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Abstract

We show that harmonic maps from 2-dimensional Euclidean
polyhedra to arbitrary NPC spaces are totally geodesic or con-
stant depending on a geometric and combinatorial condition of
the links of the 0-dimensional skeleton. Our method is based on a
monotonicity formula rather than a codimension estimate of the
singular set as developed by Gromov-Schoen or the mollification
technique of Korevaar-Schoen.

1 Introduction

The connection between harmonic maps and representations of discrete
groups has been studied extensively in recent years. A harmonic map
is classically defined between Riemannian manifolds and is a critical
point of the energy functional. With the seminal work of Gromov and
Schoen on p-adic superrigidity (cf. [GS] and also [KS1], [KS2]), one
can employ techniques from geometric analysis to study harmonic maps
from Riemannian manifolds to metric spaces of non-positive curvature
(NPC spaces). Under appropriate curvature assumptions, one can prove
that the harmonic map is totally geodesic or even constant and conclude
this way that it is rigid. In the case the harmonic map is equivariant
with respect to a representation of the fundamental group of the domain
manifold to the isometry group of an NPC space, one can deduce the
rigidity of the representation. Instead of smooth domains, one could
also ask about the rigidity of representations of the fundamental group
of a singular space like a piecewise smooth polyhedron into the isometry
group of an NPC space. These questions are motivated by the study
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of representations of lattices in non-Archimedian groups in connection
with Margulis superrigidity.

Harmonic maps from singular domains were first studied in [Ch]
and further elaborated in [EF], [DM1] and [DM2]. More precisely, let
X be an admissible, Euclidean, 2-dimensional simplicial complex (cf.
Section 2 for precise definitions). We will denote by X ) the ith skeleton
of X, X its universal cover and T’ = 7 (X). Let Y be an NPC space and
let p : T' — Isom(Y') be a representation of I via isometries on Y. Under
very general assumptions on I" and p, one can construct a I'-equivariant
energy minimizer f : X — Y, also called a harmonic map (cf. [DM1] for
details). For reasons explained in [DM2], it is useful to associate certain
weights w to the 2-skeleton of X and modify the notion of energy to
account for the weights. One then obtains the notion of a w-harmonic
map (cf. Section 2 for details).

Perhaps the most interesting feature of harmonic (or w-harmonic)
maps from singular domains is that they are Holder continuous, but in
general fail to be Lipschitz continuous. Given p € X, let ord(p) denote
the order of f at p. As in the case of smooth domains, ord(p) can be
identified with the degree of homogeneity of the blow-up map of f and
the Holder constant of f (cf. [DM1] and Section 2). If ord(p) > 1
for all p, then the map is Lipschitz continuous and combined with a
Bochner formula, one can obtain rigidity of f; in other words that the
w-harmonic map f is totally geodesic on each simplex of X or even a
constant map. In the case of a smooth target Y, this was one of the
main results of [DM2].

The goal of the present paper is to extend these results in the fol-
lowing ways. First, we consider maps to arbitrary NPC space targets.
These include important examples like trees or the Weil-Petersson com-
pletion of Teichmiiller space. Moreover, we allow our domain space to
be polyhedra with arbitrary Euclidean metrics rather polyhedra con-
sisting of simplices isometric to equilateral triangles. This makes our
theorems applicable to a larger variety of examples than considered in
[DM2] and the combinatorial approach of [W1], [W2] and [IN] discussed
below. The main results of the paper can be summarized as follows:

Theorem [cf. Theorem 13| Let X be a 2-dimensional admissible
Eucliean simplicial complex, Y an NPC space and f : X —>Y al-
equivariant w-harmonic map such that ord(p) > 1 for all p € X,
Then f is totally geodesic on each 2-simplex F' of X. If the curvature
of Y is strictly negative, then f maps each 2-simplex F' into a geodesic.



If ord(p) > 1 for all p € X then f is constant.

As for smoth targets, the order of a harmonic map at a 0-simplex p
is related to certain geometric and combinatorial information of X. Let
M (Lk(p), TQY) denote the first eigenvalue of Lk(p), the link of p in X
with values in the tangent cone TQY of Y (cf. Sections 2 and 4) for
details. We show:

Theorem [cf. Theorem 16] Let X and Y be as in above and f : X — Y
a I'-equivariant w-harmonic map. If \i(Lk(p), ToY) > B(> B) for all
Q €Y, then ord(p) > /B(> VDB).

By combining the previous two theorems, we obtain:

Theorem [cf. Theorem 17] Suppose A1 (Lk(p), ToY) > 1 for allp € X©)
and all Q € Y. Then any w-harmonic map f : X — Y is totally geodesic
on each simplex of X. If Y 1is strictly negatively curved, then f maps
each simplex of X into a geodesic. Furthermore, if \{(Lk(p),TQY) > 1
for allpe X and all Q € Y, then f is constant.

We now give a sketch of the proofs of the above theorems. Let f: X —
Y be a I'-equivariant w-harmonic map as before. As mentioned above,
the condition ord(p) > 1 for all p € X© implies that f is Lipschitz
and this is a key part of the argument. Next, by performing domain
variations along the x-axis we obtain as in [KS1], the subharmonicity
of \%F (cf. Lemma 5). Since variations in the y-direction do not make
sense along the edges, we have to appeal to the balancing condition and
the holomorphicity of the Hopf differential to obtain the subharmonicity
of Z %f 2, where the sum is taken over all the faces of X adja-
FeF(E)
cent to the edge E (cf. Lemma 5). This implies the subharmonicity
of the energy density |V f|? (cf. Lemma 6). In particular, the energy
density |V f|? is of Sobolev class W2 and hence it has sufficient regu-
larity to justify our main monotonicity formula (cf. Lemmas 9, 10 and
11). The weak inequality /A|V £|? > 0 defined on each face of X is now
summed over all the faces of X. In [DM2], we used Stokes’ Theorem on
each face and balancing condition along the boundary of each face to
justify the conclusion that this sum is zero which immediately implies
the harmonicity of |V f|. Because of the singular nature of the target




space considered in this paper, we use an alternate argument based on
the monotonicity formula (cf. Theorem 12) to deduce a more general
conclusion. This implies that the pullback tensor

G &5
(mi5) = < af " af ’@‘zy )
dy

or Oy

is smooth on each simplex. The NPC condition on the target space
implies that this pullback tensor 7;; is also NPC (cf. Appendix). This,
combined with the harmonicity of its components, implies that m;;, and
hence also the map f, is flat (cf. Theorem 13). The totally geodesic
property or the constancy of the map f follows.

We next indicate how to relate the order of f at p with the eigenval-
ues of the link at p. In the case when the target Y is smooth, this can be
done by reducing the harmonic map equation of the blow up map to the
eigenvalue equation of the Laplacian on Lk(p) (cf.[DM2]). In the case
Y is singular, we adopt the Rayleigh quotient definition of eigenvalue
and relate it to the order (cf. Theorem 16). At this point our approach
is parellel to the combinatorial approach of M-T. Wang and Izeki and
Nayatani (cf. [W1], [W2] and [IN]). We note that for X, a 2-complex
with a property that each 2-simplex is isometric to an equilateral tri-
angle, and a smooth target Y we showed in [DM2] an explicit relation
between the condition A\ (Lk(p)) > 1 and the corresponding condition
for the eigenvalue of the combinatorial Laplacian A\{°™(Lk(p)) > 1/2.

