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Abstract. Gerstenhaber and Rauch proposed the problem of constructing the
Teichmüller map by a maximum-minimum approach involving harmonic maps. In
this paper, we show that the Teichmüller map can be constructed by this variational
characterization. The key idea is to consider a class of metrics on the target which
include singular metrics and use the harmonic map theory in this setting.

1. Introduction

Let Σ1 and Σ2 be Riemann surfaces of the same genus ≥ 2 and f : Σ1 → Σ2

be an orientation preserving homeomorphism. For a sufficiently smooth f , we
measure the deviation of the map from conformality at each point z ∈ Σ1 by the
dilatation Kf (z), defined by the ratio of the axes of the infinitesimal ellipse into
which f takes an infinitesimal circle around z. (See [Ah1] for more details.) Let
K[f ] = supz∈Σ1

Kf (z).
Given an orientation preserving homeomorphism h : Σ1 → Σ2, let K∗ be

the infimum of K[f ] amongst all quasiconformal maps homotopic to h. The Te-
ichmüller’s Theorem asserts the existence of a unique map f0 with the property
that Kf0(z) ≡ K∗ everywhere except at isolated points. The extremal map f0

can be described analytically by two holomorphic quadratic differentials Φ and Ψ
defined on Σ1 and Σ2 respectively; for local parameters z = x + iy and w = u + iv
so that Φ = dz2 and Ψ = dw2, f0(x, y) = (u(x, y), v(x, y)) is expressed by u = Kx
and v = y. The Teichmüller distance between Σ1 and Σ2, relative to the homo-
topy class of h, is defined by log K∗. This distance function makes Teichmüller
space (an equivalence class of conformal structures on a compact surface where
two conformal structures are considered to be equivalent if there exists a conformal
diffeomorphism between them which is homotopic to the identity map) into a met-
ric space. The Riemann-Roch theorem and the fundamental relation between the
Teichmüller space and the space of holomorphic quadratic differentials show that
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the Teichmüller space is homeomorphic to the Eucliean space of dimension 6g − 6.
The topological structure of the Teichmüller space was already known [FK] since
the early 20th century, but Teichmüller realized its connection with holomorphic
quadratic differentials in the 1940’s. Complete details of Teichmüller’s claims were
worked out by L.V. Ahlfors [Ah2] and L. Bers [Be] in the 1950’s and 60’s.

In their 1954 paper [GR], Gerstenhaber and Rauch proposed an alternative
approach; they attempted to characterize the Teichmüller map via a variational
characterization using harmonic maps. Reich [Re] and Reich-Strebel [RS] have
conducted a careful investigation of this principle when the two Riemann surfaces
Σ1 and Σ2 are unit disks. This paper is a completion of the Gerstenhaber-Rauch
program for maps between closed, compact Riemann surfaces.

Gerstenhaber and Rauch consider the following: Let g = ρ|dw|2 be a conformal
metric on Σ2 so that

∫

Σ2

ρ(w)dudv = 1 (w = u + iv).

Let M be a family of such metrics and Fh be a family of maps from Σ1 to Σ2

homotopic to a given homeomorphism h. We assume that g ∈ M and f ∈ Fh are
sufficiently nice so that the Dirichlet energy of f with respect to g = ρ|dw|2,

gEf =
∫

Σ1

ρ(f(z))(|fz|2 + |fz̄|2)dxdy (z = x + iy),

makes sense. Gerstenhaber and Rauch conjectured that

sup
g∈M

inf
f∈Fh

gEf =
1
2

(
K∗ +

1
K∗

)

and proposed constructing the Teichmüller map via this variational characteriza-
tion. The above equality was later proved by E. Kuwert [Ku] assuming the existence
of the Teichmüller map. In this paper, we prove the existence of the Teichmüller
map using the theory of harmonic maps as suggested by [GR] and [Ku]. This
problem is also mentioned in on harmonic maps by Eells and Lemaire [EL].

The idea to make this variational method work is to enlarge the class of target
metrics by allowing singular surfaces. The study of harmonic maps from a smooth
domain to singular targets, particularly Alexandrov spaces of curvature bounded
from above, was initiated by the work of Gromov and Schoen [GS] who developed
the general existence theory and regularity theory for harmonic maps into non-
positively curved Riemannian simplicial complexes. Korevaar and Schoen [KS1]
and Jost [Jo] have further generalized the setting in which we consider harmonic
map theory. The method of this paper is a natural application of this theory.

A key to any variational construction is a compactness property; more precisely,
a limit of a maximizing or a minimizing sequence of a given functional in a chosen
set must also belongs to that set. We take a maximizing sequence of metrics for
the functional

g 7→ inf
f∈Fh

gEf

in the set Ma,κ of (possibly singular and degenerate) metrics with a normalized
area of a > 0 and an upper curvature bound of κ > 0. A compactness theorem for
these metrics and a compactness theorem for energy minimizing maps were proved
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in [Me2] and [Me3]. Using these compactness results, we can obtain a metric g0

and a map f0 which satisfy
g0Ef0 = sup

g∈Ma,κ

inf
f∈Fh

gEf .

The latter part of this paper is devoted to proving that the map f0 is a Teichmüller
map if κ > 0. To accomplish this, we show that a first variation type argument
remains valid in this singular setting. We outline this argument below: If Kf0(z0) >
K∗ for some z0 ∈ Σ1, then Kf0 > K∗ in a neighborhood of z0 by the lower
semicontinuity of the dilatation function. We bump-up the metric g0 = ρ0|dw|2
in this neighborhood to construct a one-parameter family of metrics gt = ρt|dw|2
with ρt > ρ0 near z0 for t > 0. In doing so, we are careful to control the upper
curvature bound κ(t) of gt. Let a(t) be the area of Σ2 with respect to gt. Next, we
check that there is a sequence ti → 0 so that if fti

is the energy minimizing maps
with respect to the metric gti , then {Kfti

} converges a.e. to Kf0

This is the key to showing the first variation type inequality;

lim inf
ti→0

gti Efti − g0Ef0

ti
>

1
2

(
K∗ +

1
K∗

)
a′(0).

Let
E(a, κ) = sup

Ma,κ

inf
f∈Fh

gEf .

By the definition of E(a, κ), a 7→ E(a, κ) and κ 7→ E(a, κ) are monotone func-
tions so E(a, κ) is differentiable for a.e. a and a.e. κ. (In fact, it is not difficult to
see that a 7→ E(a, κ) is a linear map.) Therefore, for a.e. pair (a, κ), we have

d

dt
E(a(t), κ(t))|t=0 ≥ lim inf

ti→0

gti Efti − g0Ef0

ti

where a(0) = a and κ(0) = κ. Hence, by the chain rule,

∂E
∂a

(a(0), κ(0)) · a′(0) +
∂E
∂κ

(a(0), κ(0)) · κ′(0) >
1
2

(
K∗ +

1
K∗

)
a′(0). (1)

Recall that curvature bound can be adjusted by re-scaling the metric. Rescaling
the metric just changes the area of the metric, and we see that

∂E
∂κ

≤ 1
κ

∂E
∂a

(2)

for a.e. pair (a, κ).
Because we can control the curvature bound, κ′(0) can be made sufficiently

small and inequalities (1) and (2) then imply

∂E
∂a

>
1
2

(
K∗ +

1
K∗

)

for a.e. a. Since a 7→ E(a, κ) is a linear map with lima→0 E(a, κ) = 0, we have

E(a, κ) =
∫ a

0

∂E
∂a

da >
1
2

(
K∗ +

1
K∗

)
a.

On the other hand, if f∗ is an extremal map (i.e. K[f∗] = K∗), then

E(a, κ) = sup
g∈Ma,κ

inf
f∈Fh

gEf ≤ sup
g∈Ma,κ

gEf∗ ≤
(

K∗ +
1

K∗

)
a.



4 A VARIATIONAL CONSTRUCTION OF THE TEICHMÜLLER MAP

This contradiction shows that Kf0 ≤ K∗ for all z ∈ Σ1. A similar argument shows
E(a, κ) =

(
K∗ + 1

K∗
)
a, which in turn implies that Kf0 ≡ K∗ a.e. This is enough

to show that f0 is a Teichmüller map.

2. Energy of maps into metric spaces

In [KS1], Korevaar and Schoen define the energy of maps into complete metric
spaces. Let (M, g) be a compact Riemannian manifold, dM be the distance function
on M induced by g and (X, d) be a complete metric space. For p ≥ 1, a Borel
measurable map f : M → X is said to be in Lp(M,X) if

∫

M

dp(f(x), P )dµ < ∞

for some P ∈ X. By the triangle inequality, this definition is independent of P
chosen.

