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Abstract

We show that harmonic maps from 2-dimensional Euclidean
polyhedra to arbitrary NPC spaces are totally geodesic or con-
stant depending on a geometric and combinatorial condition of
the links of the 0-dimensional skeleton. Our method is based on a
monotonicity formula rather than a codimension estimate of the
singular set as developed by Gromov-Schoen or the mollification
technique of Korevaar-Schoen.

1 Introduction

The connection between harmonic maps and representations of discrete
groups has been studied extensively in recent years. A harmonic map
is classically defined between Riemannian manifolds and is a critical
point of the energy functional. With the seminal work of Gromov and
Schoen on p-adic superrigidity (cf. [GS] and also [KS1], [KS2]), one
can employ techniques from geometric analysis to study harmonic maps
from Riemannian manifolds to metric spaces of non-positive curvature
(NPC spaces). Under appropriate curvature assumptions, one can prove
that the harmonic map is totally geodesic or even constant and conclude
this way that it is rigid. In the case the harmonic map is equivariant
with respect to a representation of the fundamental group of the domain
manifold to the isometry group of an NPC space, one can deduce the
rigidity of the representation. Instead of smooth domains, one could
also ask about the rigidity of representations of the fundamental group
of a singular space like a piecewise smooth polyhedron into the isometry
group of an NPC space. These questions are motivated by the study
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of representations of lattices in non-Archimedian groups in connection
with Margulis superrigidity.

Harmonic maps from singular domains were first studied in [Ch]
and further elaborated in [EF], [DM1] and [DM2]. More precisely, let
X be an admissible, Euclidean, 2-dimensional simplicial complex (cf.
Section 2 for precise definitions). We will denote by X(i) the ith skeleton
of X, X̃ its universal cover and Γ = π1(X). Let Y be an NPC space and
let ρ : Γ → Isom(Y ) be a representation of Γ via isometries on Y . Under
very general assumptions on Γ and ρ, one can construct a Γ-equivariant
energy minimizer f : X̃ → Y , also called a harmonic map (cf. [DM1] for
details). For reasons explained in [DM2], it is useful to associate certain
weights w to the 2-skeleton of X and modify the notion of energy to
account for the weights. One then obtains the notion of a w-harmonic
map (cf. Section 2 for details).

Perhaps the most interesting feature of harmonic (or w-harmonic)
maps from singular domains is that they are Hölder continuous, but in
general fail to be Lipschitz continuous. Given p ∈ X, let ord(p) denote
the order of f at p. As in the case of smooth domains, ord(p) can be
identified with the degree of homogeneity of the blow-up map of f and
the Hölder constant of f (cf. [DM1] and Section 2). If ord(p) ≥ 1
for all p, then the map is Lipschitz continuous and combined with a
Bochner formula, one can obtain rigidity of f ; in other words that the
w-harmonic map f is totally geodesic on each simplex of X or even a
constant map. In the case of a smooth target Y , this was one of the
main results of [DM2].

The goal of the present paper is to extend these results in the fol-
lowing ways. First, we consider maps to arbitrary NPC space targets.
These include important examples like trees or the Weil-Petersson com-
pletion of Teichmüller space. Moreover, we allow our domain space to
be polyhedra with arbitrary Euclidean metrics rather polyhedra con-
sisting of simplices isometric to equilateral triangles. This makes our
theorems applicable to a larger variety of examples than considered in
[DM2] and the combinatorial approach of [W1], [W2] and [IN] discussed
below. The main results of the paper can be summarized as follows:

Theorem [cf. Theorem 13] Let X be a 2-dimensional admissible
Eucliean simplicial complex, Y an NPC space and f : X̃ → Y a Γ-
equivariant w-harmonic map such that ord(p) ≥ 1 for all p ∈ X(0).
Then f is totally geodesic on each 2-simplex F of X. If the curvature
of Y is strictly negative, then f maps each 2-simplex F into a geodesic.
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If ord(p) > 1 for all p ∈ X(0), then f is constant.

As for smoth targets, the order of a harmonic map at a 0-simplex p
is related to certain geometric and combinatorial information of X. Let
λ1(Lk(p), TQY ) denote the first eigenvalue of Lk(p), the link of p in X
with values in the tangent cone TQY of Y (cf. Sections 2 and 4) for
details. We show:

Theorem [cf. Theorem 16] Let X and Y be as in above and f : X̃ → Y
a Γ-equivariant w-harmonic map. If λ1(Lk(p), TQY ) ≥ β(> β) for all
Q ∈ Y , then ord(p) ≥

√
β(>

√
β).