We end this introduction by mentioning one important application
of our results to rigidity questions of the mapping class group. Recently
Wolpert showed that the tangent cones of the Weil-Petersson completion
T of the Teichmiiller space 7 of marked genus g, n-punctured Riemann
surfaces are Euclidian cones. In this case, the condition

A1(Lk(p), TQT) >1

can be replaced by the simpler A\;(Lk(p)) > 1. Therefore, we immedi-
ately obtain the following rigidity result:

Theorem [cf. Theorem 18] Let X be a 2-dimensional admissible sim-
plicial complex such that A\i(Lk(p)) > 1 for all p € X, Then any w-
harmonic map to the Weil-Petersson completion T of Teichmiiller space
is totally geodesic on each simplex of X. Furthermore, if \i(Lk(p)) > 1
for all p € X then f is constant.



The previous theorem clearly implies that given a group I' which is
the fundamental group of a 2-complex X admitting an Euclidean met-
ric with the property that m1(X) = T" and A\ (Lk(p)) > 1 for all p €
X©) then any representation of I' into the mapping class group is
constant. In the special case I' is realized as a fundamental group of
a 2-complex X where all simplices are equilateral triangles with the
condition A;(Lk(p)) > 1 for all p € X, this result was obtained by
using discrete harmonic maps (cf. [IN] and [Wo]). In this case, the
condition A;(Lk(p)) > 1) is replaced by the combinatorial condition
A8 (Lk(p)) > 1/2, which are shown to be equivalent by Proposition
13 and Corollary 14 of [DM2]. Although technically simpler than ours,
the Bochner formula for discrete harmonic maps does not seem to carry
over to the case A{**(Lk(p)) = 1/2 or for the apparantly more general
condition that we are considering for I'. As pointed out by M-T. Wang
(cf. [W2]), there are important examples of complexes where the com-
binatorial eigenvalue of the Laplacian is equal to 1/2.

Acknowledgement. We would like to thank Richard Wentworth for
pointing out Wolpert’s paper [Wo] to us.

2 Definitions and known results

2.1 Admissible Euclidean complexes

A simplicial complex of dimension 2 is referred to as a 2-complex. A
connected locally finite 2-complex is called admissible (cf. [Ch] and
[EF]) if the following two conditions hold:

(i) X is dimensionally homogeneous, i.e., every simplex is contained
in a 2-simplex, and

(ii) X is locally 1-chainable, i.e., for any O-simplex v, every two 2-
simplices A and B containing v can be joined by a sequence A =
Fo,eo, F1,e1, ..., Fr_1,ep_1, Fx, = B where F; is a 2-simplex containing
v and e; is a 1-simplex contained in F; and Fj;.

The boundary 0X of X is the union of 1-simplices that are contained in
only one 2-simplex. A Riemannian 2-complex is a 2-complex X along
with a Riemannian metric gr defined on each 2-simplex F' smooth up
to the boundary of F' so that for any two 2-simplices F' and F’ sharing



a 1-simplex e, gr and gp induce the Riemannian metric on e. We call
a Riemannian 2-complex Euclidean if for any 2-simplex F', there exists
a simpicial isometry ¢ : (F, gr) — T where T is a triangle in R? with
the induced Euclidean metric. In the sequel, all complexes are admis-
sible, Euclidean, compact and without boundary. We will assume all
simplices are closed and use X® to denote the i-skeleton of X, i.e. the
union of all i-simplices of X. For any simplex s, star(s) will denote the
union of all simplices containing s.

2.2 NPC spaces

A complete metric space (Y,d) is called an NPC space if the following
conditions are satisfied:

(i) The space (Y, d) is a length space. That is, for any two points P and
Q@ in Y, there exists a rectifiable curve ¢ so that the length of ¢ is equal
to d(P, Q) (which we will sometimes denote by dpg for simplicity). We
call such distance realizing curves geodesics.

(ii) For any three points P,R,Q €Y, let ¢: [0,I] — Y be the arclength
parameterized geodesic from @ to R and let Q; = ¢(¢l). Then

dpg, < (1—t)dpg + tdpg — t(1 — t)dgp.

We say that the curvature of (Y,d) is strictly negative if there exists
Kk < 0 so that

cosh(—rdpq,)
sinh(—(1 — t)rdgr)
sinh(—kdgr)

sinh(—~rtdgr)
sinh(—rdgr)

cosh(—rdpqg) + cosh(—kdpR).

We now recall the notion of a tangent cone of an NPC space Y at a
point Q) € Y. Let GgY be a set of nonconstant arclength parameterized
geodesics ¢ so that ¢(0) = Q. Given ¢, € GgY, define

2 2 2
Qge(y + ooy — dc(t)c'(t')>
2dqe(ydoe (1)

L(c(t),d (') = cos™ ! (

and

L(e,d) = tﬁi/rilo /(c(t), ().



Define an equivalence relation ¢ = ¢’ iff /(¢,¢’) = 0. The completion of
the quotient SpY = (G@Y/ ~) with the distance function induced by
/ is called the space of directions at (). The tangent cone is the cone
over SgY, namely

ToY = (SqY x R1)/(SqY x {0}).

For W = (V,t),W’ = (V',t') € TQY, the distance function dr,y is
defined by

A7,y = (W, W') = 2 + 1% — 2#t' cos L(V, V)
and the inner product on 7Y by
< W, W' >=tt' cos L(V, V).

We then have |[W|:=< W, W >!/2= droy (0, W) where 0 = SqY x {0}
is the origin of the cone TY. The projection map 7 : ¥ — TpY is
defined by setting

m(P) = ([c],d(Q, P))

where c is the geodesic joining @ to P and [¢] € SgY is the equivalence
class of c. The NPC condition guarantees that 7 is a distance decreasing
map. We refer to [BH] for more details.

2.3 w-harmonic maps

We first recall the Korevaar-Schoen energy for a map into a complete
metric space (cf. [EF]). Let X be a 2-dimensional Riemannian complex
and dz the volume form defined by the Riemannian metric. Let Be(x)
be the set of points in X at a distance at most € from x and set S(x) =
0B (z). Define ¢ : X — R by

_ d*(f(2), f(y)) do,c
ee(@) = /yesé (z) €2 €

where o, is the induced measure on Sc(z). We define a family of
functionals E/ : C.(X) — R by setting

Eef(gp) = /Xgoeedx.

We say f has finite energy (or that f € W2(X,Y)) if

Ef = sup limsup E/ () < oc.
PEC(Q),0<p<1 =0
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It can be shown that if f has finite energy, the measures e (z)dx converge
weakly to a measure which is absolutely continuous with respect to the
Lebesgue measure. Therefore, there exists a function e(x), which we
call the energy density, so that e.(x)dz — e(x)dx. In analogy to the
case of smooth targets, we write |V f|?(z) in place of e(x). In particular,
B = [y |V fide.

