14)

for some constant cz. We now fix ¢y > 0 and € > 0 so that inequality (14) holds.
Since we assume supp p C By, (0), for w € By(0) — By, (0), we have

1
piw) = exp ( / logw—2|2du(2)>
& JB,,(0)
2 2 (2 U—T 2 v—y
Vottw) = ot (2 [ Tl [
@ JB,,(0) lw — z|? By (0) lw — z|?
1 ? 1 2
2 2 uU—x v—y
I o 1 O) R ) e 1
@ /g, (0 [w—2| a /g, () lw— 2|

(0)

For any x > 0, we can choose g sufficienlty small so that for any w € B;(0)—B
and z € B, (0),

m‘g

|log lw — z|* — log |w\2| < K.
Thus w € B;(0) — B, (0),
2

1 1 1
o] togpPomdus) < % [ toglu-sPdu(s) < 5 [ (logluPw)du(e)
By (0) @ JB,,(0) @ JB,,(0)

[e%
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Using the fact that p(B,,(0)) = a, we have
1
log|w|? — Kk < —/ log |w — z|*du(z) < log|w|? + &
@
Bry (0)
which implies
e Flwl? < pa < e wl?.
Thus, for any § > 0, we can choose 7y sufficiently small so that
|p% —r? <4
Similarly, by choosing 7y sufficienlty small,
‘Vp% - 2w‘ < 4
’Ap% — 4‘ < 4
for w € B1(0) — By, (0).
2
If we set ¢p(w) = ny, (Jw|), then for w € B1(0) — B, (0), we have
2
2 2
(¢ +p=)*Alog(¢+ p=) (15)
2 2 2
(6+p=) D¢+ p=) = V(6 + p=)[?
2,2 2 2 2 2
PG — V> + p= Aps — [Vp=|? + ¢Lpa —2V¢ - Vpa + pa g

and
ODpT = - (40)
—2V¢ - Vps > draj +26m],
pElg > Al + %néo) — Olmey [ + gnio-
Thus

2 2 1 - 2
(p+p)Alog(¢p+pa) > myny, + Moty — Iy, | + p**Alog pa

+4n., — 3rny, + TZUZJ

1
+0(=1eo + 20 — ] + 11k
for w € B1(0) — Bt (0). By inequality (14), we see that
2

1 1
Mol + Moy — m3y |7 + 4me, — 3rmgp, + 120 + 0(—me, + 2m5, — i | + ~1lip) = 0

for w € B1(0) — B%g (0) by choosing § (and hence rg) sufficiently small. Hence, it
follows that
(6 +p)2Alog(p + p= ) > p*/“Alog pa (16)
for w € B1(0) — B%o (0). Since supp p C By, (0), we have that Alogp > 0 outside
of B;,(0) and this implies,
Alog(¢+p*)% 20 (17)

for w € B1(0) — By, (0).

m‘g
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Recall that by construction, ¢(w) = 2ee~2 for w € By, (0). Now for a smooth
function v > 0 and constant ¢ > 0,

U
Al > — Al .
og(c—i—u)fc_'_u ogu

Hence if Alogu > —F(w) with F(w) > 0, then Alog(u + ¢) > —F(w). Thus, by
mollifying p and taking the limit, we see that

/Aw Jog(d+ p*) % dudv > —/¢F(w)dudv

for any ¢ € CS°(By,(0)) and hence

dvy > —F(w)dudv (18)
in By, (0). Inequality 18 together with inequality 17 proves that dv; > —F(w)dudv

on all of B;(0). The fact that we can replace ¢ with t¢ for 0 < ¢t < 1 is evident
from the proof. O

We are now ready to construct a one-parameter family of metrics g; = p;|dw|?
and to apply the first variation argument of Lemma 15. With the aid of Lemma 16,
we construct this one-parameter family so that we have control over the curvature
bounds of ¢;.

Suppose Dy, (z0) > D*+ ¢ for some € > 0. By the lower semicontinuity of Dy,
there exists Br(fo(z0)) so that Dy, (2) > D* + § for any z € f; ' (Br(fo(20)). Let
ro and ¢ be as in Lemma 16. By the definition of C, there exists Bs(w) C By, (wo)
so that a = K(Bs(w)) > 0. Define Ky and Ky by setting K1 (F) = K(E N Bs(w))
and Iy = K — K1 and let

prtu) = xp [ oo = 210k ()

and

patu) = 20— e ( [1ogl —slaal) + 1))

- pi(w)
for some harmonic function h(w). Since supp K1 C Bs(w) and Kqo(Bjs(w)) = 0,
dKy > —F(w)dudv where

Plw) = { 2Kp0 in Bs(w)