Let Mε = {x ∈ M : dM (x, ∂M) > ε}, Sε(x) = {y ∈ M : dM (x, y) = ε}
and dσx,ε be the induced volume form on Sε(x). For u ∈ Lp(Ω, X), construct an
ε−approximate energy density function eε : M → R by setting

eε(x) =

{
1

ωn

∫
Sε(x)

dp(u(x),u(y))
εp

dσx,ε

εn−1 for x ∈ Mε

0 for x ∈ M −Mε

where ωn is the volume of the unit n-sphere. Define a linear functional Eε :
Cc(M) → R on the set of continuous functions with compact support in M by
setting

Eε(ϕ) =
∫

ϕeεdµ.

The map u ∈ Lp(M, X) has finite p-energy (or u ∈ W 1,p(M, X)) if

Eu ≡ sup
ϕ∈Cc(M),0≤ϕ≤1

lim sup
ε→0

Eε(ϕ) < ∞.

The quantity Eu is defined to be the p-energy of the map u. If u has finite p-
energy, the measures eε(x)dµ(x) converge weakly to a measure which is absolutely
continuous with respect to the Lebesgue measure ([KS1] Theorem 1.10). Therefore,
there exists a function |∇u|p, which we call the p-energy density function, so that
eε(x)dµ ⇀ |∇u|pdµ.

The p-energy for p = 2 will be simply referred to as energy. In analogy to
the case of real-valued functions and maps into Riemannian manifolds, we write
|∇u|2(x) in place of |∇u|2(x). In particular, for p = 2,

Eu =
∫

M

|∇u|2dµ.

It is not true that |∇u|2 is equal to |∇u|21 (c.f. comments after Theorem 1.10 of
[KS1]).

The map u is called energy minimizing if it is locally energy minimizing; i.e.
for any Lipschitz domain Ω ⊂ M and map v : Ω → X with u = v on ∂Ω (here
u = v in the sense of [KS1] Theorem 1.12),

∫

Ω

|∇u|2dµ ≤
∫

Ω

|∇v|2dµ.
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Let Γ(TM) be the set of Lipschitz vector field on M . Then for V ∈ Γ(TM), the
directional energy measures can be defined as the weak∗ limit of measures V eε(x)dx
where

V eε(x) =
{

dp(u(x),u(x̄(x,ε))
εp for x ∈ Mε

0 for x ∈ M −Mε.

and x̄(x, ε) denotes the flow along V at time ε starting at point x. Again, it can
be shown that if u has finite energy, the measures V eε(x)dµ(x) converge weakly
to a measure which is absolutely continuous with respect to the Lebesgue measure
([KS1] Theorem 1.9.6). Therefore, there exists a function V ep(x), which we call
the p-energy density function, so that V eε(x)dµ ⇀ V ep(x)dµ. If we write the direc-
tional energy function for p = 1 as |u∗(Z)|, then V ep = |u∗(Z)|p ([KS1] Theorem
1.9.6, contrast with the fact that |∇f |2 is not equal to |∇f |21). Furthermore,

lim
ε→0

V eε(x) = |u∗(x)|p(x)

for almost every x ∈ M . If {ε1, ε2, ..., εn} is a local orthonormal frame on M and if
we identify Sn−1 ⊂ Rn with Sn−1

x ⊂ TMx by

ω = (ω1, ω2, ..., ωn) 7→ wiεi

then
ep(x) =

1
ωn

∫

ω∈Sn−1
|u∗(ω)|pdσ(ω).

Finally, if X has curvature bounded from above by κ, then we can also make
sense of the notion of the pull back metric

πu : Γ(TM)× Γ(TM) → L1(M)

for u ∈ W 1,2(M, X) (see [Me1] Lemma 3.7 and Proposition 3.8 which extends the
result of [KS1] Lemma 2.3.1 and Theorem 2.3.2), defined by

πu(V, W ) =
1
4
|u∗(V + W )|2 − 1

4
|u∗(V −W )|2 for V, W ∈ Γ(TM).

Letting (x1, x2, ..., xn) be the local coordinates and {∂1, ∂2, ..., ∂n} be its corre-
sponding tangent basis, if we write (πu)ij = πu(∂i, ∂j) then |∇u|2 = gij(πu)ij

([KS1] Theorem 2.3.2). Furthermore, if ψ : M → M is a C1,1 map, then writing
v = u ◦ ψ, we have the chain rule formula,

(πv)ij = (πu)lmψl
,iψ

m
,j . (3)

We have the following compactness theorem of energy minimizing maps.

Theorem 1. Let {di} be distance functions on X with curvature bounded from
above by κ. Assume X is compact with respect to the metric topology induced by
di. Let h : M → X be a continuous map and let fi : M → (X, di) be continuous
energy minimizing maps in the homotopy class of h with fi = h on ∂M if ∂M 6= ∅.
Let δi be the pull back distance function of di under fi, i.e.

δi(·, ·) = di(fi(·), fi(·)).
If the energy of fi is bounded from above by K for each i and if the distance functions
di converge uniformly to a distance function d0, then there exists a subsequence
{i′} ⊂ {i} and an energy minimizing map f0 with respect to d0 so that the maps fi′

converge pointwise to f0, the pull back distance functions δi′(·, ·) converge uniformly
to d0(f0(·), f0(·)) and the energies of fi′ converge to that f0. In fact, the energy
density functions of fi′ converge a.e. to that of f0.
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Proof. In [Me3], we have shown that there exists a subsequence {di′} and
an energy minimizing map f0 with respect to d0 so that the pull back distance
functions di′(fi′(·), fi′(·)) converge uniformly to d0(f0(·), f0(·)) and the energies
converge weakly as measures to that of f0. Since there is no loss of energy, the
directional energies of fi′ converge weakly as measures to that of f0. Thus, for any
Z ∈ TM and any ϕ ∈ C∞0 (M),

lim
i′→∞

∫
ϕ|(fi′)∗(Z)|2dµ =

∫
ϕ|(f0)∗(Z)|2dµ

Furthermore, by the lower semicontinuity of (the p = 1 directional) energy ([KS1]
Theorem 1.6.1),

∫
ϕ|(f0)∗(Z)|2dµ ≤ lim inf

i′→∞

∫
ϕ|(f0)∗(Z)||(fi′)∗(Z)|dµ (4)

Therefore,

lim inf
i′→∞

∫
ϕ (|(f0)∗(Z)| − |(fi′)∗(Z)|)2 dµ

= lim inf
i′→∞

∫
ϕ

(|(f0)∗(Z)|2 + |(fi′)∗(Z)|2 − 2|(f0)∗(Z)||(fi′)∗(Z)|) dµ

≤
∫

ϕ
(|(f0)∗(Z)|2 + |(f0)∗(Z)|2 − 2|(f0)∗(Z)|2) dµ

= 0,

and we obtain

lim inf
i′→∞

∫
(|(f0)∗(Z)| − |(fi′)∗(Z)|)2 dµ = 0.

Hence there exists a subsequence {fi′′} so that

lim
i′′→∞

∫
(|(f0)∗(Z)| − |(fi′′)∗(Z)|)2 dµ = 0,

i.e. |(fi′′) ∗ (Z)| → |(f0)∗(Z)|2 in L2, which implies almost everywhere convergence
of |(fi′′)∗(Z)| to |(f0)∗(Z)|2. Finally, letting (x1, x2, ..., xn) be the local coordinates
and and {∂1, ∂2, .., ∂n} the corresponding tangent basis, we have

|∇fi|2 = glm(|(fi)∗(∂l + ∂m)|2 − |(fi)∗(∂l − ∂m)|2)
and

|∇f0|2 = glm(|(f0)∗(∂l + ∂m)|2 − |(f0)∗(∂l − ∂m)|2)
which implies that |∇fi′′ |2 converges to |∇f |2 almost everywhere.

3. Metrics of curvature bounded from above on a surface

We consider (possibly singular and degenerate) metrics g on Σ2 with the prop-
erty that g = ρ|dw|2 locally with ρ a non-negative bounded function satisfying

4 log ρ ≥ −2κρ weakly. (5)

The identity map of Σ2 with a metric g = ρ|dw|2 on the target can be thought
of as a weakly conformal harmonic map with conformal factor ρ. By Theorem 4.1
of [Me1], ρ satisfies 4ρ ≥ −2κρ2 weakly. Since ρ is locally bounded, there exist
smooth subharmonic functions s1 and s2 so that 4(ρ + s1) ≥ 0 and 4(log ρ + s2)
weakly. We first prove a couple of lemmas regarding subharmonic functions.
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Lemma 2. Let s be a non-negative weakly subharmonic function defined in an
open set Ω ⊂ Rn so that s is locally bounded from above and not identically equal
to −∞ in any neighborhood. Then f ∈ H1

loc(Ω).

Proof. Let K be a compactly contained subset of Ω and M be such that
f(x) < M for all x ∈ K. For sufficiently small σ and x ∈ K, 4fσ ≥ 0 where fσ is
a mollification of f . It will be enough to show that fσ has uniformly bounded H1

norm in K. Let K1 ⊂ Ω be a set compactly containing K. Fix ζ ∈ C∞c (Ω) so that
ζ ≡ 1 in K and ζ ≡ 0 outside of K1. We have,

0 ≤
∫

Ω

ζ2fσ4fσ.

