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Abstract

In this paper we study the behavior of harmonic maps into com-
plexes with branching differentiable manifold structure. Main exam-
ples of such target spaces are Euclidean and hyperbolic buildings. We
show that a harmonic map from an irreducible symmetric space of
noncompact type other than real or complex hyperbolic into these
complexes are non-branching. As an application, we prove rank one
and higher rank superrigidity for the isometry groups of a class of
complexes which includes hyperbolic buildings as a special case.

1 Introduction.

Let Y be a locally compact Riemannian cell complex. By this, we mean a
complex where each cell is endowed with a Riemannian metric smooth up
to the boundary and such that any of its faces is totally geodesic. Further-
more, we assume that Y has non-positive curvature (NPC) and a branching
Differentiable Manifold structure. Roughly speaking, this means that for any
two adjacent cells there exists an isometric and totally geodesic embedding

1supported by research grant NSF DMS-0450083
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of a complete Riemannian manifold containing both cells. We henceforth re-
fer to such complexes as DM-complexes and the images of the differentiable
manifolds as DM’s. For precise definitions, we refer to Section 2. The main
examples of such spaces are Euclidean and hyperbolic buildings. Our main
theorem is to show the following non-branching behavior of harmonic maps
into such spaces.

Theorem 1 Let X̃ = G/K be an irreducible symmetric space of noncompact
type other than SO0(p, 1)/SO(p)× SO(1), SU0(p, 1)/S(U(p)×U(1)). Let Γ
be a lattice in G and let ρ : Γ → Isom(Y ) a group homomorphism where Y
is an NPC DM-complex. If the rank of X̃ is ≥ 2, we assume additionally
that Γ is cocompact. If the rank of X̃ is = 1, we assume additionally that the
curvature operator of any DM in Y is non-positive. Then any ρ-equivariant
harmonic map u : X̃ → Y is non-branching and totally geodesic. In other
words, the image of u is contained in a single DM of Y and u is totally
geodesic as a map into that DM.

Excluding the real and complex hyperbolic spaces from the domain is
essential. For example, the projection map onto the leaf space of a quadratic
differential on a Riemann surface (which is harmonic) branches near the
zero of the quadratic differential. From the above theorem, we deduce the
following superrigidity result for hyperbolic buildings.

Theorem 2 Let X̃ = G/K be an irreducible symmetric space of noncompact
type, other than SO0(p, 1)/SO(p) × SO(1), SU0(p, 1)/S(U(p) × U(1)). Let
Γ be a lattice in G and let ρ : Γ→ Isom(Y ) a reduced homomorphism where
Y is a hyperbolic building. If the rank of X̃ is ≥ 2 we assume additionally
that Γ is cocompact. Then ρ(Γ) fixes a point of Y .

For the definition of reduced, we refer to Section 2. Finally, recall that a
harmonic map from a Kähler manifold to a Riemannian complex is called
pluriharmonic if it is pluriharmonic in the usual sense on the regular set.
Our method also yields the following theorem.

Theorem 3 Let X̃ be the universal cover of a complete finite volume Kähler
manifold (X,ω). Let Γ = π1(X), Y a hyperbolic building and ρ : Γ →
Isom(Y ) a group homomorphism. Then any finite energy ρ-equivariant har-
monic map u : X̃ → Y is pluriharmonic.
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We note that the above theorems for the case of Euclidean buildings are due
to Gromov and Schoen (cf. [5]). The theory of harmonic maps into singu-
lar spaces and its application to rigidity theory has been used by a variety
of authors that includes Gromov-Schoen [5], Korevaar-Schoen [10], [11] and
Jost [6], [7], [8], [9].

Remarks and Acknowledgements. The question of superrigidity of hy-
perbolic buildings was first suggested by Mikhail Gromov. For alternative
approaches in the case of product domains, we refer to Gelander-Karlsson-
Margulis [4], Monod-Shalom [13] and Mineyev-Monod-Shalom [14]. We are
thankful to Piere Pansu for these references and to Nicolas Monod for many
useful discussions. We also thank the referee for many useful comments that
significantly improved the exposition of the paper. Finally, in order to keep
the conceptual transparency of this article, we defer the bulk of the technical
work analyzing the singular set of harmonic maps to the companion article
[3].

2 Harmonic maps

Recall that a metric space (Y, d) is called an NPC space if: (i) The space
(Y, d) is a length space. That is, for any two points P and Q in Y , there exists
a rectifiable curve c so that the length of c is equal to d(P,Q). We call such
distance realizing curve a geodesic. (ii) For any three points P,R,Q ∈ Y , let
c : [0, l] → Y be the arclength parameterized geodesic from Q to R and let
Qt = c(tl) for t ∈ [0, 1]. Then

d2(P,Qt) ≤ (1− t)d2(P,Q) + td2(P,R)− t(1− t)d2(Q,R).

We now define our class of target spaces.