Let Q = F for some 2-simplex I of X. For V € I'Q where I'Q is
the set of Lipschitz vector fields on €2, | f.(V)|? is similarly defined. The
real valued L' function |f.(V)|? generalizes the norm squared on the
directional derivative of f. The generalization of the pull-back metric is

T (V,W) =TQ xTQ— L'(Q,R)

where ) )
wp (VW) = Sl fo(V W) = SIf(V = W)

We refer to [KS1] for more details.

Let X be a 2-dimensional admissible Euclidean complex and Y an
NPC space. An isometric action of a group I' = 71(X) on Y is a
homomorphism p : I' — Isom(Y). A map ¢ : X — Y is said to be
equivariant if

p(M)#(p) = $(p)

for vy € ' and p € X. By identifying X with a fundamental domain of
X, we can think of ¢ also being defined on X. We say ¢ : X — Y has
finite energy if

BP = / IV [2dz < co.
X

In order to include certain important examples appearing in p-adic ge-
ometry (e.g. p—adic buildings), we will assume that for each 2-simplex
Fin X, we have an associated weight w; more precisely w assigns a pos-
itive number w(F') to each 2-simplex F' of X. We define the w-measure
dii, by setting

Ay = w(F)dz

where dz is the volume form on F' defined by metric gp. We define the
w-energy E,,(p) of a finte energy map ¢ : X — Y as

Bu(@) = X w(F) [ [V6Pde =3 [ 196,
F

I3 F

where Z indicates the sum over all n-dimensional simplices F' of X.

F
For the sake of notational simplicity, we will fix weights w(F') on F' and



we will denote dy = dpy, E = Fy, etc. A map f : X — Y is said to
be w-harmonic if E( f) < E(p) for all equivariant finite energy maps
¢:X - Y. If w(F) =1 for all F, then we recover the usual notion of
harmonicity defined in [DM1].

2.4 Blow up maps and tangent maps

Let X be a Euclidean admissible 2-complex X, Y an NPC space and
f: X — Y a w-harmonic map. Fix p € X. We set St(p) = star(p) if
pe X0 St(p) = star(E) ifp e E—X© and St(p) = Fifpe F— X1,
For any o > 0 sufficiently small so that B,(p) C St(p), let

_ 2
Bo)= | AT

1) = [ iy P 1)

and

Let B; be a dilation of B,(p) by factor of % and d, : Y XY — R be the
distance function on Y defined by d,(-,-) = pu(o)d(-,-). The w-measure
djiy is inherited on B; from B, (p) without any dilation. We define the
o-blow up map of f at p as the map

fo:B1— (Y, d,)
defined by

fa2)=1(2).

The following results for w-harmonic maps from a 2-complex into a
non-positively metric space follow by minor modification of the argu-
ments presented in [DM1]. (In [DM1], we only considered 2-simplices
isometric to the standard equilateral triangle and a weight function w
so that w(F') =1 for all 2-simplices F of X.)

Theorem 1 Let f : X — (Y,d) be a w-harmonic map from an Eu-
clidean admissible 2-complez into an NPC space (Y,d). For eachp € X,
the function.

oE(o)

I(0)

g —

9



is monotone non-decreasing for o < og where ag s sufficiently small so
that By, (p) C St(p). We call

o) = Jim 75

the order of f at p. Let a = ord(p). Then the functions

I(o)
77 T 2a

and P
_E)

are monotone non-decreasing for o < oyg.

Theorem 2 Let f : X — (Y,d) be a w-harmonic map from an Eu-
clidean admissible 2-complex into an NPC space (Y,d). Fizp € X and
let « =ord(p). There exists a sequence o; — 0 so that the o;-blow up
maps fo, : B1 — (Y,ds,) of f at p converge in the sense of Korevaar-
Schoen (cf. [KS2]) to map f. : B1 — (Yi,ds) into an NPC space.
The map f. is Lipschitz continuous except possibly at the vertex and is
homogeneous of order «, i.e.

z

e (f4(2), £+(0)) = |2|*du(fi(), £(0))

]
for every z € B1. We call f. a tangent map of f at p.

We remark that one of the consequences of the convergence in the
sense of Korevaar-Schoen is that the directional energy converges in L'.
In particular, if we consider 0B) as a graph, let 7 be the arclength
parameter on each edge, and consider f,, and f. as maps defined on
0B, by the restriction, then

Ofs |2
/ Jo: ds — /
aB)\ aB)\

or
Here ds is the measure induced on 0B, from the measure dyu,, on Bj.

2

Ot ds for a.e. A€ 0,1]. (1)

or

2.5 Existence and Regularity Results

We also have the following existence and regularity of w-harmonic maps
which again follow from a simple modifications of [DM1]

10



Theorem 3 Let X be an admissible Fuclidean 2-complex with I' =
m1(X), Y an NPC space and p : I' — Isom(Y') be an isometric ac-
tion of I'. Assume that p does not fix an equivalent class of rays. If the
curvature of Y is strictly negative or Y 1is locally compact, then there
exrists a p-equivariant w-harmonic map f X —Y.

Theorem 4 Let X be an admissible Euclidean 2-complex, Y an NPC
space and f : X — Y a w-harmonic map. Then f is Lipschitz continu-
ous away from the 0-simplices of X with the Lipschitz bound dependent
only on the total w-energy of f and the distance to the 0-simplices. Let
p be a 0-simplex and o be the order of f at p. Then there exists o > 0
so that

IVf*(q) < Cr*e?

for all ¢ € By(p) where C depends on E(f) and r = dx(p,q).

3 The harmonicity of the energy density

Let X an admissible Euclidean 2-complex, Y an NPC space and f :
X — Y be a w-harmonic map. In this section, we show that under the
assumption ord(p) > 1 for every p € X (), we can prove that the energy
density function is harmonic.

Fix a 1-simplex F of X, let p € E and oy > 0 sufficiently small
so that B,,(p) C star(E) if p € E — X© or B,,(p) C star(p) if p
is a O-simplex. Suppose F' is a 2-simplex incident to E. Recall that
there exists a simplical isometry ¢r : (F,gr) — T where T C R? is
an Euclidean triangle. Let ¢ be the linear isometry of R? which takes
T = ¢p(F) into y > 0, ¢p(F) into the line y = 0 and ¢r(p) to the
origin (0,0). We refer to the coordinate (x,y) of F' as the composition

2 2 2
o ¢ We will write |9 | 9fr fo()

and - - %L; to denote
f*(a%)‘ and ﬂf(a%, 8%) respectively on F. These are L!-functions on

Afr
dy

i

Lemma 5 Letp € E— X, 05 > 0 sufficiently small so that By, (p) C
star(E) and D C R? be a disk of radius o centered at the origin. Define

11



‘6l"fE|27 ’any‘Q : D — R by setting

ofr

> (z,y) y=>0
ox
0, e P, y) =4 FTE
ofr
> or (z,-y) y<0
rerp) 9F
0
> é};f (z,y) y>0
Oy = "
> ' (z,—y) y<0
rere) %Y

respectively, where F(E) is the set of 2-simplices incident to E. The
functions |0, fE|* and |0, fr|* are weakly subharmonic in D, i.e.