0 in BR(wo) - Bg(’lI})
By Lemma 16, dv; > —F(w)dudv where vy is as in equality (13) with p; instead of
ENA
p. Hence, if we let p, = (t¢ + p) = pa, then p; satisfies

/(Aw) log pidudv = /(A?/)) log(t¢ + p?)%pgdudv

/(A¢) log(t¢ + p?)%dudv + /(A¢) log padudv

= / bdvy + / Wy

/ YF(w)dudv + / PdlCo
Bs(w)

Br(wo)—Bs(w)

Y
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> —2/@0/ Ypodudv — 2/{0/ Y podudv
Bs(w) Br(wo)—Bs(w)

= —QﬁO/wpodudv

> —Qﬁo/wptdudv

for any 9 € C°(Br(wp)). In other words,

Alog py > —2kopy

23

weakly. Let g; = p¢|dw|? and a(t) = s, prdudv. Thus g; € M) ., We now show

that:

LEMMA 17. The function

. a 1-2
po=735p1 “p2o
is an integrable function on Xs.

PROOF. Using the fact that 1Ky (B,,) =1,

;W) = exp <1 - 2) / log [w — z|dK: (2)
(6% 2€ By (wo)

d
= exp / 10g|wfz\°‘*2ilcl(z)
2€ By (wo) @

[ st
2€ By (wo) «

by Jensen’s Theorem. Hence,

2 K
/ pi 5 (w)dudv < / / |w — z|*2 1(2) dudv
wEBR(wo) wEBR(wo) 2€ By (wo) o

IN

dK
— / / |w — Z|a_2dudv l(Z)
2E€By (wo) wEBR(wo) @

If we let (r,0) be the polar coordinates centered at z,

27 1
2
/ lw — 2|* 2dudv < / / r*2rdrdd = =X |
wEByy (wo) o Jo o

Hence,

_2 2
/ p} ‘z(w)dudv < (19)
wEBRr(wo)

(0]

Since p, and ¢ are bounded functions, the assertion of the lemma follows from

inequality (19).

Furthermore, we have that

d2

6% a
TPt = 5( —1)(td+p1)® 2 ¢$%p2

po| 2

O
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so either %pt >0 foralltor %pt < 0 for all t. Therefore, we can apply Lemma 15
and there exists a sequence {t;} so that
9t; pfe; — g0 gfo
liminf —————— > D*a/(0).
t;—0 t,L
We let

E(a,k) = su inf 9E7.
(@) geMI:‘Kfth

Since g; € Ma@),xy, We have that E(a(t), ko) > 9t BTt and thus

E(a(t), £(0)) = £(a(0), £(0)) E(a(t), (1)) — £(a(0), £(0))

lim inf lim inf
t—0 ot t—0 t
ge; Bfe, — g0 gfo
> liminf ——M
t;—0 t;
> D*a/(O).

Recall that £(a, ) is differentiable since a — &E(a, k) is a monotone function. There-
fore, we have,

t ipg EAOEON ECOROD _ 0 4y )z = % (a(0), ) -a'(0)
Hence

o0&
%(ao, Iio) > D*.

Since &(ag, ko) = 9% ET0, we have that &(a,kg) = (%go)EfO = (%) . 9opfo,
Hence a — &(a, ko) is a linear function with lim,_,o £(a, ko) = 0. This implies that

E(ap, ko) > D*ag, a contradiction to inequality 10. Therefore, we have shown that
Dfo (2’0) < D*if f(Zo) eC.

Case 2: wg = fo(z0) € 2 — C.

Suppose there exists zp € X1 so that Dy, (z9) > D*+e and wy = fo(z0) € X2—C.
By the lower semicontinuity of Dy,, there exists Br(wg) so that Dy, (z) > D* + §
for all z € f; ' (Br(wp)). Let 1 be a smooth function not identically 1 so that
¥ =1in ¥y — Br(wp) and ¢ > 1 in Bgr(wp).
Let b = po|dw|?, n = /" po,
pe=((1=1)pf +tn™)/",

and g; = p¢|dw|? with n to be chosen later. Now, since

. 1 n n\t—1/ n n

pr=—((L=t)pg + ")~ (n" = pg)
we have

po = lpl_"(n” —08) = (@~ 1)po

n' 0 0 n ’
and thus pg is integrable. Furthermore,
d? 1.1

n n L n n
o= (= D=0 + ") = ) <0,
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Therefore, by Lemma 15,
gt; Bfe; —g0 gfo
liminf ————— > (D" + €9)d’(0).

t;—0 t;

We now compute a curvature bound for g;. If pg is smooth, then
1
—5—Alogp,
2py

—Alogpo + A log(l —t + )
2p0(1 — t+ ta)
1
2pp(1—t+ t)n

s LAY 1 2Typ
ROPOT LTttt n(l—t+t)?