Integrating by parts and applying the Cauchy-Schwarz inequality, we obtain,∫

K

|∇fσ|2 ≤
∫

Ω

ζ2|∇fσ|2 ≤ 4M2

∫

Ω

|∇ζ|2 < C

where C is a constant depending on K.

Lemma 3. Let s be a weakly subharmonic function defined in Ω not identically
equal to −∞ in any neighborhood. Then s ∈ W 1,1

loc (Ω).

Proof. By the Riesz Representation Theorem, there exists a positive measure
µ, a harmonic function h and a compact subset K of Ω so that

s(x) =
∫

Ω

log |x− ξ|dµ(ξ) + h(x)

for all x = (x1, x2, ..., xn) ∈ K. Differentiate with respect to xi to obtain

∂s

∂xi
=

∫

K

xi − ξi

|z − ξ| dµ(ξ) +
∂h

∂xi
.

Then ∫

K

|∇s|(x)dx ≤ 2
∫

K

∫

Ω

1
|x− ξ|dµ(ξ)dx + 2

∫

K

|∇h|dx

≤ 2
∫

Ω

∫

K

1
|x− ξ|dxdµ(ξ) + 2

∫

K

|∇h|dx

≤ C

∫

Ω

dµ(ξ) + 2
∫

D

|∇h|dx

< ∞
where C is a constant dependent on the diameter of K.

From Lemmas 2 and 3, we see that ρ and log ρ are H1
loc and W 1,1

loc functions
respectively. Although H1

loc functions are only defined up to a set of measure zero,
we will always consider ρ to be the representative function in its equivalence class
satisfying

ρ(w0) = lim
r→0

1
πr2

∫

Br(w0)

ρ(w)dudv

for all w0 ∈ Σ2. Note that the above limit exists because of the subharmonicity of
ρ + s1.

If we define

dg(w1, w2) = inf{
∫

γ

√
ρds : γ is a smooth curve from w1 to w2},
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then (Σ2, dg) is a metric space of curvature bounded from above by κ in the sense
of Alexandrov. (See [Hu] or [Me1] for more details.) Simply connected metric
space of curvature bounded from above by κ are referred to as CAT(κ) spaces in
literature. We let A(g) be the area of Σ2 with respect to g; in other words,

A(g) =
∫

Σ2

ρdudv.

LetMa,κ be the set of all metrics g = ρ|dw|2 satisfying inequality (5) with A(g) = a.
We will say that a sequence gi converges to g in the sense of distance functions if the
corresponding distance functions dgi

converges uniformly to dg. In [Me3], we have
shown that smooth, nondegenerate metrics are dense in

⋃
a,κMa,κ in the following

way:

Lemma 4. For any g ∈ Ma,κ, there exists a one-parameter family of non-
degenerate smooth metrics σ 7→ gσ, σ ≥ 0, so that gσ ∈ Maσ,κσ with aσ → a,
κσ → κ, and gσ converging to g in the sense of distance functions.

In [Me2], we prove the theorem for distance functions.

Theorem 5. Let {gi} be a sequence in Ma,κ. There is a subsequence {gi′}
converging to g0 ∈Ma,κ in the sense of distance functions.

Let g = ρ|dw|2 ∈ Ma,κ. In general, the set {z : ρ(z) = 0} may be non-empty.
On the other hand, it is a set of Hausdorff dimension 0 by a property of subharmonic
functions (see [HK]). In fact, since log λ is a W 1,1

loc function, we have:

Lemma 6. Let g = ρ|dw|2 in a coordinate neighborhood U . For any set K
compactly supported in U , the perimeter and the measure of the set Et = {z ∈ K :
log ρ(z) < t} goes to zero as t → −∞ where the perimeter P (E) of a set E ⊂ K is

P (E) =
∫

K

|∇ϕE |dxdy = sup{
∫

K

ϕEdivψdx : ψ ∈ C1
c (U,R2), |ψ| ≤ 1}.

Proof. Since log ρ ∈ W 1,1(K),
∫ ∞

−∞

∫

K

|DϕEt |dxdy dt =
∫

K

|∇ log λ|dxdy < ∞

by the co-area formula for functions of bounded variation. The claims of the lemma
follows immediately.

Let g ∈ Ma,κ with g = ρ|dw|2 in a coordinate chart U and s2 a subharmonic
function so that 4 log ρ+s2 ≥ 0 weakly in U . By the Riesz representation theorem
for subharmonic functions, there exists a positive measure K1 in U so that for any
compactly supported subset K ⊂ U and w ∈ K,

log ρ(w) + s2 =
∫

U

log |w − z|dK1(z) + h(w)

where h(w) is a harmonic function. Let K2 be the positive measure defined by

K2(E) =
∫

E

4s2dxdy

and K = K1 −K2. Although K1 and K2 are only defined in U and depends on the
choice of s2, the measure K is independent of this choice and is defined on all of



A VARIATIONAL CONSTRUCTION OF THE TEICHMÜLLER MAP 9

Σ2. We call K the curvature measure of g. If g = ρ|dw|2 is a smooth metric, then

K(E) =
∫

E

4 log ρ(z)dxdy = −2
∫

E

KG(z)dµg

where KG is the Gauss curvature of the surface (Σ2, g).
By the Hahn decomposition theorem, there exists two disjoint measurable sets

A and B with A ∪B = Σ2 so that for any measurable set E ⊂ Σ2,

K(E) ≥ 0 if E ⊂ A

and
K(E) ≥ 0 if E ⊂ B.

For any measurable set E ⊂ Σ2, we define

K−(E) = K(E ∩A) and K+(E) = −K(E ∩B).

Thus, for any coordinate neighborhood U and a measurable set E ⊂ B ∩ U , we
have

K+(E) = K+(E)−K−(E) = −K(E) = K2(E)−K1(E) ≤ K2(E).

Therefore, for any measuable set E ⊂ U ,

K+(E) = K+(E ∩B) ≤ K2(E ∩B) = K2(E). (6)

Definition 7. The negative curvature set C is defined by

C = {w0 ∈ Σ2| for every ε > 0, there exists Bδ(w) ⊂ Bε(w0) so that K(Bδ(w)) > 0}.
Lemma 8. The set C is closed.

Proof. Let {wi} ⊂ C and wi → w0. For ε > 0, there exists wi ∈ Bε(w0).
Choose ε′ > 0 so that Bε′(wi) ⊂ Bε(w0). By the definition of C, there is Bδ(w) ⊂
Bε′(wi) with K(Bδ(w)) > 0. Since Bδ(w) ⊂ Bε(w0), this shows w0 ∈ C.

Lemma 9. The support of the singular part of K− is contained in C.
Proof. Suppose not. Then, for some coordinate chart U ⊂ Σ2, there exists

A ⊂ U so that m(A) = 0 and K−(A) = α > 0 where m is the Lebesgue measure.
Let M be so that 4s2 < M where s2 is the subharmonic function defined above.
Since C is closed, we may assume that A is at a positive distance from C and hence
there exists a countable collection of balls {Bi} so that Bi ⊂ U − C, A ⊂ ⋃

Bi and
m(

⋃
Bi) < α

M . Then

α = K−(A) ≤ K−(
⋃

Bi)

and, by inequality 6,

K+(
⋃

Bi) ≤ K2(
⋃

Bi) =
∫
⋃

Bi

4s2 < Mm(
⋃

Bi) < α.

Thus, K+(
⋃

Bi) < K−(
⋃

Bi) which implies that K+(Bi) < K−(Bi) for at least one
i. Therefore, K(Bi) > 0 and this contradicts Bi ⊂ U − C.

Lemma 10. Let w0 ∈ Σ2 −C. There exists R > 0 so that ρ0(w) ≥ ε > 0 for all
w ∈ BR(w0).
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Proof. Since w0 ∈ Σ2 − C, there exists 0 < r0 < 1 so that K(Bδ(w)) ≤
0 for all (Bδ(w)) ⊂ Br0(w0). In particular, for R = r0

2 , K(Bt(w)) ≤ 0 for all
w ∈ BR(w0) and t < R. Fix w ∈ BR(w0) and let ψ(t) = K(Bt(w)), ψ+(t) =
K+(Bt(w)) and ψ−(t) = K−(Bt(w)). Since t → K+(Bt(w)) and t → K−(Bt(w))
are nondecreasing functions, ψ+ and ψ− are differentiable for almost every t and
hence ψ is differentiable for almost every t. Let

φ(t) =
∫

Bt(w)

log |w − z|dK(z),

φ+(t) =
∫

Bt(w)

log |w − z|dK+(z),

and

φ−(t) =
∫

Bt(w)

log |w − z|dK−(z).

Since log |w− z| < 0, φ+ and φ− are nonincreasing functions and are differentiable
for almost every t. Hence φ is differentiable for almost every t. Furthermore, since

φ+(t + ε)− φ+(t) =
∫

BR+ε(w)−BR(w)

log |w − z|dK(z),

we have

log t(ψ+(t + ε)− ψ+(t)) ≤ φ+(t + ε)− φ+(t) ≤ log(t + ε)(ψ+(t + ε)− ψ+(t)).