By combining the previous two theorems, we obtain:

Theorem [cf. Theorem 17] Suppose λ1(Lk(p), TQY ) ≥ 1 for all p ∈ X(0)

and all Q ∈ Y . Then any w-harmonic map f : X̃ → Y is totally geodesic
on each simplex of X. If Y is strictly negatively curved, then f maps
each simplex of X into a geodesic. Furthermore, if λ1(Lk(p), TQY ) > 1
for all p ∈ X(0) and all Q ∈ Y , then f is constant.

We now give a sketch of the proofs of the above theorems. Let f : X̃ →
Y be a Γ-equivariant w-harmonic map as before. As mentioned above,
the condition ord(p) ≥ 1 for all p ∈ X(0) implies that f is Lipschitz
and this is a key part of the argument. Next, by performing domain
variations along the x-axis we obtain as in [KS1], the subharmonicity
of |∂f∂x |

2 (cf. Lemma 5). Since variations in the y-direction do not make
sense along the edges, we have to appeal to the balancing condition and
the holomorphicity of the Hopf differential to obtain the subharmonicity

of
∑

F∈F(E)

∣∣∣∂fF
∂y

∣∣∣2, where the sum is taken over all the faces of X adja-

cent to the edge E (cf. Lemma 5). This implies the subharmonicity
of the energy density |∇f |2 (cf. Lemma 6). In particular, the energy
density |∇f |2 is of Sobolev class W 1,2 and hence it has sufficient regu-
larity to justify our main monotonicity formula (cf. Lemmas 9, 10 and
11). The weak inequality 4|∇f |2 ≥ 0 defined on each face of X is now
summed over all the faces of X. In [DM2], we used Stokes’ Theorem on
each face and balancing condition along the boundary of each face to
justify the conclusion that this sum is zero which immediately implies
the harmonicity of |∇f |. Because of the singular nature of the target
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space considered in this paper, we use an alternate argument based on
the monotonicity formula (cf. Theorem 12) to deduce a more general
conclusion. This implies that the pullback tensor

(πij) =

(
|∂f∂x |

2 ∂f
∂x ·

∂f
∂y

∂f
∂x ·

∂f
∂y |∂f∂y |

2

)

is smooth on each simplex. The NPC condition on the target space
implies that this pullback tensor πij is also NPC (cf. Appendix). This,
combined with the harmonicity of its components, implies that πij , and
hence also the map f , is flat (cf. Theorem 13). The totally geodesic
property or the constancy of the map f follows.

We next indicate how to relate the order of f at p with the eigenval-
ues of the link at p. In the case when the target Y is smooth, this can be
done by reducing the harmonic map equation of the blow up map to the
eigenvalue equation of the Laplacian on Lk(p) (cf.[DM2]). In the case
Y is singular, we adopt the Rayleigh quotient definition of eigenvalue
and relate it to the order (cf. Theorem 16). At this point our approach
is parellel to the combinatorial approach of M-T. Wang and Izeki and
Nayatani (cf. [W1], [W2] and [IN]). We note that for X, a 2-complex
with a property that each 2-simplex is isometric to an equilateral tri-
angle, and a smooth target Y we showed in [DM2] an explicit relation
between the condition λ1(Lk(p)) ≥ 1 and the corresponding condition
for the eigenvalue of the combinatorial Laplacian λcomb1 (Lk(p)) ≥ 1/2.

We end this introduction by mentioning one important application
of our results to rigidity questions of the mapping class group. Recently
Wolpert showed that the tangent cones of the Weil-Petersson completion
T̄ of the Teichmüller space T of marked genus g, n-punctured Riemann
surfaces are Euclidian cones. In this case, the condition

λ1(Lk(p), TQT̄ ) ≥ 1

can be replaced by the simpler λ1(Lk(p)) ≥ 1. Therefore, we immedi-
ately obtain the following rigidity result:

Theorem [cf. Theorem 18] Let X be a 2-dimensional admissible sim-
plicial complex such that λ1(Lk(p)) ≥ 1 for all p ∈ X(0). Then any w-
harmonic map to the Weil-Petersson completion T̄ of Teichmüller space
is totally geodesic on each simplex of X. Furthermore, if λ1(Lk(p)) > 1
for all p ∈ X(0) then f is constant.
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The previous theorem clearly implies that given a group Γ which is
the fundamental group of a 2-complex X admitting an Euclidean met-
ric with the property that π1(X) = Γ and λ1(Lk(p)) > 1 for all p ∈
X(0), then any representation of Γ into the mapping class group is
constant. In the special case Γ is realized as a fundamental group of
a 2-complex X where all simplices are equilateral triangles with the
condition λ1(Lk(p)) > 1 for all p ∈ X(0), this result was obtained by
using discrete harmonic maps (cf. [IN] and [Wo]). In this case, the
condition λ1(Lk(p)) > 1) is replaced by the combinatorial condition
λcomb1 (Lk(p)) > 1/2, which are shown to be equivalent by Proposition
13 and Corollary 14 of [DM2]. Although technically simpler than ours,
the Bochner formula for discrete harmonic maps does not seem to carry
over to the case λcomb1 (Lk(p)) = 1/2 or for the apparantly more general
condition that we are considering for Γ. As pointed out by M-T. Wang
(cf. [W2]), there are important examples of complexes where the com-
binatorial eigenvalue of the Laplacian is equal to 1/2.