/ A0, Fg|> >0 and / An|dyFe|* >0
D D

for every n € C°(D).

PRrROOF. Fix e > 0and let fo(x,y) = f(x,y) and fi(z,y) = f(z+e€,y)
on each face F' € F(E). For non-negative smooth function 7 with
compact support in D, let f,, = (1—n) fo+nfi1. We can follow the proof
of Lemma 2.4.2 and Remark 2.4.3 of [KS1] (also see [DM1], Proposition
3.8) to see that

/D And(f(z,y), f(z +€,3)) > 0.

Divide by €2 and use the fact that f is Lipschitz as well as the Dominated
Convergence Theorem as we let ¢ — 0 to see that |0, fg|? is weakly
subharmonic.

The function

_|ofr|* |Ofr|* .0fr Ofr
o= o] - |5 2% T )
is holomorphic in F' and Im Z ¢r(x,0) =0 ([DM1], Theorem 3.9).

FeF(E)
Therefore, the function ¢g : D — C defined by

> ér(zy) y>0
_ FeF(E)
Pel@y) = > br(z,—y) y<o0
FeF(E)

12



is holomorphic by the reflection principle. This implies that |0, fg|* —
|0, fE|? is harmonic. Since |9, fg|? is weakly subharmonic, |9, fg|? is

also weakly subharmonic. Q.E.D.

Lemma 6 Letp € E—X© and D as before. The functioner : D — R
defined by setting

> IViePxy) y>0

FeF(E)

> Ve —y) y<0

FeF(E)

€E(13, y) =

1s weakly subharmonic

PROOF. Since eg = |0, fr|* + |0, fr|?, the assertion follows from
Lemma 5. Q.E.D.

Lemma 7 Letp € E. For any F € F(E), let (r,8) be polar coordinates
for F centered at p € E so that E — {p} is given by the line 6 = 0 and
the line § = w. Let ri,79,61,0 be so that Rp = {(r,0) : 0 <ry <r <
ro, 01 <0 <0} C EU(F —0F) for all F € F(E). Then

(r,0) = > [Vfrl(r,0)

FeF(E)
for0<r <r<ryand 0 <0 <0y is a WH2 function.

PRrOOF. If Rp is contained in F' — JF, then the assertion is obvi-
ous since the weak subharmonicity and boundedness of |V fr|? implies
|V fr|? is I/Vlf)f If pe E— X then this is also obvious by Lemma 6.
Now we assume p is a 0-simplex. We need to consider the case when
01 = 0. Let ro € (r1,72) and p’ € E be so that d(p,p’) = ro. Let D be
defined as before with p replaced by p’. Then the subharmonicity of eg
in Lemma 6 implies

(r,0) — Z IV fr|?(r, 0)

FeF(E)

is Wlif in DN{(r,0) : 0 <r; <r <re,0<6 <0} Thus, assertion
follows immediately. Q.E.D.

13



Corollary 8 Forp € X, let o9 > 0 be so that By, (p) C star(E) if
pe XM — XO) gpd By, (p) C star(p) if p is a 0-simplex. Then

r \Vf|2ds
8Br(p)

for0<r<ogisa I/Vlif function.

PROOF. Let (r,0) be the polar coordinates in Lemma 7. If p €
XM — X () then the conclusion follows immediately from Lemma 7 and
the fact that

/ Virlds= 3 /nyFP(r,e)rdo.
aBr(p) 0

FeF(E)

If p is a O-simplex, then for every 1-simplex FE with p € E, there exists
0y > 0 sufficiently small so that

(t,@)f—> Z ‘vaP(tag)

FEF(E)

is VVlif for 0 <t < opand 0 < 6 < 6y by Lemma 7. For any r € (0, 09),
let ¢ € F so that d(p,q) = r. There exists ¢ > 0 small so that

Be(q) cU{(t,0) e F:te (r—er+e),0ec(0,02)}

Thus,

02(t)
S [ Vel oy
0

t |V f|2ds =
a) FeF(E)

OBt (p)NBe(

is Wh? where 09(t) = sup{f : (t,0) € B.(q)}. This together with the
fact that |V fp|? is W12 in the interior of a 2-simplex F implies the
assertion. Q.E.D.

Corollary 8 implies that

ri— |V f|%ds
0B:(p)

is absolutely continuous and hence differentiable a.e. for o € [0, og].

14



Lemma 9 Let f : X — Y be a harmonic map, p € X and ord(p) > 1.
For every oy so that By, (p) C star(p), there exists a set A C [0,00] of
positive measure so that

1
a4 (/ ny|2ds> >0 foroe A
do \ o JaB,(p)

PRrROOF. Let 1

Go) = f/ IV f|2ds
830(17)

o

and suppose there exists o9 > 0 so that G'(0) < 0 for almost all 0 < o <
0o. Then G(o) is non-increasing for 0 < o < 0. Let ¢; = lim,_,0 G(0).

Now let
2

_“ 2
Fo)== |, T

2
o
The assumption that ord(p) > 1 and Theorem 1 implies that F(o) is

non-decreasing for all 0 < ¢ < g¢. Let ¢a = lim,—,0 F(0). We claim
G(o) > F(o). Indeed,

/
0 < ([ 1P
o Bs(p)

2 4

= S| NP [ VR
0" JoBs(p) 0" /By (p)
2

= Z(Glo) - F(0)).

Since G(o) is non-increasing, F'(o) is non-decreasing and G(o) > F(0),
we conclude ¢; > ¢z and there exists o1 so that G(o) > 942 > F(o)
for 0 < o < 1. Therefore,

C1+02<ﬁ
2 2

AN\
By (p)

_ / 1 (/ ]Vf\2d3> do
0 0B (p)

/"1 o+ e 1+ o0l
0

> do =
odo 5 9

a contradiction. Q.E.D.
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Lemma 10 Let f: X — Y be a harmonic map, p € X gnd ord(p) >
1. Fither f is constant on star(p) or there exists a set A" C [0,00] of
positive measure so that

do \ o

d (1/ Vf\2d3> ds >0 foroe A,
330(17)

where o is sufficiently small so that By, (p) C star(p).

PROOF. If @ := ord(p) > 1, then Theorem 1 implies that lim,_.o F'(0) =
0. Thus, for any € > 0, there exists o1 > 0 so that F(o1) < e. Thus,
there exists o9 € (01/2,01) so that

S ggeas < 2 jugpas
2 JOBoy (p) 1 JOBs, (p)
2\2 [
< ()/ / IV f[2ds | do
01 o1/2 0Bs(p)
< 2¢,

which implies lim,_,g G(o) = 0. Thus, unless G (o) is identically equal
to 0, G'(o) > 0 for 0 € A" where A’ C (0,0) is of positive measure.
But if G(0) is identically zero then F'(o) is identically equal to 0 which
implies |V £|?(p) = 0 p € B,,(p) and hence f is constant in B,,(p). By
following the proof of [GS] Proposition 3.4, it is not hard to show f is
constant in star(p). Q.E.D.