Dividing by ε and letting ε → 0, we get φ′+(t) = log tψ′+(t). Similarly, φ′−(t) =
log tψ′−(t) and hence φ′(t) = log tψ′(t). Since the singular part of K is contained in
C, φ is a continuous function. Thus integrating φ′(t) = log tψ′(t) over [0, R] gives

∫

BR(w)

log |w − z|dK(z) =
∫ R

0

log t
dψ

dt
dt

= log R · ψ(R) · − lim
t→0

log t · ψ(t)−
∫ R

0

ψ(t)
t

dt.

Since ψ(t) = K(Bt(w)) ≤ 0,

−
∫ R

0

ψ(t)
t

dt ≥ 0.

Furthermore,

ψ(t) = K(Bt(w))

= K1(Bt(w))−K2(Bt(w))

≥ −K2(Bt(w))

= −
∫

Bt(w)

4s2dxdy

≥ −Mπt2.

Thus,
− lim

t→0
log t · ψ(t) ≥ Mπ lim

t→0
log t · t2 = 0.
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Additionally,∫

Br0 (w0)−BR(w)

log |w − z|dK(z) ≥
∫

Br0 (w0)−BR(w)

log |w − z|dK−(z)

≥ log R · K−
(
Br0(w0)−BR(w)

)
.

Hence, for w ∈ BR(w0),

ρ(w) = exp

(∫

Br0 (w0)

log |w − z|dK(z) + h(w)

)

= exp

(∫

BR(w)

+
∫

Br0 (w0)−BR(w)

log |w − z|dK(z) + h(w)

)

≥ log R · ψ (R) + log R · K−
(
Br0(w0)−BR(w)

)

≥ log R · ψ−(r0)

and ρ0 is bounded below in BR(w0).

4. Energy minimizing maps into singular surfaces

For the rest of the paper, we will concentrate on maps between two Riemann
surfaces Σ1 and Σ2 of the same genus. Let g ∈ Ma,κ and dg be the distance
function defined by g = ρ|dw|2. We will denote the energy of a map f : Σ1 → Σ2

with respect to the distance function dg by

gEf =
∫

Σ1

|∇f |2gdxdy

where |∇f |2gdxdy is the energy density function and z = x + iy is the local coordi-
nates for Σ1. Note that because Σ1 is of dimension 2, energy gEf and the energy
density measure |∇f |2gdxdy are independent of the metric on Σ1.

The following is a restatement of Theorem 1 in our situation.

Theorem 11. Let {gi} be a sequence in Ma,κ and g ∈Ma,κ so that gi converge
to g0 in the sense of the distance functions. Let fi be an energy minimizing map
with respect to gi and assume the energies giEfi are uniformly bounded. Then
there exists a subsequence {gi′} and an energy minimizing map f0 with respect to
g0 so that the pull back distance functions dgi(fi′(·), fi′(·)) converge uniformly to
dg0(f0(·), f0(·)) and the energies of fi′ converge to that of f . More specifically, the
energy density functions and directional energy density functions of fi′ converge
a.e. to those of f0.

With this, we give an alternative proof of the existence of energy minimizing
maps between surfaces (cf. [KS1], [Ser]).

Theorem 12. Let h : Σ1 → Σ2 be a homeomorphism, Fh be the set of maps
homotopic to h, and g ∈ Ma,κ. There exists an energy minimizing map f ∈ Fh

with respect to metric g which is a limit (in the sense of Theorem 11) of smooth
energy minimizing maps.

Proof. This existence statement is an immediate corollary of Lemma 4 and
Theorem 11. To see this, let gσ as in Lemma 4 and fσ be an energy minimizing
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map with respect to gσ. By Theorem 11, there exists a sequence σi so that fσi

converges to an energy minimizing map f with respect to g.

We will assume that all energy minimizing maps in this paper were constructed
as limits of smooth energy minimizing maps as in Theorem 12.

5. The stretch function kf (z)

For any map f : Σ1 → Σ2 with weak partial derivatives, the stretch function
kf (z) is defined by

kf (z) =
|fz̄|
|fz| .

The dilatation (geometrically described in the introduction) is then given by

Kf (z) =
1 + kf (z)
1− kf (z)

=
|fz|+ |fz̄|
|fz| − |fz̄| .

A mapping f is called quasiconformal if Kf (z) is bounded from above, or equiv-
alently, there is a number k < 1 such that |fz̄| ≤ k|fz|. Let h : Σ1 → Σ2 be a
orientation preserving homeomorphism and let Fh be the set of maps homotopic
to h. As in the introduction, we let

K∗ = inf
f∈Fh

K[f ]

where
K[f ] = sup

z∈Σ1

Kf (z).

We call f∗ an extremal map if K[f∗] = K∗. The existence of an extremal map f∗

can be shown by using the Arzela-Ascoli Theorem (see [Be]).
For an energy minimizing map, the stretch function can be defined in the

following way. Let f : Σ1 → Σ2 be an energy minimizing map with respect to dg.
Its Hopf differential Φf is defined locally by ϕfdz2 where

ϕf = π

(
∂

∂x
,

∂

∂x

)
− π

(
∂

∂y
,

∂

∂y

)
− 2iπ

(
∂

∂x
,

∂

∂y

)
.

Even when the target of f is nonsmooth, ϕ is holomorphic. To see this, we follow
the argument of [Sch]. Let Ft(x, y) = (x + tη(x, y), y) and ft = f ◦ Ft where
η(x, y) is a C∞ function with compact support in a coordinate neighborhood. By
equation 3,∫

|∇ft|2dxdy =
∫

(πft)11 + (πft)22dxdy

=
∫

(πf )11(1 + tηx)2 + (πf )22 + 2(πf )12tηy
dξdτ

1 + tηx

Differntiating with respect to t and setting t = 0, we get

0 =
∫

((πf )11 − (πf )22)ηx + 2(πf )12ηy dxdy.

Similarly,

0 =
∫

((πf )11 − (πf )22)ηy − 2(πf )12ηx dxdy

for all η. In other words, ϕf satisfies the weak Cauchy-Riemann equation and by
Weyl’s lemma, ϕf is a smooth holomorphic function of z. Thus Φf = ϕfdz2 is a
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holomorphic quadratic differential on the Riemann surface Σ1 and has finite zeroes
counting multiplicities. Locally, Φf can be written as

Φf =
(

m + 2
2

)2

zmdz2

where the integer m is the vanishing order of Φf at 0. The coordinate z is then
called the natural parameter of Φf . The integral curve of the distribution {v ∈
TΣ1 : Φf (v, v) ≤ 0} is called the vertical trajectory. The Hopf differential gives a
geometric picture of harmonic maps as the vertical trajectories give the direction
of minimal stretch. Using the natural parameter z, we set

Kf (z) =
√

π11

π22

and

kf (z) =
Kf − 1
Kf + 1

.

Using the results of [Me3] and following the arguments of [Ku], we can define
the stretch function kf by considering the stretch factor for the tangent map of f .
This stretch function can be written as

kf (z) = µf −
√

µ2
f − 1 (7)

where

µf = lim
σ→0

1
πσm+3

If (σ), If (σ) =
∫

{z:|z|=σ}
d2(f(z), f(0))ds

for some constant C. To see the equivalence of the two definitions, note that the
natural parameter gives a normalization which requires that π11 − π22 = 1. Since
µf = π11 + π22, this implies that

Kf =
1 + kf

1− kf
=

√
µf + 1
µf − 1

=
√

π11

π22
.

Lemma 13. The function kf (z) is lower semicontinuous.

Proof. Let τ the order function for f defined by

τ = Ord(z0) = lim
σ→0

σ
∫

Dσ(z0)
|∇f |2dxdy∫

∂Dσ(z0)
d2(f, f(z0))ds

.

(See Sec 3 of [Me3] for a discussion regarding the order function in this setting.)
By the proof of Theorem 2.3 of [GS] along with the relevant properties of harmonic
maps into metric spaces of curvature bounded from above by κ shown in [Me3],
we see that for some constant C,

σ 7→ eCσ

πσ2τ+1

∫

∂Dσ

d2(f(z), f(z0))ds.

is a non-decreasing function. Thus

µ̄f = lim
σ→0

eCσ

πσ2τ+1

∫

∂Dσ

d2(f(z), f(z0))ds
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is an upper semicontinuous function since it is a non-increasing limit of a continuous
functions

eCσ

πσ2τ+1

∫

∂Dσ

d2(f(z), f(z0))ds.

Hence,

k̄f (z) = µ̄f −
√

µ̄2
f − 1

is lower semicontinous and satisfies

k̄f (z0) ≤ lim inf
z→z0

k̄f (z).

By definition, kf = k̄f when τ = m+2
2 . Furthermore, τ ≤ m+2

2 and τ < m+2
2 at

z0 implies kf (z0) = 0 by the argument of Lemma 5 of [Ku], this implies that kf is
lower semicontinous.