Definition 4 Let Ed be an affine space. A convex piecewise linear polyhedron
S with interior in some Ei ⊂ Ed is called a cell. We will use the notation Si to
indicate the dimension of S. A convex cell complex or simply a complex Y in
Ed is a finite collection F = {S} of cells satisfying the following properties:
(i) the boundary ∂S of Si ∈ F is a union of T j ∈ F with j < i (called
the faces of S) and (ii) if T j, Si ∈ F with j < i and Si ∩ T j 6= ∅, then
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T j ⊂ Si. For example a simplicial complex is a cell complex whose cells are
all simplices. We will denote by Y (i) the i-dimensional skeleton of Y , i.e.
the union of all cells Sj where j ≤ i. Y is called k-dimensional or simply a
k-complex if Y (k+1) = ∅ but Y (k) 6= ∅.

Definition 5 A complex Y along with a metric G = {GS} is called a Rie-
mannian complex if each cell S of Y is equipped with a smooth Riemannian
metric GS such that for each cell S, the component functions of GS extend
smoothly all the way to the boundary of S. Furthermore, if S ′ is a face of S
then the restriction GS to S ′ is equal to GS′ and S ′ is totally geodesic in S.

Definition 6 A k-dimensional Riemannian complex (Y,G) is said to have
the branching Differentiable Manifold structure if given any two cells S1 and
S2 of Y such that S1∩S2 6= ∅, there exists a k-dimensional C∞-differentiable
complete Riemannian manifold M and an isometric and totally geodesic em-
bedding J : M → Y such that S1 ∪ S2 ⊂ J(M). Such complexes will be
referred to as DM-complexes. Furthermore, by an abuse of notation, we will
often denote J(M) by M and call it a DM (short for Differentiable Manifold).

For the rest of the paper, we will also assume that the DM-complex Y is
locally compact and NPC with respect to the distance function d induced
from GS. Note that if Y is a Euclidean complex and we require that all
the DM’s to be isometric to a k-dimensional Euclidean space, then Y is
F-connected in the sense of [5], Section 6.1.

We now review the notion of harmonic map. Let Ω be a smooth bounded
n-dimensional Riemannian domain and Y an NPC complex. A map u : Ω→
Y is said to be an L2-map (or that u ∈ L2(Ω, Y )) if for some (and hence all)
P ∈ Y , we have ∫

Ω
d2(u(x), P )dµ <∞.

For u ∈ L2(Ω, Y ), define the energy density |∇u|2 as in [5]. Set

E(u) =
∫

Ω
|∇u|2dµ

and call a map u of Sobolev class W 1,2(Ω, Y ) if E(u) <∞. If u ∈ W 1,2(Ω, Y ),
then there exists a well-defined notion of a trace of u, denoted Tr(u), which
is an element of L2(∂Ω, Y ). Two maps u, v ∈ W 1,2(Ω, Y ) have the same trace
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(i.e. Tr(u) = Tr(v)) if and only if d(u, v) ∈ W 1,2
0 (Ω). For details we refer

to [10]. A map u : Ω → Y is said to be harmonic if it is energy minimizing
among all W 1,2-maps with the same trace.

Similarly, there is the notion of equivariant harmonic map. Let X̃ be
the universal cover of a complete, finite volume Riemannian manifold X,
Γ = π1(X), Y an NPC Riemannian complex and ρ : π1(X) → Isom(Y ) a
homomorphism. Let u : X̃ → Y be a ρ-equivariant map that is locally of
Sobolev class W 1,2. Since the energy density |∇u|2 is Γ-invariant it descends
to the quotient and we define

E(u) =
∫
X
|∇u|2dµ.

An equivariant finite energy map u is called harmonic if it is energy minimiz-
ing among all finite energy ρ-equivariant maps v : X̃ → Y which are locally
of Sobolev class W 1,2.

The main regularity result of [5] and [10] is that harmonic maps are locally
Lipschitz continuous. The key to Lipschitz regularity is the order function
that we shall briefly review. Let u : Ω→ Y be a harmonic map. By Section
1.2 of [5], given x ∈ Ω there exists a constant c > 0 depending only on the
C2 norm of the metric on Ω such that

σ 7→ Ordu(x, σ) := ecσ
2 σ Ex(σ)

Ix(σ)

is non-decreasing for any x ∈ Ω. In the above, we set

Ex(σ) :=
∫
Bσ(x)

|∇u|2dµ and Ix(σ) :=
∫
∂Bσ(x)

d2(u, u(x))dΣ(x).

As a non-increasing limit of continuous functions,

Ordu(x) := lim
σ→0

Ordu(x, σ)

is an upper semicontinuous function. By following the proof of Theorem 2.3
in [5], we see that Ordu(x) ≥ 1 (this is equivalent to the Lipschitz property
of u). The value Ordu(x) is called the order of u at x.

We now recall the existence result for harmonic maps. First, we make
the following definition.
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Definition 7 Let Γ be a discrete group, Y an NPC space and Isom(Y ) the
group of isometries of Y . A homomorphism ρ : Γ → Isom(Y ) is called
reduced if (i) ρ does not fix a point at infinity of Y and (ii) there is no
unbounded closed convex Z ⊂ Y , Z 6= Y preserved by ρ(Γ).

The above definition is the generalization in the NPC setting of the con-
dition that ρ has Zariski dense image in Margulis’ theorem. Our Definition
appears to be slightly different than the one in [12]. However, it follows from
[1] Corollary 3.8 that for the target spaces considered in this paper the two
definitions are equivalent, but we will not use this fact. The following ex-
istence statement of equivariant harmonic maps is well-known; for example,
see [5], [6] and [11].