Lemma 11 Let p € E— X, For oy > 0 so that By, (p) C star(E),

do \ o

1
d (/ |Vf|2ds> >0 for0<o<og.
chr(P)

ProoF. For 0 < 0 < 0y,

/ ]Vf\zd:s:/ epds
0B (p) 0D (2,0)

where (z,0) is the coordinates for p and D,(z,0) is a disk of radius o
centered at (x,0). The conclusion follows immediately from the subhar-
monicity of eg. Q.E.D.
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Theorem 12 If f : X — Y is a w-harmonic map so that ord(p) > 1
for allp € X then |V f|? is a harmonic function on each 2-simplex
F of X. If ord(p) > 1 for all p € X, then f is a constant map.

PRrOOF. Let p € X Since 9X = 0, there exists o9 > 0 so that
By, (p) C star(p). By Lemma 9, we can choose ) — 0 so that

d (1 )
— | = d _s» > 0.
- (U Ly 197 ) omay 20 3)

Fix k and let € > 0. Choose points {p1,...,pn} € X — UpeV(X)B(SI;(P)
and positive real numbers {ri,...,r,} so that (1) r; < ¢, (2) By, (pi) N
By, (pj) =0 fori,j=1,..,nand i # j, (3) Bs(p) N By, (pi) =0 for all
pe X andi=1,..,nand (4) XY is covered by

(peg(o) B (p ) (U B, (pi ) .

Let X' = X — (Upex(m Bai(p)) U ( i Bn(pl)). For each F € F(X),
we have

- [ VIvsEve o
F

for any ¢ € C°(F). Let ¢ approximate the characteristic function of
F'=FNX'. Then

> d 4
0 =~ [ Svids @)
_ Vf2ds + / VfPd

pe)%:)mF/WS P)NF 37“| flds ; (pi)nF Or | JI7ds

d

1
= o\ [ 1sds ) ey
pe)%mF . (U OB (p) ’
+ / Vs | lo—r
> Tin- (U ooV s>| :

pi€F

where 7 is the outward pointing normal to OF" defined everywhere ex-
cept at finite number of points. On the other hand,

- /aF 191 2ds )

FeF(X

17



d 1
= Z d(/ |Vf|2d8) |o=s?
"d (1
+ 177 */ \Y% 2d o=r;
>t ( N s)\ 1

> 0,

where the last inequality is implied by Lemma 11 and (3). Thus,

V fl*ds = 0.
/8F/877| f12ds

The arbitrariness of € along with the fact that 6/ — 0 proves the har-
monicity of |V f|? on each F.

If ord(p) > 1 for all p € X, then either f is a constant map or
6% can be chosen so that (3) is given with a strict inequality for some
p € X© by Lemma 10. The strict inequality in (3) leads to a strict in-
equality in (5) which contradicts (4). Thus, f is a constant map. Q.E.D.

Theorem 13 If f : X — Y is a harmonic map with ord(p) > 1 for all
pe XO then f is totally geodesic on each 2-simplex F of X, i.e. f
maps every Fuclidean line in F to a geodesic in Y. If the curvature of
Y is strictly negative, then f maps each 2-simplex F' into a geodesic. If
ord(p) > 1 for all p € X then f is constant.

PROOF. By Theorem 12, |V f|? = | |2—|—| % |2 is a harmonic function
on each 2- s1mp1ex F of X. Since ¢F deﬁned by (2) is holomorphic,
Repr = | |2 | |2 is also a harmonic function. Thus, ] |2 and

| df |2 are harmonic functions and hence smooth. Additionally, §Imgz§F =

gi % is harmonic and smooth. Let

|8f’2 gf gf
(mi) = ( af " of mf|2y >

dr By |8

and 2 be any open subset of F' where 7 is non-degenerate. We will
show that f|q is a totally geodesic map. First, we note that (€,m)
is a smooth Riemannian manifold of non-positive curvature (see ap-
pendix). Let d; be the distance function induced by the metric .
The identity map fo : Q@ — (Q,7) is a (smooth) harmonic map. In-
deed, if hg : Q@ — (F,m) is so that E(ho) < E(fo) and holoa = folaq,
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then E(f o hg) < E(f o fo) = E(f), a contradiction. Furthermore,
AV fol? = AIVF? = 0, so the Eells-Sampson Bochner’s formula im-
plies that |Vdfo|? = 0 and fj is a totally geodesic map. Thus, if t — v(t)
is a unit speed parameterization of a Euclidean line in 2, then 7(¢) is a
geodesic with respect to the metric 7. Hence, the Christoffel symbols of
7 are identically constant which implies that 7 is constant. In particu-
lar, this means that = is flat, ¢t — m(7/(¢),7/(t)) is constant, and given
two constant speed parameterization v;(t) and 2(¢) of a Euclidean line
emanating from the same point, t — d(71(¢),72(t)) is a linear function.
For any zy € €, let (r,0) be the polar coordinates centered at zy. For
any 0 < r < R with R sufficiently small, we therefore have

of|? 1
) (16) = mp(da((R.0), )
and af 2 2 19f 2
a0 (r,0) = % 96 (R, 0).

Define h : Dg(z9) — Y by setting

nri0) = (1= ;) Fao) + 17 (R.6).

Note that h maps radial lines to geodesic lines. The NPC condition
implies that

d(h(r,60),h(r. 62)) < d(f(R.01), f(R.62)).
Thus, , , )

oh 2 |0f _|of

% (Ta ‘9) < ﬁ % (Ra 9) - o0 (T79)'

Furthermore, the fact that the distance function induced by the pull
back metric always bounds the pull back of the distance function implies

1 1 0
(r,0) = T P(F(R,6), F(0)) < 2 (d"(R.0), 20))" = | 2

2 2

Oh (r,6)

ar

This implies E? < Ef, but since f is energy minimizing h = f. There-
fore, f maps radial lines emanating from zg to geodesics. Since zg is an
arbitrary point in 2, this proves f|q is totally geodesic in €.

Since 7;; is smooth, the set of points in F' where 7 is non-degenerate
is an open set. On the other hand, the above argument shows that =
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is constant on this set, so this set is also closed. Thus, either 7 is non-
degenerate on all of F' or degenerate on all of F'. In the former case, we
are done by the argument in the previous paragraph. If Y has strictly
negative curvature, this case is impossible. In the latter case, we choose
local coordinates so that the Hopf differential is equal to dz?, i.e.

Ofp|* _|Ofr[* _,0fr Ofr _,
or dy or Oy

If 7 not equal to the zero matrix in a neighborhood, then it follows that

ofr
ox

2

2 oy,

=1 and dy

This immediately implies that f maps this neighborhood to a Lipschitz
curve. By the same argument as in the non-degenerate case, this line
must be a geodesic. The last statement of the theorem follows from
Theorem 12. Q.E.D.

4 The first eigenvalue and order

We now wish to establish assumptions on X for which the order of the
w-harmonic map at a 0-simplex in X is > 1. In this section, we define
the first eigenvalue of a link of a O-simplex of X with values in an NPC
space and give a lower bound of the order in terms of the lower bound
on the first eigenvalues.