By definition, µ̄f = |∇f |2 for almost every z where τ = m+2
2 . Since 1 ≤ τ ≤

m+2
2 everywhere and m > 0 only at the finite zeroes of the Hopf differential Φf , we

have the following lemma:

Lemma 14. If fi and f0 are energy minimizing maps with respect to gi and g0

respectively and the energies of fi converge to that of f0 for almost every z then kfi

converges to kf0 for almost every z.

6. The solution to the variational problem

Let f∗ be the extremal map as defined in the previous section and z = F ∗(w)
be the mapping inverse of w = f∗(z). Then

KF∗(w) =
|F ∗w|+ |F ∗w̄|
|F ∗w| − |F ∗̄w|

=
|f∗z |+ |f∗z̄ |
|f∗z | − |f ∗̄z |

= Kf∗(z) ≤ K∗.

For any g = ρ|dw|2 ∈Ma,κ,

1
2

(
K∗ +

1
K∗

) ∫

Σ2

ρdudv ≥ 1
2

∫

Σ2

(
KF∗(w) +

1
KF∗(w)

)
ρdudv

=
∫

Σ2

|F ∗w|2 + |F ∗w̄|2
|F ∗w|2 − |F ∗̄w|2

ρdudv

=
∫

Σ1

|f∗z |2 + |f∗z̄ |2
|f∗z |2 − |f ∗̄z |2

ρ(f∗(z))(|f∗z |2 − |f∗z̄ |2)dxdy

=
∫

Σ1

ρ(f∗(z))
(|f∗z |2 + |f∗z̄ |2

)
dxdy

= gEf∗ .

Thus the above inequality implies that for any g ∈Ma,κ,

inf
f∈Fh

ρEf ≤ gEf∗ ≤ 1
2

(
K∗ +

1
K∗

)
a.

and hence

sup
g∈Ma,κ

inf
f∈Fh

gEf ≤ 1
2

(
K∗ +

1
K∗

)
a.

Fix a0 > 0 and κ0 > 0 and define

E : Ma0,κ0 → R



A VARIATIONAL CONSTRUCTION OF THE TEICHMÜLLER MAP 15

by setting
E(g) = inf

f∈Fh

gEf .

Let {gi} ⊂ Ma0,κ0 be the maximizing sequence of E(·). In other words,

lim
i→∞

E(gi) = sup
g∈Ma0,κ0

E(g) = sup
g∈Ma0,κ0

inf
f∈Fh

gEf .

By Theorem 5, there exists a subsequence (which we will still call gi by an abuse
of notation) and g0 ∈ Ma0,κ0 so that gi converges uniformly to g0 in the sense of
distance functions. Let fi be an energy minimizing map with respect to gi. By
Theorem 11, there exists a subsequence (which again we will call gi) so that giEfi

converge to g0Ef0 where f0 is the energy minimizing map for g0. Thus,
g0Ef0 = lim

i→∞
giEfi = lim

i→∞
inf

f∈Fh

giEf

and we have found f0 and g0 satisfying
g0Ef0 = sup

g∈Ma0,κ0

inf
f∈Fh

gEf . (8)

We will show that f0 is the Teichmüller map if κ0 > 0.

7. The map f0 is the Teichmüller map

Our strategy in showing that f0 is a Teichmüller map is to first show that
kf0(z) ≤ k∗ for every point z ∈ Σ1, where k∗ = sup kf∗(z). This implies that f0 is
quasiconformal and hence its weak derivatives exist almost everywhere. Thus,

g0Ef0 =
∫

Σ1

ρ0(f0(z))(|(f0)z|2 + |(f0)z̄|2)dxdy

=
∫

Σ1

ρ0(f0(z))
|(f0)z|2 + |(f0)z̄|2
|(f0)z|2 − |(f0)z̄|2 (|(f0)z|2 − |(f0)z̄|2)dxdy

=
∫

Σ1

ρ0(f0(z))
1 + k2

f0
(z)

1− k2
f0

(z)
(|(f0)z|2 − |(f0)z̄|2)dxdy

≤ 1 + (k∗)2

1− (k∗)2

∫

Σ2

ρ0dudv. (9)

Next, we will show

g0Ef0 =
1 + (k∗)2

1− (k∗)2

∫

Σ2

ρ0dudv,

This combined with inequality (9) shows that kf0 = k∗ a.e.
We define

Df (z) =
1 + k2

f (z)
1− k2

f (z)

and

D∗ =
1 + (k∗)2

1− (k∗)2
.

Proving that kf0 ≤ k∗ is equivalent to showing Df0 ≤ D∗. We also define

E(a, κ) = sup
g∈Ma,κ

inf
f∈Fh

gEf .
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Hence,
E(a0, κ0) = g0Ef0 ≤ D∗a0. (10)

PART I: Proof that kf0 ≤ k∗.

A key step in setting up a variational problem in the smooth setting is to
establish the first variation formula for the functional. Because of the singular
nature of our problem, we consider the following weaker version and show that it
provides enough information for our purposes.

Lemma 15. Let BR(w0) ⊂ Σ2 so that

Df0(z) ≥ C + ε for all z ∈ f−1
0 (BR(w0)).

Assume that t 7→ ρt, 0 ≤ t ≤ T , is a one-parameter family of functions on BR(w0)
satisfying the following conditions: ρt ≥ ρ0, ρt → ρ0 uniformly, ρt ≡ ρ0 near
∂BR(w0), ρ̇0 = d

dtρt|t=0 is integrable and either d2

dt2 ρt ≥ 0 or d2

dt2 ρt ≤ 0. Let gt be
defined by

gt =
{

ρt|dw|2 in BR(w0)
ρ0|dw|2 in Σ2 −BR(w0).

If ft ∈ Fh be the energy minimizing map with respect to metric gt as in Theorem 12,
then there exists a sequence ti → 0 so that

lim inf
ti→0

gti Efti − g0Ef0

ti
≥ (C + ε0) ȧ0,

where ε0 ∈ (0, ε),

at =
∫

Σ2

ρtdudv and ȧ0 =
d

dt
at|t=0.

Proof. If d2

dt2 ρt ≥ 0 then
∫

E

ρ̇dudv ≤
∫

E

ρt − ρ0

t
dudv ≤

∫

E

ρT − ρ0

T
dudv,

and if d2

dt2 ρt ≤ 0 then
∫

E

ρT − ρ0

T
dudv ≤

∫

E

ρt − ρ0

t
dudv ≤

∫

E

ρ̇dudv

for any E ⊂ Σ2. Furthermore,∫

Σ2

ρT − ρ0

T
dudv < ∞ and

∫

Σ2

ρ̇dvdy < ∞.

Hence, for κ > 0 to be chosen later, there exists δ1 > 0 so that∫

E

ρT − ρ0

T
dudv < κ and

∫

E

ρ̇dvdy < κ

for any E ⊂ Σ2 with m(E) < δ1. Therefore, for any t ∈ (0, T ),∫

E

ρt − ρ0

t
dudv < κ whenever m(E) < δ1. (11)

Let
Eδ = {w ∈ BR(w0) : ρ0(w) < δ}.
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By Lemma 6, m(Eδ) → 0 as δ → 0. Since ρt ≥ ρ0, there exists δ2 > 0 and a set O
of measure at most δ1

2 so that, ρt(w) > δ2 for w ∈ BR(w0)−O and t < T .
By Theorem 11, there exists a sequence ti so that Dfti

→ Df0 for almost every
z ∈ Σ1. For each ti, let s be a smooth function so that 4(log ρti

+ s) ≥ 0 weakly.
Therefore, for a symmetric smoothing function ησ (i.e. ησ(z) = 1

σ2 η(|z|) for a
smooth function η : R+∪{0} → R+∪{0} with η ≡ 1 for 0 ≤ t ≤ 1

2 , η ≡ 0 for t ≥ 1
and

∫
η = 1), we have

∫
(log ρti

(z + ζ) + s(z + ζ)) ησ(ζ)dξdτ ≥ log ρti
(z) + s(z)

Let

ρσ
ti

= exp
(∫

(log ρti
(z + ζ) + s(z + ζ)) ησ(ζ)dξdτ − s(z)

)
.

Then ρσ
ti
≥ ρti ≥ δ2. Let

gσ
ti

=
{

ρσ
ti
|dw|2 in BR(w0)

ρ0|dw|2 in Σ2 −BR(w0).

for σ sufficiently small and fσ
ti

be the map energy minimizing with respect to gσ
ti

.
By Theorem 11, there exists a sequence σj so that D

σj

fi
→ Dfi . The maps f

σj

ti

are Lipschitz with respect to metric g
σj

ti
with local Lipschitz constant L which is

independent of ti or σj . (L is only dependent on the total energy.) This implies
that for any C ⊂ Σ1 and any ti and sufficiently small σj ,

δ2m(fσj

ti
(C)−O) ≤

∫

f
σj
ti

(C)−O

ρ
σj

ti
dudv

≤
∫

C−(f
σj
ti

)−1(O)

|∇f
σj

ti
|2
g

σj
ti

dxdy

≤ L2m(C − (fσj

ti
)−1(O)).