Acknowledgement. We would like to thank Richard Wentworth for
pointing out Wolpert’s paper [Wo] to us.

2 Definitions and known results

2.1 Admissible Euclidean complexes

A simplicial complex of dimension 2 is referred to as a 2-complex. A
connected locally finite 2-complex is called admissible (cf. [Ch] and
[EF]) if the following two conditions hold:

(i) X is dimensionally homogeneous, i.e., every simplex is contained
in a 2-simplex, and

(ii) X is locally 1-chainable, i.e., for any 0-simplex v, every two 2-
simplices A and B containing v can be joined by a sequence A =
F0, e0, F1, e1, ..., Fk−1, ek−1, Fk = B where Fi is a 2-simplex containing
v and ei is a 1-simplex contained in Fi and Fi+1.

The boundary ∂X of X is the union of 1-simplices that are contained in
only one 2-simplex. A Riemannian 2-complex is a 2-complex X along
with a Riemannian metric gF defined on each 2-simplex F smooth up
to the boundary of F so that for any two 2-simplices F and F ′ sharing
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a 1-simplex e, gF and gF ′ induce the Riemannian metric on e. We call
a Riemannian 2-complex Euclidean if for any 2-simplex F , there exists
a simpicial isometry φF : (F, gF ) → T where T is a triangle in R2 with
the induced Euclidean metric. In the sequel, all complexes are admis-
sible, Euclidean, compact and without boundary. We will assume all
simplices are closed and use X(i) to denote the i-skeleton of X, i.e. the
union of all i-simplices of X. For any simplex s, star(s) will denote the
union of all simplices containing s.

2.2 NPC spaces

A complete metric space (Y, d) is called an NPC space if the following
conditions are satisfied:

(i) The space (Y, d) is a length space. That is, for any two points P and
Q in Y , there exists a rectifiable curve c so that the length of c is equal
to d(P,Q) (which we will sometimes denote by dPQ for simplicity). We
call such distance realizing curves geodesics.

(ii) For any three points P,R,Q ∈ Y , let c : [0, l] → Y be the arclength
parameterized geodesic from Q to R and let Qt = c(tl). Then

d2
PQt

≤ (1− t)d2
PQ + td2

PR − t(1− t)d2
QR.

We say that the curvature of (Y, d) is strictly negative if there exists
κ < 0 so that

cosh(−κdPQt)

≤ sinh(−(1− t)κdQR)
sinh(−κdQR)

cosh(−κdPQ) +
sinh(−κtdQR)
sinh(−κdQR)

cosh(−κdPR).

We now recall the notion of a tangent cone of an NPC space Y at a
point Q ∈ Y . Let GQY be a set of nonconstant arclength parameterized
geodesics c so that c(0) = Q. Given c, c′ ∈ GQY , define

¯6 (c(t), c′(t′)) = cos−1

(
d2
Qc(t) + d2

Qc′(t′) − d2
c(t)c′(t′)

2dQc(t)dQc′(t′)

)

and
6 (c, c′) = lim

t,t′→0

¯6 (c(t), c′(t′)).
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Define an equivalence relation c ≈ c′ iff 6 (c, c′) = 0. The completion of
the quotient SQY = (GQY/ ≈) with the distance function induced by
6 is called the space of directions at Q. The tangent cone is the cone
over SQY , namely

TQY = (SQY ×R+)/(SQY × {0}).

For W = (V, t),W ′ = (V ′, t′) ∈ TQY , the distance function dTQY is
defined by

d2
TQY

= (W,W ′) = t2 + t′2 − 2tt′ cos 6 (V, V ′)

and the inner product on TQY by

< W,W ′ >= tt′ cos 6 (V, V ′).

We then have |W | :=< W,W >1/2= dTQY (0,W ) where 0 = SQY × {0}
is the origin of the cone TQY . The projection map π : Y → TQY is
defined by setting

π(P ) = ([c], d(Q,P ))

where c is the geodesic joining Q to P and [c] ∈ SQY is the equivalence
class of c. The NPC condition guarantees that π is a distance decreasing
map. We refer to [BH] for more details.

2.3 w-harmonic maps

We first recall the Korevaar-Schoen energy for a map into a complete
metric space (cf. [EF]). Let X be a 2-dimensional Riemannian complex
and dx the volume form defined by the Riemannian metric. Let Bε(x)
be the set of points in X at a distance at most ε from x and set Sε(x) =
∂Bε(x). Define eε : X → R by

eε(x) =
∫
y∈Sε(x)

d2(f(x), f(y))
ε2

dσx,ε
ε

where σx,ε is the induced measure on Sε(x). We define a family of
functionals Efε : Cc(X) → R by setting

Efε (ϕ) =
∫
X
ϕeεdx.