Lemma 8 Under the same assumptions as in Theorems 2, there exists a
finite energy ρ-equivariant harmonic map u : X̃ → Y .

Proof. As in [5] Lemma 8.1 in the rank one case, there is a finite energy
equivariant map u : X̃ → Y . In the higher rank case, this is automatically
satisfied by the assumption of cocompactness. Now since the property of ρ
being reduced in particular implies that ρ(Γ) doesn’t fix a point at infinity in
Y , we obtain as in [5] Theorem 7.1 that u can be deformed to a finite energy
equivariant harmonic map. q.e.d.

3 The singular set

For a k-dimensional NPC DM-complex Y and a point P ∈ Y , let T PY
denote the (Alexandrov) tangent cone of Y at P . As explained in [3], T PY
is an unbounded F-connected Euclidean cell complex obtained by taking
the tangent spaces to all the DM’s passing through P with the appropriate
identifications. Furthermore, the exponential map

expYP : Br(0) ⊂ TPY → Br(P ) ⊂ Y

is defined by piecing together the exponential maps of all the DM’s containing
P .
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Now let u : Ω → Y be a harmonic map. Recall from [3] that a point
x0 ∈ Ω is called a regular point if Ordu(x0) = 1 and there exists σ0 > 0 such
that

u(Bσ0(x0)) ⊂ expYu(x0)(X0), (1)

where X0 ⊂ Tu(x0)Y is isometric to Rk. In particular, x0 has a neighborhood
mapping into a DM. A point x0 ∈ Ω is called a singular point if it is not a
regular point. Denote the set of regular points byR(u) and the set of singular
points by S(u). One of the main results of [3] is the following theorem.

Theorem 9 (cf. [3]) Let Ω be an n-dimensional Riemannian domain, Y a
k-dimensional NPC DM-complex and u : Ω→ Y a harmonic map. Then the
singular set S(u) of u has Hausdorff co-dimension 2 in Ω; i.e.

dimH(S(u)) ≤ n− 2.

Following [3] we will stratify the singular set further into the following
subsets. Set

S0(u) = {x0 ∈ Ω : Ordu(x0) > 1},

k0 := min{n, k} and Sj(u) = ∅ if j ≥ k0 + 1 or j ≤ −1. For j = 1, . . . , k0, we
define Sj(u) inductively as follows. Having defined Sm(u) for m = j + 1, j +
2, . . ., define Sj(u) to be the set of points

x0 ∈ S(u)\

 k0⋃
m=j+1

Sm(u) ∪ S0(u)


with the property that there exists σ0 > 0 such that

u(Bσ0(x0)) ⊂ expYu(x0)(X0) (2)

where X0 ⊂ Tu(x0)Y is isometric to Rj × Y k−j
2 and Y2 is (k − j)-dimensional

F-connected complex. Set

S−m(u) =
m⋃
j=0

Sj(u) and S+
m(u) =

k⋃
j=m

Sj(u).

It was shown in [3] that
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Lemma 10 The sets S0(u), S1(u), ..., Sk0−1(u), Sk0(u) form a partition of
S(u). Furthermore, the sets R(u), R(u)∪S+

m(u) are open and the sets S−m(u)
are closed.

Consider the point (0, P0) ∈ Rj×Y k−j
2 , where P0 is the lowest dimensional

stratum of Y k−j
2 . Define a metric G on Rj×Y k−j

2 by pulling back the metric
on Y via the exponential map in a neighborhood of (0, P0). When studying
local properties of the harmonic map u : Ω→ Y at x0 ∈ Ω, we may assume
that u maps Bσ0(x0) ⊂ Ω into (Rj × Y k−j

2 , G), where j ≥ 0. We need the
following two lemmas.

Lemma 11 Let u = (u1, u2) : (Bσ0(x0), g)→ (Rj×Y k−j
2 , G) be the harmonic

map with u(x0) = (0, P0) given above and j > 0. If we write u1 = (u1
I)I=1,...,j :

Bσ0(x0) → Rj, then u1
I ∈ W 2,p

loc (Bσ0
2

(x0)) for any p ∈ (0,∞) and any I =

1, . . . , j. In particular, |∇u1| is continuous in Bσ0
2

(x0).

Proof. Let R > 0 such that u(Bσ0(x0)) is contained in a ball BR of
radius R about (0, P0). For any DM M of (Rj×Y k−j

2 , G), extend coordinates
on Rj to define coordinates of B2R ∩M . Since Rj × Y k−j

2 is a locally finite
complex there exist a finite number of distinct DM’s M1, . . . ,ML contained
in Rj × Y k−j

2 . Define

C1 := max
l=1,...,L

max
i,r,s=1,...,k

sup
Ml∩BR

∣∣∣ MlΓirs
∣∣∣

where MlΓirs is the Christoffel symbols of Ml with respect to the coordinates
in B2R ∩Ml as above. Let uMl

i for i = 1, . . . , k denote the ith coordinate
function. Here, we emphasize that

uMl
I = u1

I for I = 1, . . . , j

by the construction above. In particular, note that uMl
I = u

Ml′
I for any

l, l′ = 1, . . . , L. Define

C2 := max
l=1,...,L

max
i=1,...,k

max
α=1,...,n

∣∣∣∣∣∂u
Ml
i

∂xα

∣∣∣∣∣
L∞(B 3σ0

4

(x0)∩u−1(Ml))