In particular,

m(fσj

ti
(C)−O) ≤ L2

δ2
m(C − (fσj

ti
)−1(O)). (12)

Let δ3 = δ2δ1
4L2 . By Egoroff’s Theorem, there exists a set A ⊂ Σ1 with m(A) < δ3

so that Dfti
→ Df0 uniformly on Σ1 −A. Hence for sufficiently small ti,

Dfti
(z) ≥ C +

ε

2
for all z ∈ Σ1 −A.

Again by Egoroff’s Theorem, there exists a set B ⊂ Σ1 with m(B) < δ3 so that
D

f
σj
ti

→ Dfti
uniformly on Σ1 −B and for a sufficiently small ti and σj ,

D
f

σj
ti

(z) ≥ C +
ε

4

for all z ∈ Σ1 − (A ∪B). Noting that f
σj

ti
is a smooth map, we have

g
σj
ti Ef

σj
ti − g

σj
0 Ef

σj
0 ≥ g

σj
ti Ef

σj
ti − g

σj
0 Ef

σj
ti

=
∫

Σ1

(ρσj

ti
(fσj

ti
(z))− ρ

σj

0 (fσ
ti

(z)))
(|(fσj

ti
)z|2 + |(fσj

ti
)z̄|2

)
dxdy
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≥
∫

Σ1−(A∪B)

(ρσj

ti
(fσ

ti
(z))− ρ

σj

0 (fσ
ti

(z)))
(|(fσj

ti
)z|2 + |(fσj

ti
)z̄|2

)
dxdy

=
∫

Σ1−(A∪B)

(ρσj

ti
(fσ

ti
(z))− ρ

σj

0 (fσ
ti

(z)))D
f

σj
ti

(|(fσj

ti
)z|2 − |(fσj

ti
)z̄|2

)
dxdy

≥
(
C +

ε

4

) ∫

Σ1−(A∪B)

(ρσj

ti
(fσ

ti
(z))− ρ

σj

0 (fσ
ti

(z)))
(|(fσj

ti
)z|2 − |(fσj

ti
)z̄|2

)
dxdy

=
(
C +

ε

4

) ∫

f
σj
ti

(Σ1−(A∪B))

(ρσj

ti
− ρ

σj

0 )dudv

=
(
C +

ε

4

) (∫

Σ2

(ρσj

ti
− ρ

σj

0 )dudv −
∫

f
σj
ti

(A∪B)

(ρσj

ti
− ρ

σj

0 )dudv

)

for sufficiently small ti and σj .
By inequality (12) and because δ3 = δ2δ1

4L2 ,

m((fσj

ti
(A ∪A) ∪O) ≤ m(fσj

ti
(A)−O)) + m(fσj

ti
(B)−O) + m(O)

≤ L2

δ2
m(A− (fσj

ti
)−1(O)) +

L2

δ2
m(B − (fσj

ti
)−1(O)) + m(O)

<
L2δ3

δ2
+

L2δ3

δ2
+

δ1

2
= δ1.

Hence, by inequality 11,∫

f
σj
ti

(A∪B)

ρti − ρ0

ti
dudv ≤

∫

f
σj
ti

(A∪B)∪O

ρti − ρ0

ti
dudv < κ.

Furthermore, since
∣∣∣∣
ρ

σj
ti
−ρ

σj
0

ti
− ρti

−ρ0

ti

∣∣∣∣ → 0 as σj → 0,

∫

Σ2

∣∣∣∣
ρ

σj

ti
− ρ

σj

0

ti
− ρti − ρ0

ti

∣∣∣∣ dudv ≤ κ

for sufficiently small σj . Therefore,
∫

f
σj
ti

(A∪B)

ρ
σj

ti
− ρ

σj

0

ti
dudv

≤
∫

f
σj
ti

(A∪B)

ρti − ρ0

ti
dudv +

∫

f
σj
ti

(A∪B)

ρ
σj

ti
− ρ

σj

0

ti
− ρti − ρ0

ti
dudv

≤
∫

f
σj
ti

(A∪B)

ρti − ρ0

ti
dudv +

∫

Σ2

∣∣∣∣
ρ

σj

ti
− ρ

σj

0

ti
− ρti − ρ0

ti

∣∣∣∣ dudv

≤ 2κ

for sufficiently small σj . This shows that

g
σj
ti Ef

σj
ti − g

σj
0 Ef

σj
0 ≥

(
C +

ε

4

) (∫

Σ2

(ρσj

ti
− ρ

σj

0 )dudv − 2κ

)

and letting σj → 0 and dividing by ti, we get
gti Efti − g0Ef0

ti
≥

(
C +

ε

4

) (∫

Σ2

ρti − ρ0

ti
dudv − 2κ

)
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Therefore, letting κ = εȧ0
16(C+ ε

4 ) , we have

lim inf
i→∞

gti Efti − g0Ef0

t
≥

(
C +

ε

4

)(∫

Σ2

ρ̇0dudv − 2κ

)

>
(
C +

ε

4

)
ȧ0 − ε

8
ȧ0

=
(
C +

ε

8

)
ȧ0.

Let z0 ∈ Σ1. In order to show Df0(z0) ≤ D∗, we will assume that Df0(z0) ≥
D∗ + ε for some ε > 0, bump up the metric g0 in a neighborhood of f(z0), and
use Lemma 15 to seek a contradiction. In constructing a family of metrics which
perturb g0, it is important to control the distortion of the area and the curvature
bound. For this construction, we will treat points in C and those not in C separately.

Case 1: f(z0) = w0 ∈ C.

For w0 ∈ C, we will use the following lemma to bump up the metrics g0 = ρ0|dw|2
in the neighborhood of w0 in the sense of Lemma 15 without losing the curvature
bound.

Lemma 16. Let w0 ∈ Σ2 and R > 0. There exists 0 < r0 < R and φ ∈
C∞c (BR(w0)) so that the following holds. If µ is any measure satisfying supp µ ⊂
Br0(w0), α = µ(Br0(w0)) > 0, dµ ≥ −F (w)dudv for F (w) ≥ 0,

ρ = exp

(∫
log|w − z|dµ

)

and νt is a measure so that

(tφ + ρ
2
α )

α
2 = exp

(∫
log |w − z|dνt + ht(z)

)
(13)

where ht is a harmonic function, then dνt ≥ −F (w)dudv where 0 ≤ t ≤ 1.

Proof. It is sufficient to prove the statement assuming that R = 1 and w0

is the origin of the unit disk. We let η : [0, 1] → R be a smooth function and
φ(w) = η(r) where r = |w|. Also let ψ = |w|2. Then

∇ψ(w) = 2r
∂

∂r
∇φ(w) = η′(r)

∂

∂r

4ψ = 4 4φ = η′′(r) +
1
r
η′(r).

Using ψ4ψ − |∇ψ|2 = ψ24 log ψ = 0, we have

(φ + ψ)24 log(φ + ψ) = (φ + ψ)4(φ + ψ)− |∇(φ + ψ)|2
= φ4φ− |∇φ|2 + ψ4ψ − |∇ψ|2 + φ4ψ − 2∇ψ · ∇φ + ψ4φ

= ηη′′ +
1
r
ηη′ − |η′|2 + 4η − 3rη′ + r2η′′.
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Let η be defined by

η(t) =





2εe−2 for t = 0
2εe−2 − εe−1/t for 0 < t ≤ 0.5

εe1/(t−1) for 0.5 < t < 1
0 for t = 1

It is a straightforward computation to check that

4η − 3tη′ + t2η′′ ≥ c1ε > 0

for some constant c1 and since ηη′′ + 1
t ηη′ − |η′|2 is quadratic in ε,

ηη′′ +
1
t
ηη′ − |η′|2 + 4η − 3tη′ + t2η′′ ≥ c2ε > 0

for some constant c2 for sufficiently small ε. Now consider

ηt0(t) =





2εe−2 for 0 ≤ t ≤ t0

η
(

t−t0
1−2t0

)
for t0 < t < 1− t0,

0 for 1− t0 ≤ 1.

If we let τ = t−t0
1−2t0

, then dτ
dt = 1

1−2t0
and t

1−2t0
= τ + t0

1−2t0
. Thus,

4ηt0(t)− 3tη′t0(t) + t2η′′t0(t)

= 4η(τ)− 3t
1−2t0

η′(τ) +
(

t
1−2t0

)2

η′′(τ)

= 4η(τ)− 3τη′(τ) + τ2η′′(τ)− 3t0
1−2t0

η′(τ) + 2t0
1−2t0

τη′′(τ) +
(

t0
1−2t0

)2

η′′(τ).