We say f has finite energy (or that f ∈W 1,2(X,Y )) if

Ef := sup
ϕ∈Cc(Ω),0≤ϕ≤1

lim sup
ε→0

Efε (ϕ) <∞.
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It can be shown that if f has finite energy, the measures eε(x)dx converge
weakly to a measure which is absolutely continuous with respect to the
Lebesgue measure. Therefore, there exists a function e(x), which we
call the energy density, so that eε(x)dx ⇀ e(x)dx. In analogy to the
case of smooth targets, we write |∇f |2(x) in place of e(x). In particular,
Ef =

∫
X |∇f |2dx.

Let Ω = F int for some 2-simplex F of X. For V ∈ ΓΩ where ΓΩ is
the set of Lipschitz vector fields on Ω, |f∗(V )|2 is similarly defined. The
real valued L1 function |f∗(V )|2 generalizes the norm squared on the
directional derivative of f . The generalization of the pull-back metric is

πf (V,W ) = ΓΩ× ΓΩ → L1(Ω,R)

where
πf (V,W ) =

1
2
|f∗(V +W )|2 − 1

2
|f∗(V −W )|2.

We refer to [KS1] for more details.
Let X be a 2-dimensional admissible Euclidean complex and Y an

NPC space. An isometric action of a group Γ = π1(X) on Y is a
homomorphism ρ : Γ → Isom(Y ). A map ϕ̃ : X̃ → Y is said to be
equivariant if

ρ(γ)ϕ̃(p) = ϕ̃(γp)

for γ ∈ Γ and p ∈ X. By identifying X with a fundamental domain of
X̃, we can think of ϕ̃ also being defined on X. We say ϕ̃ : X̃ → Y has
finite energy if

Eϕ̃ =
∫
X
|∇ϕ̃|2dx <∞.

In order to include certain important examples appearing in p-adic ge-
ometry (e.g. p−adic buildings), we will assume that for each 2-simplex
F in X, we have an associated weight w; more precisely w assigns a pos-
itive number w(F ) to each 2-simplex F of X. We define the w-measure
dµw by setting

dµw = w(F )dx

where dx is the volume form on F defined by metric gF . We define the
w-energy Ew(ϕ̃) of a finte energy map ϕ̃ : X̃ → Y as

Ew(ϕ̃) =
∑
F

w(F )
∫
F
|∇ϕ̃|2dx =

∑
F

∫
F
|∇ϕ̃|2dµw

where
∑
F

indicates the sum over all n-dimensional simplices F of X.

For the sake of notational simplicity, we will fix weights w(F ) on F and
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we will denote dµ = dµw, E = Ew, etc. A map f̃ : X̃ → Y is said to
be w-harmonic if E(f̃) ≤ E(ϕ̃) for all equivariant finite energy maps
ϕ̃ : X̃ → Y . If w(F ) = 1 for all F , then we recover the usual notion of
harmonicity defined in [DM1].

2.4 Blow up maps and tangent maps

Let X be a Euclidean admissible 2-complex X, Y an NPC space and
f : X → Y a w-harmonic map. Fix p ∈ X. We set St(p) = star(p) if
p ∈ X(0), St(p) = star(E) if p ∈ E−X(0) and St(p) = F if p ∈ F−X(1).
For any σ > 0 sufficiently small so that Bσ(p) ⊂ St(p), let

E(σ) =
∫
Bσ(p)

|∇f |2dµ

I(σ) =
∫
∂Bσ(p)

d2(f, f(p))ds

and

µ(σ) =
√

σ

I(σ)
.

Let B1 be a dilation of Bσ(p) by factor of 1
σ and dσ : Y ×Y → R be the

distance function on Y defined by dσ(·, ·) = µ(σ)d(·, ·). The w-measure
dµw is inherited on B1 from Bσ(p) without any dilation. We define the
σ-blow up map of f at p as the map

fσ : B1 → (Y, dσ)

defined by

fσ(z) = f

(
z

σ

)
.

The following results for w-harmonic maps from a 2-complex into a
non-positively metric space follow by minor modification of the argu-
ments presented in [DM1]. (In [DM1], we only considered 2-simplices
isometric to the standard equilateral triangle and a weight function w
so that w(F ) = 1 for all 2-simplices F of X.)

Theorem 1 Let f : X → (Y, d) be a w-harmonic map from an Eu-
clidean admissible 2-complex into an NPC space (Y, d). For each p ∈ X,
the function.