.
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For x ∈ R(u), let Ml be the DM containing u(Bδ(x)) for some δ > 0. We
have the harmonic map equation

4uMl
i = −gαβMlΓ

i

rs(u)
∂uMl

r

∂xα
∂uMl

s

∂xβ

in Bδ(x). Thus, for δ sufficiently small,

|4u1
I |L∞(Bδ(x)) = |4uMl

I |L∞(Bδ(x)) ≤ CC1C
2
2 ∀I = 1, . . . , j, (3)

where the constant C depends only on the dimension n and the metric g of
the domain. Since dimH(B 3σ0

4
(x0)\R(u)) ≤ n− 2, we see that the inequality

(3) implies 4u1
I ∈ Lp(B 3σ0

4
(x0)) which in turn implies u1

I ∈ W 2,p(Bσ0
2

(x0)).
q.e.d.

We now prove

Lemma 12 Let Ω be an n-dimensional Riemannian domain, Y a k-dimensional
NPC DM-complex and u : Ω→ Y a harmonic map. For any compact subdo-
main Ω1 of Ω, there exists a sequence of smooth functions {ψi} with ψi ≡ 0 in
a neighborhood of S(u)∩Ω1, 0 ≤ ψi ≤ 1 and ψi → 1 for all x ∈ Ω\(S(u)∩Ω1)
such that

lim
i→∞

∫
Ω
|∇∇u||∇ψi| dµ = 0.

Proof. The proof of the Lemma follows by induction from the following

Claim. Assume that given any subdomain Ω′1 compactly contained in Ω\S−j (u),

there exists a sequence of smooth functions {ψ̂i} with ψ̂i ≡ 0 in a neighbor-
hood of S+

j+1(u) ∩ Ω′1, 0 ≤ ψ̂i ≤ 1, ψ̂i → 1 for all x ∈ Ω\(S+
j+1(u) ∩ Ω′1) such

that
lim
i→∞

∫
Ω
|∇ψ̂i| dµ = 0,

and
lim
i→∞

∫
Ω
|∇∇u||∇ψ̂i| dµ = 0.

Then given any subdomain Ω1 compactly contained in Ω\S−j−1(u), there exists
a sequence of smooth functions {ψi} with ψi ≡ 0 in a neighborhood of S+

j (u)∩
Ω1, 0 ≤ ψi ≤ 1, ψi → 1 for all x ∈ Ω\(S+

j (u) ∩ Ω1) such that

lim
i→∞

∫
Ω
|∇ψi| dµ = 0,
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and
lim
i→∞

∫
Ω
|∇∇u||∇ψi| dµ = 0.

We now prove the claim. For a subdomain Ω1 compactly contained in
Ω\S−j−1(u), let Ω2 be such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω\S−j−1(u). Without the loss

of generality, we can assume that u = (u1, u2) : Ω2 → (Rj × Y k−j
2 , G) and

that ∇u1 ∈ W 1,p(Ω2) ∩ C0(Ω2) for any p > 0 by Lemma 11. Furthermore,
we claim that |∇u1| 6= 0 in Sj(u) ∩ Ω1. Indeed, if |∇u1|(x) = 0 for some
x ∈ Sj(u) ∩ Ω1, then the Gap theorem in [3] implies that |∇u2|(x) = 0 and
therefore also |∇u|(x) = 0, contradicting the fact that x is a point of order
1. In particular, this means that there exists a neighborhood N ⊂ Ω2 of
Sj(u) ∩ Ω1 and a constant δ0 such that

|∇u1| ≥ δ0 > 0 on N . (4)

Below, we will use C to denote any generic constant which only depends on
δ0, the dimension of n of Ω and the Lipschitz constant of u. For d ∈ (n−2, n)
to be chosen later, fix a finite covering {BrJ (xJ) : J = 1, . . . , l} of the compact
set Sj(u) ∩ Ω1 satisfying

l∑
J=1

rdJ ≤ ε. (5)

We also assume
B3rJ (xJ) ⊂ N (6)

which is true if ε > 0 is small and that xJ ∈ Sj(u)∩Ω1. Let ϕJ be a smooth
function which is zero on BrJ (xJ) and identically one on Ω\B2rJ (xJ) such
that |∇ϕJ | ≤ Cr−1

J , |∇∇ϕJ | ≤ Cr−2
J and |∇∇∇ϕJ | ≤ Cr−3

J . If ϕ is defined
by

ϕ = min{ϕJ : J = 1, . . . , l},
then ϕ ≡ 0 in a neighborhood of Sj(u)∩Ω1 and ϕ ≡ 1 on Ω1\∪lJ=1B2rJ (xJ).
Let

Ω′1 = Ω1\ ∪lJ=1 BrJ (xJ)

and let {ψ̂i} be as in the inductive hypothesis. Now let ψ0 = ϕ2ψ̂i. Then for
i sufficiently large, we have∫