1 1 (A7) 1 t2|V|?
< Kotho| ————= —1)—— —T t+ - ST
(I—t+t)n n2p0(1—t+t)!Tw  n2p0(1 —t+t)?Tw
Since
1
— —-1<0
(1—t+tp)n
we have
Alog pr > —2k(t)py
where

Ct
Ii(t) =Ko t+ ?

with constant C' depending on the bounds for |Av| and [V¢|2. By Lemma 10, py >
€ > 0 and thus the curvature bound of x(t) remains valid even for singular metrics
by using a smooth approximation and taking the limit. Therefore, g1 € M), (1)
and
9 Bl < E(k(t),alt)).

Since £(a, k) is differentiable (since a — &£(a, k) is linear and x — £(a, k) is mono-
tone), this implies

o€ o€ o€ .

5 (@(0), £(0)) - a'(0) + Z=(a(0), £(0)) - £'(0) = Z-le=0 = (D” +€o)a’(0).  (20)

Let (go, fo) be the critical pair for (kg + €, ag). In particular, if gy = po|dw|?, then

_ _ Ko+ €\ _
Alog po > —2(ko + €)po = —2k0 ( OH ) Po
0

weakly. Using the assumption that ko > 0, A(%go) = %A(go) and thus

K +E — . a . . . . . .
(OKT)QO € M"";O“aoﬁo‘ Since fop is an energy minimizing map with respect to

metric (”g—f)go, we have that
Ko+ey — = _ _
c (fio + eao,m)) > (S5O0 ph (’W) g pfo — M0 Jreﬁ(ao,mo +€).
Ko o) Ko

Thus,

0 . Elag, ko +¢€) — E(agp, ko)

%(ao’ﬁo) o l% €

< lim e g(*etcag, ko + €) — E(ag, ko)

e—0 €
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d Y] t
= —|—=¢&(—ank -
dt ( 1 <K/O 05 0)) |t Ko
d R0 t d t
= — | —)ltz=ny €| —ao,k0 | + =€ | —ao, kK -
dt ( t ) ‘t o <I<L() 0 0> dt <I<L() 0 0> |t o

1 o€ [t d [ agt
= —;05(%7"60) + % (HOGOa"fO) : % (fio> |t:f”vo

_ 1 a0 98
= ﬁoé’(am Ko) + 9a (ao, ko)
Qo o€
< 2=
< P (a0, Ko)
Furthermore,
C
/ —
K'(0) = -
and hence,
o€ o€
%(ao, lio) . a’(()) + &(ao, Iio) . H’(O)
o€ Cag 0E
< (a0, ko) - a'(0) + — —=(ao, ko)

Oa nkg 0a
o€ CG,O
< = Ad el
~— da (a0, o) (a (0)+ nn())
Combining this with inequality (20) gives
o0&
S (o) (0
Therefore, by choosing n sufficiently large,
o€ .
%(ao, Iio) > D*.

As in Case 1, this is a contradiction.

CCLO ’
— | > (D*
+n/$0>_( + €9) a’(0)

PART 2: Proof that % £fo = -0 o,

For any € > 0, there exists zg so that Dy (z9) > D* — € by the definition of f*
and D*. Let wg = f(20). By the lower semicontinuity of Dy,, there exists Br(wo)
so that Dy, (z) > D* — 2e. Proceeding as in Case 1 or Case 2 above,

gt pfe _g0 o
lim inf —————— > (D* — 3¢)a’(0).

t—0 t -

Since € is arbitrary,
o0&
%(ao’ ko) > D*
By the linearity of a — &(a, ko) and the fact that £(ag, ko) > D*ag, this implies
that
5(&0, Fu'()) = D*ao.

This shows that Dy, = D* a.e. and hence ks, = k* a.e.

The Hopf differential ®5, = ¢y,dz? is the differential to f, associated in Te-
ichmiiller’s theorem. The differential W, on the target is defined by the condition
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that Wy = (mT“)medw2 for the coordinate w = fy(z) whenever z is a natu-

ral parameter of ®y, i.e. Oy = (%”)2zmd22. Kuwert [Ku] proved that fo is
the unique minimizing map in its homotopy class with respect to the metric [¥,|.
Since Wy, is holomorphic, |y, | defines a cone metric which is a smooth metric of
curvature 0 except at finite number of degenerate points D = {w : ¥y (w) = 0}.
Therefore, fy is smooth on the set X; — f 1(D) which implies that kg, = k" except
possibly on fy (D).
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