σ 7→ σE(σ)
I(σ)
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is monotone non-decreasing for σ < σ0 where σ0 is sufficiently small so
that Bσ0(p) ⊂ St(p). We call

ord(p) = lim
σ→0

σE(σ)
I(σ)

the order of f at p. Let α = ord(p). Then the functions

σ 7→ I(σ)
σ1+2α

and
σ 7→ E(σ)

σ2α

are monotone non-decreasing for σ < σ0.

Theorem 2 Let f : X → (Y, d) be a w-harmonic map from an Eu-
clidean admissible 2-complex into an NPC space (Y, d). Fix p ∈ X and
let α =ord(p). There exists a sequence σi → 0 so that the σi-blow up
maps fσi : B1 → (Y, dσi) of f at p converge in the sense of Korevaar-
Schoen (cf. [KS2]) to map f∗ : B1 → (Y∗, d∗) into an NPC space.
The map f∗ is Lipschitz continuous except possibly at the vertex and is
homogeneous of order α, i.e.

d∗(f∗(z), f∗(0)) = |z|αd∗(f∗(
z

|z|
), f∗(0))

for every z ∈ B1. We call f∗ a tangent map of f at p.

We remark that one of the consequences of the convergence in the
sense of Korevaar-Schoen is that the directional energy converges in L1.
In particular, if we consider ∂Bλ as a graph, let τ be the arclength
parameter on each edge, and consider fσi and f∗ as maps defined on
∂Bλ by the restriction, then∫

∂Bλ

∣∣∣∣∂fσi

∂τ

∣∣∣∣2 ds→ ∫
∂Bλ

∣∣∣∣∂f∗∂τ
∣∣∣∣2 ds for a.e. λ ∈ [0, 1]. (1)

Here ds is the measure induced on ∂Bλ from the measure dµw on B1.

2.5 Existence and Regularity Results

We also have the following existence and regularity of w-harmonic maps
which again follow from a simple modifications of [DM1]
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Theorem 3 Let X be an admissible Euclidean 2-complex with Γ =
π1(X), Y an NPC space and ρ : Γ → Isom(Y ) be an isometric ac-
tion of Γ. Assume that ρ does not fix an equivalent class of rays. If the
curvature of Y is strictly negative or Y is locally compact, then there
exists a ρ-equivariant w-harmonic map f̃ : X̃ → Y .

Theorem 4 Let X be an admissible Euclidean 2-complex, Y an NPC
space and f : X → Y a w-harmonic map. Then f is Lipschitz continu-
ous away from the 0-simplices of X with the Lipschitz bound dependent
only on the total w-energy of f and the distance to the 0-simplices. Let
p be a 0-simplex and α be the order of f at p. Then there exists σ > 0
so that

|∇f |2(q) ≤ Cr2α−2

for all q ∈ Bσ(p) where C depends on E(f) and r = dX(p, q).

3 The harmonicity of the energy density

Let X an admissible Euclidean 2-complex, Y an NPC space and f :
X → Y be a w-harmonic map. In this section, we show that under the
assumption ord(p) ≥ 1 for every p ∈ X(0), we can prove that the energy
density function is harmonic.

Fix a 1-simplex E of X, let p ∈ E and σ0 > 0 sufficiently small
so that Bσ0(p) ⊂ star(E) if p ∈ E − X(0) or Bσ0(p) ⊂ star(p) if p
is a 0-simplex. Suppose F is a 2-simplex incident to E. Recall that
there exists a simplical isometry φF : (F, gF ) → T where T ⊂ R2 is
an Euclidean triangle. Let ψ be the linear isometry of R2 which takes
T = φF (F ) into y ≥ 0, φF (E) into the line y = 0 and φF (p) to the
origin (0, 0). We refer to the coordinate (x, y) of F as the composition

ψ ◦ φF . We will write
∣∣∣∂fF
∂x

∣∣∣2, ∣∣∣∂fF
∂y

∣∣∣2 and ∂fF
∂x · ∂fF

∂y to denote
∣∣∣f∗( ∂∂x)

∣∣∣2,∣∣∣f∗( ∂∂y )∣∣∣2 and πf ( ∂∂x ,
∂
∂y ) respectively on F . These are L1-functions on

F .

Lemma 5 Let p ∈ E−X(0), σ0 > 0 sufficiently small so that Bσ0(p) ⊂
star(E) and D ⊂ R2 be a disk of radius σ0 centered at the origin. Define
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|∂xfE |2, |∂yfE |2 : D → R by setting

|∂xfE |2(x, y) =



∑
F∈F(E)

∣∣∣∣∂fF∂x
∣∣∣∣2 (x, y) y ≥ 0

∑
F∈F(E)

∣∣∣∣∂fF∂x
∣∣∣∣2 (x,−y) y < 0

|∂yfE |2(x, y) =



∑
F∈F(E)

∣∣∣∣∂fF∂y
∣∣∣∣2 (x, y) y ≥ 0

∑
F∈F(E)

∣∣∣∣∂fF∂y
∣∣∣∣2 (x,−y) y < 0

respectively, where F(E) is the set of 2-simplices incident to E. The
functions |∂xfE |2 and |∂yfE |2 are weakly subharmonic in D, i.e.∫

D
4η|∂xFE |2 ≥ 0 and

∫
D
4η|∂yFE |2 ≥ 0

for every η ∈ C∞c (D).