Ω
|∇ψ0| dµ ≤ 2

∫
Ω
ϕψ̂i|∇ϕ| dµ+ ϕ2|∇ψ̂i| dµ
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≤ C
l∑

J=1

rn−1
J +

∫
Ω
|∇ψ̂i| dµ ≤ Cε+ ε. (7)

Furthermore, we have∫
Ω
|∇∇u||∇ψ0|dµ = 2

∫
Ω
ϕψ̂i|∇∇u||∇ϕ|dµ+

∫
Ω
ϕ2|∇∇u||∇ψ̂i|dµ

≤ 2
∫

Ω
ϕψ̂i|∇∇u||∇ϕ|dµ+

∫
Ω
|∇∇u||∇ψ̂i|dµ.

For δ ∈ (0, 1) to be chosen later, we write the first term as

2
∫

Ω
ϕψ̂i|∇∇u||∇ϕ| dµ

≤ 2
∫
∪lJ=1B2rJ

(xJ )
ϕψ̂i|∇∇u||∇ϕ| dµ

≤ 2

(∫
∪lJ=1B2rJ

(xJ )
|∇∇u|2|∇u|−1ϕ2ψ̂i|∇ϕ|δ dµ

)1/2

×
(∫
∪lJ=1B2rJ

(xJ )
|∇u||∇ϕ|2−δψ̂i dµ

)1/2

≤ 2

(∫
∪lJ=1B2rJ

(xJ )
|∇∇u|2|∇u|−1ϕ2ψ̂i|∇ϕ|δ dµ

)1/2 (
C

l∑
J=1

rn−2+δ
J

)1/2

.

Let ρJ be a Lipchitz function which is identically one on B2rJ (xJ) and iden-
tically zero on Ω\B3rJ (xJ) with |∇ρJ | ≤ Cr−1

J and |∇∇ρJ | ≤ Cr−2
J . Define

ρ = max{ρJ : J = 1, . . . , l}.

As in [5] Theorem 6.4 on R(u), we will use the pointwise inequalities

1

2
4|∇u|2 ≥ |∇∇u|2 − c|∇u|2 and (1− εn)|∇∇u|2 ≥ |∇|∇u||2

with constant εn depending only on n which combine to imply

εn|∇∇u|2|∇u|−1 ≤ 4|∇u|+ c|∇u| on R(u).

Since ϕ2ρ2ψ̂i ≡ 0 in a neighborhood of S+
j (u)∩ (∪lJ=1B2rJ (xJ)), we have that∫

∪lJ=1B2rJ
(xJ )
|∇∇u|2|∇u|−1ϕ2ψ̂i|∇ϕ|δ dµ

11



≤
∫

Ω
|∇∇u|2|∇u|−1ϕ2ρ2ψ̂i|∇ϕ|δ dµ

≤ 1

εn

∫
Ω
4|∇u|ϕ2ρ2ψ̂i|∇ϕ|δ dµ+

c

εn

∫
Ω
|∇u|ϕ2ρ2ψ̂i|∇ϕ|δ dµ.

The second term of the right-hand side has the estimate

c

εn

∫
Ω
|∇u|ϕ2ρ2ψ̂i|∇ϕ|δ dµ ≤ C

∫
∪lJ=1B2rJ

(xJ )
|∇ϕ|δ ≤ C

l∑
J=1

rn−δJ .

The first term can be rewritten

1

εn

∫
Ω
|∇u|4(ϕ2ρ2ψ̂i|∇ϕ|δ) dµ

≤ C
∫

Ω
ψ̂i|∇u|4(ϕ2ρ2|∇ϕ|δ) dµ+ C

∫
Ω
ϕ2ρ2|∇ϕ|δ|∇u|4ψ̂i dµ

+C
∫

Ω
|∇u| < ∇(ϕ2ρ2|∇ϕ|δ) · ∇ψ̂i > dµ

= (a) + (b) + (c).

By the mean value theorem,

(|∇u1|2 + s)
1
2 − |∇u1|

s
=

1

2
(|∇u1|2 + c)−

1
2

for some c ∈ (0, s). Letting s = |∇u2|2 + 2 < ∇u1,∇u2 >, we have

|∇u| = |∇u1|+ 1

2
(|∇u1|2 + c)−

1
2 (|∇u2|2 + 2 < ∇u1,∇u2 >).

Thus,

(a) = C
∫

Ω
ψ̂i|∇u|4(ϕ2ρ2|∇ϕ|δ) dµ

= C
∫

Ω
ψ̂i|∇u1|4(ϕ2ρ2|∇ϕ|δ) dµ

+C
∫

Ω

1

2
ψ̂i(|∇u1|2 + c)−

1
2 (|∇u2|2 + 2 < ∇u1,∇u2 >)4(ϕ2ρ2|∇ϕ|δ) dµ

= (a)1 + (a)2.
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For p and q with 1
p