Let G be a metric graph. We denote the edges of G by e, ...,er and
assume that each edge e; has an associated weight w; = w(e;). In the
case G = Lk(p) where p € X9, X is an Euclidean admissible 2-complex
with weight w, there is a one-to-one correspondence between the edges
and the 2-simplices F},.., Fy, incident to p; namely, Fj is the join (i.e.
convex hull) of v and e;. Moreover, the length of the edge ¢; is equal to
the angle at vertex p in F;. We define

w(e) = w(F).

Returning to the case of a general metric graph G with weights wy,
Il =1,...,L, we define a measure w;dr on each edge e; where 7 is the
arclength parameter of the edge. Let ds be the measure on G so that
dsle, = widr.
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Let T be an NPC space. A center of mass of a map ¢ € L*(G,T) is
a point ¢ € T so that

d? *d:'f/dz P)ds.
/GT(WP)S jnt | dr(p, P)ds

The unique existence of such a point is guaranteed by the NPC condition
(cf. [KS1] Proposition 2.5.4). Now let G(T') be the set of Lipschitz
functions ¢ : G — T into an NPC space T" and define the first eigenvalue
of G with values in T as

de
dr

2
Ja ds
T = inf —M———.
MGT) = il Fds (6)

In the application, the NPC space T" will be a tangent cone of an NPC
space Y. We will need the following lemma.

Lemma 14 Suppose f : X — Y is a continuous map and QQ € Y so
that

d%(f,Q)ds = inf d*(f, P)ds.
/6 - (f,@)ds = inf 05, ) (f, P)ds

If m:Y — TQY is the projection map into the tangent cone of Y at @,
then

d% (7o f,0)ds = inf d% o (wo f,V)ds,
Lo o Bartmof,0dds = int [ dyro 1. V)

where 0 is the origin of TgY .

PROOF. Let t +— c(t) be a geodesic so that ¢(0) = Q. By the
minimizing property of ¢(0) = @, we have

0< [ d(fetyds— [ d(f.c(0)ds.
8Ba(p) 8Ba(p)
Furthermore, by Bridson-Haeflinger, Corollary II 3.6, we have

t—0 t

— —cosL(e, )

where 7, is the geodesic from ¢(0) to f(y) and Z(vy,c) is the angle
between v, and ¢ at ¢(0) = Q. Therefore,

lim d?(f,c(t)) — d?(f,c(0))
t=0.J9B,(p) t
= lim d(f,c(t)) — d(f.c(0))

t—0 /9B, (p) t

= -2 cos Z(vy, )d(f (y),c(0))ds.
y€IB4 (p)

0

IN

dt

(d(f,c(t) + d(f,¢(0)))ds
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Let [c] be the equivalence class of ¢ and V' = ([¢],1) € TpY. Since
m oy, is the (radial) geodesic from the origin 0 and 7o f(y) in 7Y,

cos L(yy, c)d(f(y), £(0)) =< mo f(y),V >,

and thus
OS—/ <mo f(y),V > ds. (7)
y€0B (p)

By the continuity of the inner product, (7) holds for all V' = (Vy,t) €
ToY where Vi = V/|V|. Therefore, for t > 0,

[ dy(mo 1), (Vo t)ds
9B (p)
= [ tlmo @) -2 <o fly), Vo > ds
0Bs (p)
> [ e sw)ds
0B, (p)

= [ dy(mo f(y).0)ds.
8Bo(p)
Q.E.D.

For p € X(© and ¢ > 0 sufficiently small so that B,(p) C star(p),
define

0 : Bi(p) = Bs(p), o(z) = ox

to be the dilation by o as was done in defining the domain of the blow
up maps f, (cf section 2.4). Since the edge e; of Lk(p) are isometrically
identified with the interval [0, 6] where 6 is the angle of p in F;, 9B
is isometrically identified with Lk(p). Thus, Lemma 14 immediately
implies

Corollary 15 Suppose f : X — Y is a Lipschitz map and Q € Y so
that

d*(f,Q)ds = inf d%(f, P)ds.
Ly EC Qs = ot [ d(s.P)
If m: Y — TQY is the projection map into the tangent cone of Y at Q,

then
d(mofoo
) AmeIeo) ()| dis

ka(v) |mo foo(x)*ds

f

x)

> A (Lk(v), TQY).
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ProOOF. By Lemma 14, the center of mass of the map wo foo
is 0. Thus, the assertion follows immediately from the definition of
Al(LkJ(U),TQY). Q.E.D.

A consequence of Corollary 15 is the following theorem which asso-
ciates the first eigenvalue with the order of a w-harmonic map.

Theorem 16 Let f : X — Y be a w-harmonic map. If \{(Lk(p), ToY) >
B (>8)forpe XO and all Q €Y, then o :=ord(p) > /B (> V/B).

PRrROOF. Let 0; — 0 so that f,, — fi: By — Y. From (1), we can

fix A so that ) N
/ 0o ds —>/ 0fs ds.
aBy | OT aBy | OT
By [GS], pages 200-201, we have
0% a = lim oAE(o)) — lim oAE(o )

o—0 faBUA(p) d2(f7 QU)\)dS o—0 faBaA(p) d2(f, f(O))dS7

which then implies

faBM(p) dg(fa Qox)ds

lim =1. 8
0—0 fBB(,)\(p) d?(f, f(0))ds ()
Let Q; € Y be the point so that
d*(f,Qi)ds = inf d*(f,Q)ds
/BBai)\(p) QEY 8Bcri>\(p)

and m; : Y — T, Y be a projection map into the tangent cone of Y at
Q;. By the previous lemma,

d*(mjo £,0)ds = inf d*(mi o f,V)ds. 9
/830'7:)\(1)) ( f ) VETQ'LY aB)\o'i(p) ( f ) ( )
Additionally,
of| _ |9(mio f)
-t Jz 520 o
(/@) =Imo /P and || > |Z5° (10)
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since 7; is distance non-increasing. Thus, by (8) and (10),
0fs;

. A2 fyp, |52 ds . (0i0)? fo, 81" ds

oi—0 faBA dg,-(fcria fm‘ (0))d5 oi—0 faBo—iA d2(fa f(O))dS
9 2

= lim (Ui)\)z faBO’M ET{ ds

0;—0 faBai)\ dQ(f, Qi)ds

)2 a(miof) |2
> lim @\ Jos,,» |~ or ‘ ds

0;—0 faBo—iA |7Ti o f’2d8

2 2

By change of coordinates y = o;Az, (9) and Corollary 15,

d(m;o 2 miofo(o; 2
(@ fyeon, | 252 W] ds freom, |22 @) ds
Jos,,, Imi o f(y)*ds Jecom, ITio f o (oid)(x)?ds
O(miofoloi A 2
. freLk(p)‘ ( ]{;7—( ))(IL')’ ds
Tocing 17 0 T © (00 (@)Pds
> M(Lk(v),Ty,Y)
> B(>0).
Therefore,
ae 12
R faB1 %{T ds
f631 d?(fx, f+(0))ds
2
B A2 faB,\ 88];* ds
Jon, @(fx, (0))ds
dfo; |2
— lim A2 faB,\ o | ds
0;—0 IBBA dgl (fUia fO'i (O))ds
> B(>P).