Proof. Fix ε > 0 and let f0(x, y) = f(x, y) and f1(x, y) = f(x+ε, y)
on each face F ∈ F(E). For non-negative smooth function η with
compact support in D, let fη = (1−η)f0 +ηf1. We can follow the proof
of Lemma 2.4.2 and Remark 2.4.3 of [KS1] (also see [DM1], Proposition
3.8) to see that ∫

D
4ηd2(f(x, y), f(x+ ε, y)) ≥ 0.

Divide by ε2 and use the fact that f is Lipschitz as well as the Dominated
Convergence Theorem as we let ε → 0 to see that |∂xfE |2 is weakly
subharmonic.

The function

φF =
∣∣∣∣∂fF∂x

∣∣∣∣2 − ∣∣∣∣∂fF∂y
∣∣∣∣2 − 2i

∂fF
∂x

· ∂fF
∂x

(2)

is holomorphic in F and Im
∑

F∈F(E)

φF (x, 0) = 0 ([DM1], Theorem 3.9).

Therefore, the function φE : D → C defined by

φE(x, y) =


∑

F∈F(E)

φF (x, y) y ≥ 0∑
F∈F(E)

φF (x,−y) y < 0
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is holomorphic by the reflection principle. This implies that |∂xfE |2 −
|∂yfE |2 is harmonic. Since |∂xfE |2 is weakly subharmonic, |∂yfE |2 is
also weakly subharmonic. q.e.d.

Lemma 6 Let p ∈ E−X(0) and D as before. The function eE : D → R
defined by setting

eE(x, y) =


∑

F∈F(E)

|∇fF |2(x, y) y ≥ 0∑
F∈F(E)

|∇fF |2(x,−y) y < 0

is weakly subharmonic

Proof. Since eE = |∂xfE |2 + |∂yfE |2, the assertion follows from
Lemma 5. q.e.d.

Lemma 7 Let p ∈ E. For any F ∈ F(E), let (r, θ) be polar coordinates
for F centered at p ∈ E so that E − {p} is given by the line θ = 0 and
the line θ = π. Let r1, r2, θ1, θ2 be so that RF = {(r, θ) : 0 < r1 ≤ r ≤
r2, θ1 ≤ θ ≤ θ2} ⊂ E ∪ (F − ∂F ) for all F ∈ F(E). Then

(r, θ) 7→
∑

F∈F(E)

|∇fF |2(r, θ)

for 0 < r1 ≤ r ≤ r2 and θ1 ≤ θ ≤ θ2 is a W 1,2 function.

Proof. If RF is contained in F − ∂F , then the assertion is obvi-
ous since the weak subharmonicity and boundedness of |∇fF |2 implies
|∇fF |2 is W 1,2

loc . If p ∈ E −X(0), then this is also obvious by Lemma 6.
Now we assume p is a 0-simplex. We need to consider the case when
θ1 = 0. Let r0 ∈ (r1, r2) and p′ ∈ E be so that d(p, p′) = r0. Let D be
defined as before with p replaced by p′. Then the subharmonicity of eE
in Lemma 6 implies

(r, θ) 7→
∑

F∈F(E)

|∇fF |2(r, θ)

is W 1,2
loc in D ∩ {(r, θ) : 0 < r1 ≤ r ≤ r2, 0 ≤ θ ≤ θ2}. Thus, assertion

follows immediately. q.e.d.
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Corollary 8 For p ∈ X(1), let σ0 > 0 be so that Bσ0(p) ⊂ star(E) if
p ∈ X(1) −X(0) and Bσ0(p) ⊂ star(p) if p is a 0-simplex. Then

r 7→
∫
∂Br(p)

|∇f |2ds

for 0 < r < σ0 is a W 1,2
loc function.

Proof. Let (r, θ) be the polar coordinates in Lemma 7. If p ∈
X(1)−X(0) then the conclusion follows immediately from Lemma 7 and
the fact that∫

∂Br(p)
|∇fF |2ds =

∑
F∈F(E)

∫ π

0
|∇fF |2(r, θ)rdθ.

If p is a 0-simplex, then for every 1-simplex E with p ∈ E, there exists
θ2 > 0 sufficiently small so that

(t, θ) 7→
∑

F∈F(E)

|∇fF |2(t, θ)

is W 1,2
loc for 0 < t < σ0 and 0 ≤ θ ≤ θ2 by Lemma 7. For any r ∈ (0, σ0),

let q ∈ E so that d(p, q) = r. There exists ε > 0 small so that

Bε(q) ⊂ ∪{(t, θ) ∈ F : t ∈ (r − ε, r + ε), θ ∈ (0, θ2)}.