+ 1
q

= 1 to be chosen later, we have

(a)1 = C
∫

Ω
ψ̂i|∇u1|4(ϕ2ρ2|∇ϕ|δ) dµ

= −C
∫

Ω
< ∇(ψ̂i|∇u1|),∇(ϕ2ρ2|∇ϕ|δ) > dµ

≤ C
∫

Ω
|∇ψ̂i| |∇u1| |∇(ϕ2ρ2|∇ϕ|δ)| dµ+ C

∫
Ω
|∇|∇u1|| |∇(ϕ2ρ2|∇ϕ|δ)| dµ

≤ C
l∑

J=1

r
−(1+δ)
J

∫
Ω
|∇ψ̂i|+ C

(∫
Ω
|∇|∇u1||p dµ

)1/p (∫
Ω
|∇(ϕ2ρ2|∇ϕ|δ)|q dµ

)1/q

≤ C
l∑

J=1

r
−(1+δ)
J

∫
Ω
|∇ψ̂i|+ C

(∫
Ω
|∇|∇u1||p dµ

)1/p
(

l∑
J=1

r
n−(1+δ)q
J

)1/q

.

Furthermore, using (4) and (6), we have

(a)2 = C
∫

Ω

1

2
ψ̂i(|∇u1|2 + c)−

1
2 (|∇u2|2 + 2 < ∇u1,∇u2 >)4(ϕ2ρ2|∇ϕ|δ) dµ

= C
∫

Ω
(|∇u2|2 + 2 < ∇u1,∇u2 >)4(ϕ2ρ2|∇ϕ|δ) dµ

= C
l∑

J=1

r
−(2+δ)
J

(∫
Ω
|∇u2|2 dµ+

∫
BrJ (xJ )

2 < ∇u1,∇u2 > dµ

)

≤ C
l∑

J=1

r
−(2+δ)
J

(∫
Ω
|∇u2|2 dµ+ 2

(∫
Ω
|∇u1|2 dµ

)1/2 (∫
Ω
|∇u2|2 dµ

)1/2
)

≤ C
l∑

J=1

r
n−(2+δ)+

εgap
2

J ,

where εgap is the order gap for approximately harmonic maps into Y k−j
2 as

described in [3]. Additionally,

(b) = C
∫

Ω
ϕ2ρ2|∇ϕ|δ|∇u|4ψ̂i dµ

≤ C
∫

Ω
|∇(ϕ2ρ2|∇ϕ|δ)| |∇u| |∇ψ̂i| dµ+ C

∫
Ω
ϕ2ρ2|∇ϕ|δ|∇|∇u|| |∇ψ̂i| dµ

≤ C
l∑

J=1

r
−(1+δ)
J

∫
Ω
|∇ψ̂i| dµ+ C

l∑
J=1

r−δJ

∫
Ω
|∇∇u| |∇ψ̂i| dµ

13



and

(c) = C
∫

Ω
|∇u| < ∇(ϕ2ρ2|∇ϕ|δ) · ∇ψ̂i > dµ ≤ C

l∑
J=1

r
−(1+δ)
J

∫
Ω
|∇ψ̂i| dµ.

Thus, we obtain

1

εn

∫
Ω
|∇u|4(ϕ2ρ2ψ̂i|∇ϕ|δ) dµ

≤ C
l∑

J=1

r
−(1+δ)
J

∫
Ω
|∇ψ̂i|+ C

(∫
Ω
|∇|∇u1||p dµ

)1/p
(

l∑
J=1

r
n−(1+δ)q
J

)1/q

+C
l∑

J=1

r
n−(2+δ)+

εgap
2

J + C
l∑

J=1

r−δJ

∫
Ω
|∇∇u| |∇ψ̂i| dµ.

Combining all the above estimates, we obtain∫
Ω
|∇∇u| |∇ψ0| dµ

≤ 2

C l∑
J=1

r
−(1+δ)
J

∫
Ω
|∇ψ̂i|+ C

(∫
Ω
|∇|∇u1||p dµ

)1/p
(

l∑
J=1

r
n−(1+δ)q
J

) 1
q

+C
l∑

J=1

rn−(2+δ)+
εgap

2 + C
l∑

J=1

r−δJ

∫
Ω
|∇∇u| |∇ψ̂i| dµ+

l∑
J=1

rn−δJ

)1/2

(
C

l∑
J=1

rn−2+δ
J

)1/2

+
∫

Ω
|∇∇u| |∇ψ̂i| dµ.

First we choose 0 < δ < εgap
2

and then choose d in (5) such that d ∈ (n−2, n−
(2+δ)+ εgap

2
) and d < n−2+δ. Then choose q > 1 such that n−(1+δ)q > d

and p such that 1
p

+ 1
q

= 1. Last fix i sufficiently large such that

l∑
J=1

r
−(1+δ)
J

∫
Ω
|∇ψ̂i| dµ,

l∑
J=1

r−δJ

∫
Ω
|∇∇u| |∇ψ̂i| dµ < ε.

We then have∫
Ω
|∇∇u| |∇ψ0| dµ

≤ 2

(
Cε+ C

(∫
Ω
|∇|∇u1||p dµ

)1/p

ε+ 3Cε

)1/2

(Cε)1/2 + ε.
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Finally, note that ψi ≡ 0 in a neighborhood Sj+1(u) ∩ (Ω1\ ∪lJ=1 BrJ (xJ),
ϕ ≡ 0 in ∪BrJ (xJ) and hence ψ0 ≡ 0 in a neighborhood of Sj(u)∩Ω1. Since
ε > 0 is arbitrary, this proves the claim and finishes the proof of the lemma.
q.e.d.