For y € 0B, the homogeneity of f, implies
d(f(ry), f+(0)) = rd(f.(y), f<(0)),

and hence

0 = [y

2

2
1
rdrds

2

Ofs
or

O f«
or

(ry)

(ry)

r
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1 of 2
= [ [ af @ g, £0) + 12 | T drds
yedBy JO or
— o 2 1 af* 2
= 3 yeaBld (fe(w), £:(0)) + 515 = (y)| drds.
Thus,
_ENF1) a1
C=TEm 2 Tl
and
o’ =R>B(>f)
Q.E.D

5 The fixed point and rigidity theorems
We can now record our main theorem.

Theorem 17 Let X be an admissible, Euclidean 2-complex with weight
w and Y an NPC space. Assume \i(Lk(p), ToY) > 1 for all p € X0
and ol Q €Y. If f: X — Y is a w-harmonic map, then f is totally
geodesic on each 2-simplex F of X. If the curvature of Y is strictly
negative, f maps each 2-simplex into a geodesic of Y. Furthermore, if
M (Lk(p), ToY) > 1 for allp € XO) gnd all Q €Y, then f is constant.

Proor. Follows immediately from Theorem 12, Theorem 13 and
Theorem 16. Q.E.D.

An important example of NPC space is the Weil-Petersson comple-
tion 7 of Teichmiiller space 7 marked genus g, n-punctured Riemann
surfaces. Recently Wolpert showed that the tangent cone of 7 at a
point in the boundary is isometric to the tangent cone of REO x T,
where R, is the half space in R* and 7" is a lower genus Teichmiiller
space (cf. [Wo]). We can thus deduce the following theorem:

Theorem 18 Let X be a 2-dimensional admissible simplicial complex
such that A\ (Lk(p)) > 1 for all p € X, Then any w-harmonic map to
the Weil-Petersson completion of Teichmiiller space is totally geodesic
on each simplex of X. Furthermore if \(Lk(p)) > 1 for all p € X©)
then f is constant.

25



PROOF. By the variational definition (6) and Section 4 of [DM2]

M (Lk(p), TQT) = /\1(Lk(p>vR1§0X R
> Ai(Lk(p), R
— (LK), R).

It follows that in this case the condition A\ (Lk(p),To7) > 1 can
be replaced by the simpler condition A\ (Lk(p)) > 1, which immediately
yields the result. Q.E.D.

As noted in the introduction, it follows from [DM2] that the con-
dition A\ (Lk(p)) > 1(> 1) is equivalent to the combinatorial condition
A (Lk(p)) > 1/2(> 1/2) in the special case when 2-simplices of X
are isometric to equilateral triangles. Hence Theorem 18 immediately
implies the rigidity of representations of I' = 71 (X) into the mapping
class group in the case when the complex X satisfies the combinatorial
condition A§™(Lk(p)) > 1/2 for all p € X(© (cf. also [Wo)).

6 Appendix

Let R = [0,1] x [0,1] ¢ R? and f : R — Y be a Lipschitz energy
minimizing map with Lipschitz constant L so that the pull-back inner
product ™ = (m;;) is non-degenerate and smooth in R. The purpose of
the appendix is to show:

Theorem 19 The smooth Riemannian manifold (R, ) is a non-positively
curved surface.

Remark. Petrunin [P] claims a more general result. Namely, given
any metric minimizing map (which includes energy minimizing maps),
he states that the pull back metric (see below) defines a NPC space.
Because many of the details are only sketched in his paper, we provide
a complete proof here for the specific case that we need (cf. proof of
Theorem 13) based on the outline in his paper.

The rest of this section is devoted to its proof of Theorem 19.

For any spaces €21 and €9, a distance function d on {29 and a Lips-
chitz map g : Q; — (Q9,d), we define two types of pull backs of d. The
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pull back distance function p? : Q1 x Q1 — RV is

p?(z,w) = d(g(2), g(w))
and the pull back metric d9 : Q1 x Q; — RT is

@*(z,w) = inf longth(g )

where A is the set of all Lipschitz curves 7 : [0,1] — R with v(0) = z
and (1) = w. Generally, these are only pseudo-distance functions, but
we will refer to them as distance functions by an abuse terminology.
Clearly, we have the inequality

095, 0) < d(z,w), (11)
but, if g(Ql) = QQ then
Pz, w) = dI(z,w). (12)

Let .
o (TN n
R(n)_{z’bj <2n72n) 'Zaj 07"'72 }7

OR(n) = R(n) NOR and R'(n) = R(n) — OR(n). We let R;; denote the
box defined by zij, zij+1, zi+1j41 and z;115. Two points z, 2’ € R(n) are
said to be adjacent if z = (2%, 2]7) and 2’ = (ch—nl, 2]7) orz = (2%, %)
We will write this relationship by z * 2’.

Since 7 is a smooth inner product, df is equal to the distance func-

tion induced by , i.e.

The smoothness of 7 also implies that there exists k so that the Gaussian
curvature of R is less that x > 0. For n sufficiently large, there exists a
convex quadrilateral Qij in a sphere of constant curvature x with side
lengths of Q;; equal to those of R;; measured with respect to df. Con-
struct a piecewise spherical space 5, by gluing together the edges of Qij
in the obvious way and let d,, be the natural distance function defined
on S,. Since d/ is smooth, there exists a Lipschitz homeomorphism
an : (R,df) — (S,,d,) which takes R;; diffeomorphically to Q;; so that

don(z,w) < d’(z,w) + O(n)|z — w| (13)
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for zyw € R and where O(n) — 0 as n — oo. Let {e1,ea} be the
standard orthonormal vectors in R and 7o(t) = z + tee;. Then

d (2,2 + €€;) /\/ )dt < € sup /7 (vo(t
' t€(0,1] .
By the smoothness of m, it follows that

df )2
lim (z, z;— €e;)
e—0 €

On the other hand, (11) implies

P (2, 2 + ee;)? < d*(z, z + ee;)?

2 2

€ €

and hence
d*(z,z + ee;)?

|(an)«(e5)]* < lim =

e—0

for a.e. z € R by Lemma 1.9.4 of [KS1]|. Combining (13), (14) and (15),
we obtain

(15)

E* < ET 4+ 0(n).
Let F,, be a set of maps ¢ : R(n) — Y so that
(1) Ylorm) = florm)
and, for 2,2’ € R(n) with z x 2/,
(i) d(e(2),9(2") < d(f(2), f(2)).
Define the step n discrete energy E,, : F, — Y by setting
En( Z Z d2 / )
zER’( ) 2/ xz

Lemma 20 There exists 1, € F,, so that E,(¢,) = e, := infy, E,(v)
where inf is taken over all ¢ € F,.