Thus,

t 7→
∫
∂Bt(p)∩Bε(q)

|∇f |2ds =
∑

F∈F(E)

∫ θ2(t)

0
|∇fF |2(t, θ)tdθ

is W 1,2 where θ2(t) = sup{θ : (t, θ) ∈ Bε(q)}. This together with the
fact that |∇fF |2 is W 1,2 in the interior of a 2-simplex F implies the
assertion. q.e.d.

Corollary 8 implies that

r 7→
∫
∂Br(p)

|∇f |2ds

is absolutely continuous and hence differentiable a.e. for σ ∈ [0, σ0].
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Lemma 9 Let f : X → Y be a harmonic map, p ∈ X(0) and ord(p) ≥ 1.
For every σ0 so that Bσ0(p) ⊂ star(p), there exists a set A ⊂ [0, σ0] of
positive measure so that

d

dσ

(
1
σ

∫
∂Bσ(p)

|∇f |2ds
)
≥ 0 for σ ∈ A.

Proof. Let
G(σ) =

1
σ

∫
∂Bσ(p)

|∇f |2ds

and suppose there exists σ0 > 0 so that G′(σ) < 0 for almost all 0 < σ <
σ0. Then G(σ) is non-increasing for 0 < σ < σ0. Let c1 = limσ→0G(σ).
Now let

F (σ) =
2
σ2

∫
Bσ(p)

|∇f |2dµ.

The assumption that ord(p) ≥ 1 and Theorem 1 implies that F (σ) is
non-decreasing for all 0 < σ < σ0. Let c2 = limσ→0 F (σ). We claim
G(σ) ≥ F (σ). Indeed,

0 ≤
(

2
σ2

∫
Bσ(p)

|∇f |2dµ
)′

=
2
σ2

∫
∂Bσ(p)

|∇f |2dµ− 4
σ3

∫
Bσ(p)

|∇f |2dµ

=
2
σ

(G(σ)− F (σ)).

Since G(σ) is non-increasing, F (σ) is non-decreasing and G(σ) ≥ F (σ),
we conclude c1 > c2 and there exists σ1 so that G(σ) > c1+c2

2 > F (σ)
for 0 < σ ≤ σ1. Therefore,

c1 + c2
2

σ2
1

2

>

∫
Bσ1 (p)

|∇f |2dµ

=
∫ σ1

0

(∫
∂Bσ(p)

|∇f |2ds
)
dσ

>

∫ σ1

0

c1 + c2
2

σdσ =
c1 + c2

2
σ2

1

2
,

a contradiction. q.e.d.
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Lemma 10 Let f : X → Y be a harmonic map, p ∈ X(0) and ord(p) >
1. Either f is constant on star(p) or there exists a set A′ ⊂ [0, σ0] of
positive measure so that

d

dσ

(
1
σ

∫
∂Bσ(p)

|∇f |2ds
)
ds > 0 for σ ∈ A′,

where σ0 is sufficiently small so that Bσ0(p) ⊂ star(p).

Proof. If α := ord(p) > 1, then Theorem 1 implies that limσ→0 F (σ) =
0. Thus, for any ε > 0, there exists σ1 > 0 so that F (σ1) < ε. Thus,
there exists σ2 ∈ (σ1/2, σ1) so that

1
σ2

∫
∂Bσ2 (p)

|∇f |2ds ≤ 2
σ1

∫
∂Bσ2 (p)

|∇f |2ds

≤
(

2
σ1

)2 ∫ σ1

σ1/2

(∫
∂Bσ(p)

|∇f |2ds
)
dσ

< 2ε,

which implies limσ→0G(σ) = 0. Thus, unless G(σ) is identically equal
to 0, G′(σ) > 0 for σ ∈ A′ where A′ ⊂ (0, σ) is of positive measure.
But if G(σ) is identically zero then F (σ) is identically equal to 0 which
implies |∇f |2(p) = 0 p ∈ Bσ0(p) and hence f is constant in Bσ0(p). By
following the proof of [GS] Proposition 3.4, it is not hard to show f is
constant in star(p). q.e.d.

Lemma 11 Let p ∈ E −X(0). For σ0 > 0 so that Bσ0(p) ⊂ star(E),

d

dσ

(
1
σ

∫
∂Bσ(p)

|∇f |2ds
)
≥ 0 for 0 < σ < σ0.