4 Proof of Main Theorems.

We first start with the following

Proposition 13 Let X̃ be the universal cover of a complete finite volume
Riemannian manifold X with parallel p-form ω and Y a k-dimensional NPC
DM-complex where each DM has a non-positive curvature operator. If Γ =
π1(X), ρ : Γ→ Isom(Y ) is a group homomorphism and u : X̃ → Y a finite
energy ρ-equivariant harmonic map, then D∗(du ∧ ω) = 0 in a neighborhood
of a regular point.

Proof. The proof is very similar to [5] Theorem 7.2 so we will only
sketch the argument. Let x0 ∈ X̃ be a regular point. As in [5], we will
work on the quotient X = X̃/Γ. Fix R > 0 and a nonnegative smooth
function ρ which is identically one in BR(x0) and zero outside B2R(x0) with
|∇ρ| ≤ 2R−1. Let ψ be a nonnegative smooth function vanishing in a small
neighborhood of S(u) ∩B2R(x0). By Stokes theorem we obtain

0 =
∫
X
〈D(ψρ2 ∗ (du ∧ ω)), D ∗ (du ∧ ∗ω)〉 dµ

+ (−1)m−p−1
∫
X
ψρ2〈∗(du ∧ ω), D2 ∗ (du ∧ ∗ω)〉 dµ.

Combining the above with the Corlette formula

∗D ∗ (du ∧ ω) = (−1)m−1D ∗ (du ∧ ∗ω)

in R(u), we obtain

0 =
∫
X
〈d(ψρ2) ∧ ∗(du ∧ ω), ∗D ∗ (du ∧ ω)〉 dµ+

∫
X
ψρ2|D ∗ (ω ∧ du)|2 dµ

+ (−1)p
∫
X
ψρ2〈∗(du ∧ ω), D2 ∗ (du ∧ ∗ω)〉 dµ.
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By [2] the last two quantities are nonnegative. Hence for any ε > 0, we have

0 ≤
∫
BR(x0)

ψ|D ∗ (ω ∧ du)|2 dµ

+ (−1)p
∫
BR(x0)

ψ〈∗(du ∧ ω), D2 ∗ (du ∧ ∗ω)〉 dµ

< ε

after taking R sufficiently large, ψ as in Lemma 12 and estimating the first
term as in [5] Theorem 7.2. By letting ψ → 1 we obtain D∗(du ∧ ω) = 0 on
R(u). q.e.d.

Corollary 14 Let X̃ = G/K be the quaternionic hyperbolic space or the
Cayley plane, Γ a lattice in G, Y a k-dimensional hyperbolic building, ρ :
Γ → Isom(Y ) a group homomorphism and u : X̃ → Y a finite energy ρ-
equivariant harmonic map. Then in a neighborhood of a regular point, u is
totally geodesic (i.e. ∇du = 0).

Proof. We apply Proposition 13 for ω either the Quaternionic Kähler 4-
form or the Cayley 8-form to obtain in a neighborhood of a regular point
that D∗(du∧ ω) = 0. The statement about totally geodesic follows from the
above as in [2] Theorem 3.3. q.e.d.

Proof of Theorem 3. We apply Proposition 13 for ω the Käler form
to obtain in neighborhood of a regular point that D∗(du∧ ω) = 0. With the
same notation as in [2] Theorem 3.3 this implies that ∇du(ω) = 0, which
immediately implies that u is pluriharmonic.

We now treat the higher rank case.

Lemma 15 Let X̃ = G/K be an irreducible symmetric space of noncompact
type of rank ≥ 2, Γ a lattice in G, Y a k-dimensional NPC DM-complex,
ρ : Γ → Isom(Y ) a group homomorphism and u : X̃ → Y a finite energy
ρ-equivariant harmonic map. In addition, assume that Γ is cocompact. Then
in a neighborhood of a regular point, u is totally geodesic (i.e. ∇du = 0).

Proof. The proof is similar to the one for the rank one case, once we
establish the Bochner formula of Jost-Yau. Our goal is to verify [6] Lemma
5.2.1. As in Lemma 14 we will work on the quotient X = X̃/Γ which by
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assumption is compact. We start with [6] equation (5.2.4) and note that all
terms are tensorial except when we integrate by parts. Let ψ be a nonnegative
smooth function vanishing in a small neighborhood of S(u). We multiply
both sides of (5.2.4) by ψ, integrate over X and apply integration by parts
on the first term on the right-hand side. The resulting equation is similar
to [6] equation (5.2.5) except that all integrands get multiplied by the cutoff
function ψ and has an extra term∫

X
〈∂ψ
∂γ

RX
βαγδuxβ , uxαxβ〉 dµ

on the right-hand side. Since RX
βαγδuxβ is bounded, this extra term is exactly

of the form estimated in Lemma 12. Hence by taking ψ → 1, we have verified
[6] equation (5.2.5) and therefore also (5.2.8).