Thus, for t0 > 0 and ε > 0 sufficiently small,

ηt0η
′′
t0 +

1
t
ηt0η

′
t0 − |η′t0 |2 + 4ηt0 − 3tη′t0 + t2η′′t0 ≥ c3ε (14)

for some constant c3. We now fix t0 > 0 and ε > 0 so that inequality (14) holds.
Since we assume supp µ ⊂ Br0(0), for w ∈ B1(0)−Br0(0), we have

ρ
2
α (w) = exp

(
1
α

∫

Br0 (0)

log |w − z|2dµ(z)

)

∇ρ
2
α (w) = ρ

2
α

(
2
α

∫

Br0 (0)

u− x

|w − z|2 dµ(z),
2
α

∫

Br0 (0)

v − y

|w − z|2 dµ(z)

)

4ρ
2
α (w) = 4ρ

2
α




(
1
α

∫

Br0 (0)

u− x

|w − z|2 dµ(z)

)2

+

(
1
α

∫

Br0 (0)

v − y

|w − z|2 dµ(z)

)2

 .

For any κ > 0, we can choose r0 sufficienlty small so that for any w ∈ B1(0)−B t0
2

(0)
and z ∈ Br0(0), ∣∣log |w − z|2 − log |w|2∣∣ < κ.

Thus w ∈ B1(0)−B t0
2

(0),

1
α

∫

Br0 (0)

(log |w|2−κ)dµ(z) <
1
α

∫

Br0 (0)

log |w−z|2dµ(z) <
1
α

∫

Br0 (0)

(log |w|2+κ)dµ(z).
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Using the fact that µ(Br0(0)) = α, we have

log |w|2 − κ <
1
α

∫

Br0 (0)

log |w − z|2dµ(z) < log |w|2 + κ

which implies
e−κ|w|2 < ρ

2
α < eκ|w|2.

Thus, for any δ > 0, we can choose r0 sufficiently small so that

|ρ 2
α − r2| < δ.

Similarly, by choosing r0 sufficienlty small,
∣∣∣∇ρ

2
α − 2w

∣∣∣ < δ
∣∣∣4ρ

2
α − 4

∣∣∣ < δ.

for w ∈ B1(0)−B t0
2

(0).
If we set φ(w) = ηt0(|w|), then for w ∈ B1(0)−B t0

2
(0), we have

(φ + ρ
2
α )24 log(φ + ρ

2
α ) (15)

= (φ + ρ
2
α )4(φ + ρ

2
α )− |∇(φ + ρ

2
α )|2

= φ4φ− |∇φ|2 + ρ
2
α4ρ

2
α − |∇ρ

2
α |2 + φ4ρ

2
α − 2∇φ · ∇ρ

2
α + ρ

2
α4φ

and

φ4ρ
2
α ≥ ηt0 · (4− δ)

−2∇φ · ∇ρ
2
α ≥ 4rη′t0 + 2δη′t0

ρ
2
α4φ ≥ r2(η′′t0 +

1
r
η′t0)− δ|η′′t0 |2 +

δ

r
η′t0 .

Thus

(φ + ρ
2
α )24 log(φ + ρ

2
α ) ≥ ηt0η

′′
t0 +

1
r
ηt0η

′
t0 − |η′t0 |2 + ρ4/α4 log ρ

2
α

+4ηt0 − 3rη′t0 + r2η′′t0

+δ(−ηt0 + 2η′t0 − |η′′t0 |+
1
r
η′t0)

for w ∈ B1(0)−B t0
2

(0). By inequality (14), we see that

ηt0η
′′
t0 +

1
r
ηt0η

′
t0 − |η′t0 |2 + 4ηt0 − 3rη′t0 + r2η′′t0 + δ(−ηt0 + 2η′t0 − |η′′t0 |+

1
r
η′t0) ≥ 0

for w ∈ B1(0) − B t0
2

(0) by choosing δ (and hence r0) sufficiently small. Hence, it
follows that

(φ + ρ
2
α )24 log(φ + ρ

2
α ) ≥ ρ4/α4 log ρ

2
α (16)

for w ∈ B1(0) − B t0
2

(0). Since supp µ ⊂ Br0(0), we have that 4 log ρ ≥ 0 outside
of Br0(0) and this implies,

4 log(φ + ρ
2
α )

α
2 ≥ 0 (17)

for w ∈ B1(0)−B t0
2

(0).
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Recall that by construction, φ(w) ≡ 2εe−2 for w ∈ Bt0(0). Now for a smooth
function u ≥ 0 and constant c ≥ 0,

4 log(c + u) ≥ u

c + u
4 log u.

Hence if 4 log u ≥ −F (w) with F (w) ≥ 0, then 4 log(u + c) ≥ −F (w). Thus, by
mollifying ρ and taking the limit, we see that

∫
4ψ · log(φ + ρ

2
α )

α
2 dudv ≥ −

∫
ψF (w)dudv

for any ψ ∈ C∞c (Bt0(0)) and hence

dνt ≥ −F (w)dudv (18)

in Bt0(0). Inequality 18 together with inequality 17 proves that dνt ≥ −F (w)dudv
on all of B1(0). The fact that we can replace φ with tφ for 0 ≤ t ≤ 1 is evident
from the proof.

We are now ready to construct a one-parameter family of metrics gt = ρt|dw|2
and to apply the first variation argument of Lemma 15. With the aid of Lemma 16,
we construct this one-parameter family so that we have control over the curvature
bounds of gt.

Suppose Df0(z0) ≥ D∗+ ε for some ε > 0. By the lower semicontinuity of Df0 ,
there exists BR(f0(z0)) so that Df0(z) > D∗ + ε

2 for any z ∈ f−1
0 (BR(f0(z0)). Let

r0 and φ be as in Lemma 16. By the definition of C, there exists Bδ(w̄) ⊂ Br0(w0)
so that α = K(Bδ(w̄)) > 0. Define K1 and K2 by setting K1(E) = K(E ∩ Bδ(w̄))
and K2 = K −K1 and let

ρ1(w) = exp
(∫

log |w − z|dK1(z)
)

and

ρ2(w) =
ρ(w)
ρ1(w)

= exp
(∫

log |w − z|dK2(z) + h(w)
)

for some harmonic function h(w). Since supp K1 ⊂ Bδ(w̄) and K2(Bδ(w̄)) = 0,
dK1 ≥ −F (w)dudv where

F (w) =
{

2κρ0 in Bδ(w̄)
0 in BR(w0)−Bδ(w̄).

By Lemma 16, dνt ≥ −F (w)dudv where νt is as in equality (13) with ρ1 instead of

ρ. Hence, if we let ρt = (tφ + ρ
2
α
1 )

α
2 ρ2, then ρt satisfies

∫
(4ψ) log ρtdudv =

∫
(4ψ) log(tφ + ρ

2
α
1 )

α
2 ρ2dudv

=
∫

(4ψ) log(tφ + ρ
2
α
1 )

α
2 dudv +

∫
(4ψ) log ρ2dudv

=
∫

ψdνt +
∫

ψdK2

≥ −
∫

Bδ(w̄)

ψF (w)dudv +
∫

BR(w0)−Bδ(w̄)

ψdK2
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≥ −2κ0

∫

Bδ(w̄)

ψρ0dudv − 2κ0

∫

BR(w0)−Bδ(w̄)

ψρ0dudv

= −2κ0

∫
ψρ0dudv

≥ −2κ0

∫
ψρtdudv

for any ψ ∈ C∞c (BR(w0)). In other words,

4 log ρt ≥ −2κ0ρt

weakly. Let gt = ρt|dw|2 and a(t) =
∫
Σ2

ρtdudv. Thus gt ∈ Ma(t),κ0 We now show
that:

Lemma 17. The function

ρ̇0 =
α

2
ρ
1− 2

α
1 ρ2φ

is an integrable function on Σ2.

Proof. Using the fact that 1
αK1(Br0) = 1,

ρ
1− 2

α
1 (w) = exp

((
1− 2

α

) ∫

z∈Br0 (w0)

log |w − z|dK1(z)

)

= exp

(∫

z∈Br0 (w0)

log |w − z|α−2 dK1(z)
α

)

≤
∫

z∈Br0 (w0)

|w − z|α−2 dK1(z)
α

by Jensen’s Theorem. Hence,
∫

w∈BR(w0)

ρ
1− 2

α
1 (w)dudv ≤

∫

w∈BR(w0)

(∫

z∈Br0 (w0)

|w − z|α−2 dK1(z)
α

)
dudv

=
∫

z∈Br0 (w0)

(∫

w∈BR(w0)

|w − z|α−2dudv

)
dK1(z)

α
.

If we let (r, θ) be the polar coordinates centered at z,
∫

w∈Br0 (w0)

|w − z|α−2dudv ≤
∫ 2π

0

∫ 1

0

rα−2rdrdθ =
2π

α
.

Hence, ∫

w∈BR(w0)

ρ
1− 2

α
1 (w)dudv ≤ 2π

α
. (19)

Since ρ2 and φ are bounded functions, the assertion of the lemma follows from
inequality (19).