PROOF. Since f|gry) € Fn, Fn is non-empty. Let Yt € Fp, so that
E, (") — en. If Y9 € F, is defined so that 1% (z) is the midpoint on
the geodesic between 1(z) and 17 (z), then

(47 (2), ¥ (w))
L i 1 j j
< SA), i w) + Sd@ (=), 4 (w))
1

—([AW'(2),97(2)) = d(¥ (w), ¥ (w)))”
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and hence

B g B~ Y (W), 09 () ~d( (2), 97 ()

z€R'(n)

en < EBYY <

N

Thus,

lim Y (d(¥'(2),¢7(2)) — d(d'(2), % (w)))* = 0,

1,]—00
I z€R!(x)

which says that {1'(2)} is a Cauchy sequence for each z € R'(n) and
hence v%(z) converge to v, (z) and E,(1,) = e, by the continuity of
the distance function. Q.E.D.

Since Y is an NPC space, there exists a convex quadrilateral Q;;
in the Euclidean plane with side lengths of R;; measured with respect
to p¥». We denote the vertices of Q;j corresponding to the vertices
Zijs Zit1js Zit 141 Zij4+1 DY Qijs Qit15s Gi+1j+1, Gj+1. Construct a piece-
wise linear space L,, by gluing together the edges of ();; in the obvious
way and let d,, be the natural distance function defined on L,. By
condition (ii) and the fact that S,, is piecewise spherical (of constant
curvature k) and L,, is piecewise Euclidean, there exists a homeomor-
phism 3, : S, — (Ly,d,) which takes Qij diffeomorphically to @;; so
that

A’ (p,q) < dn(p, q)

for p,q € S,,. Setting p = a,(z) and ¢ = a,,(w), this implies that
dProen (z,w) < df (z,w) + O(n)|z — w|
for z,w € R and
EPrean < BI 4 O(n).

Connect the ordered points

Yn(ij)s Yn(qij+1), ¥nlgivry) and ¥n(givije1)

by geodesics, except when the two consecutive points lie on the bound-
ary of L,, in which case we use the corresponding boundary value of f to
connect them. The resulting quadrilateral in ¥ will be denoted by Q;;.
(Note that this modification from geodesic lines to the boundary value
of f becomes irrelevant as n — oo in the sense the modified version
or the unmodified version become uniformly close as n — o0.) From
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these geodesic quadrilaterals, we construct a "ruled surface” (in the
sense of Alexandrov [A]). This is constructed as follows. First, choose a
pair of opposite edges in ();; and give a constant speed parametrization
7,0 : [0,1] — Y of these edges so that v(0) and ¢(0) lie on one side
of the quadrilateral. Second, connect (¢) and o(t) by a geodesic for
each t € [0,1]. We call this surface Q;;. We define R,, as an abstract
space made up of disjoint union of Q;; with the identification along the
adjacent boundaries. Note that R, is similar to the piecewise linear
space L,, but with linear pieces replaced by ruled surfaces in Y.

Lemma 21 The metric space R, is NPC.

PROOF. By the result of Alexandrov, ruled surfaces in NPC spaces
are NPC (cf. [A]). Thus, R is a piecewise NPC surface. Therefore, we
need only to check that the total angle at the vertices, i.e p = 1, (2) for
z € R/(n) where four ruled sufaces meet, are > 2. Let geodesics [y, 2, I3
and l4 be the interfaces of the four ruled surfaces meeting at p = 1,,(2)
for some z € R'(n). Denote the other endpoint of I; by ¥, (z;) for z; * z.

Since the distance measured along the surface is always greater or
equal to the distance measured in the ambient space, we need only check
that the sum of the angle between [;, ;11 (i = 1,2, 3) and Iy, [; measured
in terms of the distance function d on Y is > 27. So suppose not. Let
[W;, ti] be the endpoint of the geodesic 7(l;) emanating from the origin
where m : Y — T,Y is the projection map to the tangent cone at
¥n(z) = p. Since 7 is a non-expanding map, < W, W1 >< /(l;,li11).
Since Wh, ..., Wy are points in the space of directions, S,Y, which is a
CAT(1) space, there exists a convex quadrilateral Q in S? with vertices
Wi, ..., Wy preserving distances of W7y, ..., W4 and a non-expanding map
r:Q — SpY . Since @ has length < 27, we can assume ( is compactly
contained in the upper hemisphere. Thus, if N is the north pole of S2,
then < W;, N >< 5 which then implies < W, r(N) >< 7. Hence

DB (), 7, Wi 1)

d
d — (7% 4+ t2 — 27t;cos < Wy, 7(N) >)
-

dr
= 27 —2t;cos < W;,r(N) ><0

for small 7 > 0 which then implies

4
T Y 3y ([F(N), 7], m 0 ()

=1
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is a decreasing function for small 7 > 0. On the other hand, v, is a step
n energy minimizing map, which implies that 0 € T})Y" is the center

of mass of m o Y, (21), 7 0 Pp(22), 7 0 Y,(2z3) and m o Py (2z4) (cf. [IN]).
This contradiction implies

Z(ll, ZQ) + Z(ZQ, 13) + 1(13, l4) + Z(l4,l1) > 21 (’L mod 4)

which proves our assertion. Q.E.D.

By a theorem of Reshetnyak [R] (see also [KS1], Theorems 2.1.1 and
2.1.2), there exists a non-expanding map v, : L, — R, with v,(gij) =
Yn(2i)s ldij+1) = Yn(zij+1), Wl@it15) = Yn(zit1;) and Yo (giv1j+1) =
Yn(ziy1j+1). Thus,

d™(r,s) < dp(r,s)

for r,s € L,,. We define
faiR—=Y, by fun=tn0ovmoBhoan,

where ¢, : R,, — Y is a map which embedds each ruled surface Q;; into
Y in the obvious way. Set r = 3, o a,(2) and s = [, 0 ay,(w), we see
that

A/ (z,w) < df (z,w) + O(n)|z — w.

and
E'" < ET 4 0(n).

Therefore, f,, is a minimizing sequence converging uniformly in the pull
back sense to f by Theorem 3.11 of [KS2].

We set fn = Y 0 Bn © ap, ie. fn: R — Ry is f,, viewed as a map
with target R,. Since f,(R) = R, we have

By construction, f, : R — R, is a uniformly Lipschitz sequence
of maps into NPC spaces. Proposition 3.7 of [KS2] implies that there
exists a subsequence (denoted again f, by an abuse of notation) so
that it converges locally uniformly in the pull back sense to a map
fi : R — R«. In particular, this means that dfr = pfn converges
uniformly to pf* which equals df* by definition of Korevaar-Schoen limit
(cf. [KS2]). Since ¢, is a piecewise isometry, we see that d/» = d/» and
wfn and 7fn (the pull back inner products of f,, and fn respectively)
agree a.e.. Since 7/ converges to mf and 7/ converges to wf*, we see
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that 7/ = wfr which immediately implies that d! = d’* by smoothness.
In conclusion, we have shown that dfr = df» converges uniformly to af.

Since R, is an NPC space and f,(R) = R, d/» defines a NPC dis-
tance function on R (after identifications of points of zero d/» distance).
Thus, the uniform convergence of d to df implies that df defines an
NPC space. This shows that (R, 7) is a smooth manifold of non-positive

curvature.
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