The other point is to justify the formula

0 =
∫
X
|∇∇u|2dµ+

∫
X
RX
αβ < uxα , uxβ > dµ−

∫
X
< RY (uxα , uxβ)uxβ , uxα > dµ.

(8)
To see this, multiply the Eells-Sampson Bochner formula [6] equation (5.2.1)
by the cut-off function ψ as above and integrate over X. Applying integration
by parts on the left-hand side, we obtain a term bounded by∣∣∣∣∫

X
< ∇ψ,∇|∇u|2 > dµ

∣∣∣∣ ≤ c
∫
X
|∇∇u||∇ψ|

where c depends on the Lipschitz constant of u. Note that the last integrand
above is again of the form estimated in Lemma 12. Hence taking ψ → 1, we
have justfied (8). This verifies [6] Lemma 5.2.1 which in turn implies that u
is totally geodesic (cf. proof of [6] Theorem 5.3.1). q.e.d.

Proof of Theorem 1. The first step is to show that if γ : [0, 1]→ X̃ is
a constant speed parametrization of a geodesic, then u◦γ is a constant speed
parametrization of a geodesic in Y . Let x0 = γ(0) and x1 = γ(1). Let S be a
hypersurface perpendicular to γ′(1) at x1. For r > 0, let ψ : Br(0) ⊂ Rn−1 →
S be a parametrization of S near x1. Define Ψ : Br(0)× [0, 1]→ X̃ by setting
t 7→ Ψ(ξ, t) to be the constant speed geodesic between x0 and ψ(ξ). This map
is well-defined and smooth since X̃ has non-positive sectional curvature. In
fact, its restriction to Br(0)× (ε, 1) is a diffeomorphism for any ε. We claim
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that there exist x0i → x0 and x1i → x1 such that if γi : [0, 1] → X̃ is a
constant speed parametrization of a geodesic between x0i and x1i, then γi
maps the open interval (0, 1) into R(u). To prove this claim, we observe that
for εi → 0, there exists ξi ∈ Bεi(0) such that {ξi} × (εi, 1) ∩ Ψ−1(S(u)) = ∅.
Indeed, if {ξ} × (εi, 1) ∩ Ψ−1(S(u)) 6= ∅ for all ξ ∈ Bεi(0) ⊂ Rn−1, then
dimH(Ψ−1(S(u))) ∩ Bεi(0) × (εi, 1)) ≥ n − 1; but on the other hand, Ψ
restricted to Bεi(0)× (εi, 1) is a diffeomorphism, contradicting the fact that
dimH(S(u))) ≤ n − 2. This proves the claim by letting x0i = Ψ(ξi, εi),
x1i = Ψ1(ξi, 1) and γi : [0, 1]→ X̃ be defined by γi(t) = Ψ(ξi, εi + (1− εi)t).
By Corollary 14 and Lemma 15, we have ∇du ≡ 0 in R(u). Thus u ◦ γi is
a constant speed parametrization of a geodesic. By the continuity of u, this
then implies that u ◦ γ is also.

To complete the proof of the Lemma, it suffices to show that there is no
point x0 ∈ X̃ such that u bifurcates into different DM’s at u(x0). Choose
an arbitrary point x0 ∈ X̃ and identify x0 = 0 via normal coordinates.
Assume without loss of generality that Y is locally isometrically embedded
in RK , u(0) = 0 and that Tu(0)Y is also isometrically embedded in RK .
For λ > 0 sufficiently small, define uλ : B1(0) → λ−1Y to be the map
uλ(x) = λ−1u(λx). Since u maps geodesics to geodesics, uλ maps geodesics
to geodesics of λ−1Y . From this we can see that uλ, as a map into RK , is
uniformly Lipschitz continuous and converges uniformly on every compact set
to a degree 1 homogeneous minimizing map u∗ : B1(0)→ Tu(0)Y ⊂ RK . By
Proposition 3.1 [5], u∗ maps into a k-dimensional flat F of Tu(0)Y . Observe
that expu(0) F and u(Bσ(0)) are both a union of geodesics emanating from
u(0). Thus if u bifurcates into different DM’s at x0 = 0 (i.e. u(Bσ(0)) 6⊂
expu(0) F for any σ > 0), then there exists a geodesic γ emanating from 0
such the geodesic u ◦ γ only intersects expu(0) F at u(0). On the other hand
since u∗ is of degree 1

(u ◦ γ)′(0) = u∗ ◦ γ′(0) ∈ F

is a nonzero vector and since u◦γ is a geodesic this implies u◦γ ∈ expu(0) F ,
a contradiction. This shows that there exists no point at which u bifurcates
into different DM’s. q.e.d.

Proof of Theorem 2. First, by Lemma 8 and under the same assump-
tions as in Theorem 2, there exists a finite energy ρ-equivariant harmonic map
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u : X̃ → Y . Since by assumption there is no invariant unbounded convex
closed subset of Y (other than Y itself) preserved by Γ, Theorem 1 implies
that Y must be equal to its DM, hence Y ' Hk. Now again by assumption
the image of u must be bounded or equal to Y ' Hk. In the first case u is
constant, whereas the second case means that u is onto hence an isometry
(cf. [2]), which is impossible by assumption. This implies that u is a constant
map which in turn implies Theorem 2. q.e.d.
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