Furthermore, we have that

d2

dt2
ρt =

α

2
(
α

2
− 1)(tφ + ρ1)

α
2−2φ2ρ2
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so either d2

dt2 ρt ≥ 0 for all t or d2

dt2 ρt ≤ 0 for all t. Therefore, we can apply Lemma 15
and there exists a sequence {ti} so that

lim inf
ti→0

gti Efti − g0Ef0

ti
> D∗a′(0).

We let
E(a, κ) = sup

g∈Ma,κ

inf
f∈Fh

gEf .

Since gt ∈Ma(t),κ0 , we have that E(a(t), κ0) ≥ gtEft , and thus

lim inf
t→0

E(a(t), κ(0))− E(a(0), κ(0))
∂t

= lim inf
t→0

E(a(t), κ(t))− E(a(0), κ(0))
t

≥ lim inf
ti→0

gti Efti − g0Ef0

ti
> D∗a′(0).

Recall that E(a, κ) is differentiable since a 7→ E(a, κ) is a monotone function. There-
fore, we have,

lim inf
t→0

E(a(t), κ(0))− E(a(0), κ(0))
∂t

=
∂

∂t
E(a(t), κ0)|t=0 =

∂E
∂a

(a(0), κ0) · a′(0).

Hence
∂E
∂a

(a0, κ0) > D∗.

Since E(a0, κ0) = g0Ef0 , we have that E(a, κ0) =
(

a
a0

g0

)
Ef0 =

(
a
a0

)
· g0Ef0 .

Hence a 7→ E(a, κ0) is a linear function with lima→0 E(a, κ0) = 0. This implies that
E(a0, κ0) > D∗a0, a contradiction to inequality 10. Therefore, we have shown that
Df0(z0) ≤ D∗ if f(z0) ∈ C.

Case 2: w0 = f0(z0) ∈ Σ2 − C.

Suppose there exists z0 ∈ Σ1 so that Df0(z0) ≥ D∗+ε and w0 = f0(z0) ∈ Σ2−C.
By the lower semicontinuity of Df0 , there exists BR(w0) so that Df0(z) > D∗ + ε

2

for all z ∈ f−1
0 (BR(w0)). Let ψ be a smooth function not identically 1 so that

ψ ≡ 1 in Σ2 −BR(w0) and ψ ≥ 1 in BR(w0).
Let h = ψρ0|dw|2, η = ψ1/nρ0,

ρt = ((1− t)ρn
0 + tηn)1/n,

and gt = ρt|dw|2 with n to be chosen later. Now, since

ρ̇t =
1
n

((1− t)ρn
0 + tηn)

1
n−1(ηn − ρn

0 )

we have

ρ̇0 =
1
n

ρ1−n
0 (ηn − ρn

0 ) =
1
n

(ψ − 1)ρ0,

and thus ρ̇0 is integrable. Furthermore,

d2

dt2
ρt =

1
n

(
1
n
− 1)((1− t)ρn

0 + tηn)
1
n−2(ηn − ρn

0 ) ≤ 0.
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Therefore, by Lemma 15,

lim inf
ti→0

gti Efti −g0 Ef0

ti
≥ (D∗ + ε0)a′(0).

We now compute a curvature bound for gt. If ρ0 is smooth, then

− 1
2ρt

4 log ρt

=
−4 log ρ0 + 1

n4 log(1− t + tψ)

2ρ0(1− t + tψ)
1
n

≤ − 1
2ρ0(1− t + tψ)

1
n

(
−2κ0ρ0 +

1
n

t4ψ

1− t + tψ
− 1

n

t2|∇ψ|2
(1− t + tψ)2

)

≤ κ0 + κ0

(
1

(1− t + tψ)
1
n

− 1
)
− 1

n

t4ψ

2ρ0(1− t + tψ)1+
1
n

+
1
n

t2|∇ψ|2
2ρ0(1− t + tψ)2+

1
n

Since
1

(1− t + tψ)
1
n

− 1 ≤ 0

we have
4 log ρt ≥ −2κ(t)ρt

where

κ(t) = κ0 +
Ct

n
with constant C depending on the bounds for |4ψ| and |∇ψ|2. By Lemma 10, ρ0 ≥
ε > 0 and thus the curvature bound of κ(t) remains valid even for singular metrics
by using a smooth approximation and taking the limit. Therefore, gt ∈ Ma(t),κ(t)

and
gtEft ≤ E(κ(t), a(t)).

Since E(a, κ) is differentiable (since a 7→ E(a, κ) is linear and κ 7→ E(a, κ) is mono-
tone), this implies

∂E
∂a

(a(0), κ(0)) · a′(0) +
∂E
∂κ

(a(0), κ(0)) · κ′(0) =
∂E
∂t
|t=0 ≥ (D∗ + ε0)a′(0). (20)

Let (ḡ0, f̄0) be the critical pair for (κ0 + ε, a0). In particular, if ḡ0 = ρ̄0|dw|2, then

4 log ρ̄0 ≥ −2(κ0 + ε)ρ̄0 = −2κ0

(
κ0 + ε

κ0

)
ρ̄0

weakly. Using the assumption that κ0 > 0, A(κ0+ε
κ0

ḡ0) = κ0+ε
κ0

A(ḡ0) and thus
(κ0+ε

κ0
)ḡ0 ∈ Mκ0+ε

κ0
a0,κ0

. Since f̄0 is an energy minimizing map with respect to

metric (κ0+ε
κ0

)ḡ0, we have that

E
(

κ0 + ε

κ0
a0, κ0

)
≥ (

κ0+ε

κ0
)ḡ0Ef̄0 =

(
κ0 + ε

κ0

)
ḡ0Ef̄0 =

κ0 + ε

κ0
E(a0, κ0 + ε).

Thus,

∂E
∂κ

(a0, κ0) = lim
ε→0

E(a0, κ0 + ε)− E(a0, κ0)
ε

≤ lim
ε→0

κ0
κ0+εE(κ0+ε

κ0
a0, κ0 + ε)− E(a0, κ0)

ε
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=
d

dt

(
κ0

t
E

(
t

κ0
a0, κ0

))
|t=κ0

=
d

dt

(κ0

t

)
|t=κ0 · E

(
t

κ0
a0, κ0

)
+

d

dt
E

(
t

κ0
a0, κ0

)
|t=κ0

= − 1
κ0
E(a0, κ0) +

∂E
∂a

(
t

κ0
a0, κ0

)
· d

dt

(
a0t

κ0

)
|t=κ0

= − 1
κ0
E(a0, κ0) +

a0

κ0

∂E
∂a

(a0, κ0)

≤ a0

κ0

∂E
∂a

(a0, κ0)

Furthermore,

κ′(0) =
C

n
.

and hence,
∂E
∂a

(a0, κ0) · a′(0) +
∂E
∂κ

(a0, κ0) · κ′(0)

≤ ∂E
∂a

(a0, κ0) · a′(0) +
Ca0

nκ0

∂E
∂a

(a0, κ0)

≤ ∂E
∂a

(a0, κ0) ·
(

a′(0) +
Ca0

nκ0

)

Combining this with inequality (20) gives

∂E
∂a

(a0, κ0) ·
(

a′(0) +
Ca0

nκ0

)
≥ (D∗ + ε0) a′(0)

Therefore, by choosing n sufficiently large,
∂E
∂a

(a0, κ0) > D∗.

As in Case 1, this is a contradiction.

PART 2: Proof that g0Ef0 = 1+(k∗)2

1−(k∗)2 a0.

For any ε > 0, there exists z0 so that Df0(z0) ≥ D∗ − ε by the definition of f∗

and D∗. Let w0 = f(z0). By the lower semicontinuity of Df0 , there exists BR(w0)
so that Df0(z) > D∗ − 2ε. Proceeding as in Case 1 or Case 2 above,

lim inf
t→0

gtEft −g0 Ef0

t
≥ (D∗ − 3ε)a′(0).

Since ε is arbitrary,
∂E
∂a

(a0, κ0) ≥ D∗

By the linearity of a 7→ E(a, κ0) and the fact that E(a0, κ0) ≥ D∗a0, this implies
that

E(a0, κ0) = D∗a0.

This shows that Df0 = D∗ a.e. and hence kf0 = k∗ a.e.
The Hopf differential Φf0 = ϕf0dz2 is the differential to f0 associated in Te-

ichmüller’s theorem. The differential Ψf0 on the target is defined by the condition
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that Ψf0 =
(

m+2
2

)2
wmdw2 for the coordinate w = f0(z) whenever z is a natu-

ral parameter of Φf0 , i.e. Φf0 =
(

m+2
2

)2
zmdz2. Kuwert [Ku] proved that f0 is

the unique minimizing map in its homotopy class with respect to the metric |Ψf0 |.
Since Ψf0 is holomorphic, |Ψf0 | defines a cone metric which is a smooth metric of
curvature 0 except at finite number of degenerate points D = {w : Ψf0(w) = 0}.
Therefore, f0 is smooth on the set Σ1− f−1

0 (D) which implies that kf0 ≡ k∗ except
possibly on f−1

0 (D).
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