Proof. For 0 < σ < σ0,∫
∂Bσ(p)

|∇f |2ds =
∫
∂Dσ(x,0)

eEds

where (x, 0) is the coordinates for p and Dσ(x, 0) is a disk of radius σ
centered at (x, 0). The conclusion follows immediately from the subhar-
monicity of eE . q.e.d.
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Theorem 12 If f : X → Y is a w-harmonic map so that ord(p) ≥ 1
for all p ∈ X(0), then |∇f |2 is a harmonic function on each 2-simplex
F of X. If ord(p) > 1 for all p ∈ X(0), then f is a constant map.

Proof. Let p ∈ X(0). Since ∂X = ∅, there exists σ0 > 0 so that
Bσ0(p) ⊂ star(p). By Lemma 9, we can choose δpk → 0 so that

d

dσ

(
1
σ

∫
∂Bσ(p)

|∇f |2ds
)
|σ=δp

k
≥ 0. (3)

Fix k and let ε > 0. Choose points {p1, ..., pn} ⊂ X(1) − ∪p∈V(X)Bδp
k
(p)

and positive real numbers {r1, ..., rn} so that (1) ri < ε, (2) Bri(pi) ∩
Brj (pj) = ∅ for i, j = 1, ..., n and i 6= j, (3) Bδp

k
(p) ∩ Bri(pi) = ∅ for all

p ∈ X(0) and i = 1, ..., n and (4) X(1) is covered by ⋃
p∈X(0)

Bδp
k
(p)

 ∪ ( n⋃
i=1

Bri(pi)

)
.

Let X ′ = X −
(⋃

p∈X(0) Bδp
k
(p)
)
∪
(⋃n

i=1Bri(pi)
)
. For each F ∈ F(X),

we have
−
∫
F
∇|∇f |2 · ∇ζ ≥ 0

for any ζ ∈ C∞c (F ). Let ζ approximate the characteristic function of
F ′ = F ∩X ′. Then

0 ≥ −
∫
∂F ′

∂

∂η
|∇f |2ds (4)

=
∑

p∈X(0)∩F

∫
∂B

δ
p
k
(p)∩F

∂

∂r
|∇f |2ds+

∑
pi∈F

∫
∂Bri (pi)∩F

∂

∂r
|∇f |2ds

=
∑

p∈X(0)∩F

δpk
d

dσ

 1
σ

∫
∂B

δ
p
k
(p)
|∇f |2ds

 |σ=δp
k

+
∑
pi∈F

ri
d

dσ

(
1
σ

∫
∂Bσ(pi)

|∇f |2ds
)
|σ=ri

where η is the outward pointing normal to ∂F ′ defined everywhere ex-
cept at finite number of points. On the other hand,

−
∑

F∈F(X)

∫
∂F ′

∂

∂η
|∇f |2ds (5)
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=
∑

p∈X(0)

δpk
d

dσ

 1
σ

∫
∂B

δ
p
k
(p)
|∇f |2ds

 |σ=δp
k

+
n∑
i=1

ri
d

dσ

(
1
σ

∫
∂Bσ(pi)

|∇f |2ds
)
|σ=ri

≥ 0,

where the last inequality is implied by Lemma 11 and (3). Thus,∫
∂F ′

∂

∂η
|∇f |2ds = 0.

The arbitrariness of ε along with the fact that δpi → 0 proves the har-
monicity of |∇f |2 on each F .

If ord(p) > 1 for all p ∈ X(0), then either f is a constant map or
δpk can be chosen so that (3) is given with a strict inequality for some
p ∈ X(0) by Lemma 10. The strict inequality in (3) leads to a strict in-
equality in (5) which contradicts (4). Thus, f is a constant map. q.e.d.

Theorem 13 If f : X → Y is a harmonic map with ord(p) ≥ 1 for all
p ∈ X(0), then f is totally geodesic on each 2-simplex F of X, i.e. f
maps every Euclidean line in F to a geodesic in Y . If the curvature of
Y is strictly negative, then f maps each 2-simplex F into a geodesic. If
ord(p) > 1 for all p ∈ X(0), then f is constant.

Proof. By Theorem 12, |∇f |2 = |∂f∂x |
2+|∂f∂y |

2 is a harmonic function
on each 2-simplex F of X. Since φF defined by (2) is holomorphic,
ReφF = |∂f∂x |

2 − |∂f∂y |
2 is also a harmonic function. Thus, |∂f∂x |

2 and

|∂f∂y |
2 are harmonic functions and hence smooth. Additionally, 1

2 ImφF =
∂f
∂x ·

∂f
∂y is harmonic and smooth. Let

(πij) =

(
|∂f∂x |

2 ∂f
∂x ·

∂f
∂y

∂f
∂x ·

∂f
∂y |∂f∂y |

2

)

and Ω be any open subset of F where π is non-degenerate. We will
show that f |Ω is a totally geodesic map. First, we note that (Ω, π)
is a smooth Riemannian manifold of non-positive curvature (see ap-
pendix). Let dπ be the distance function induced by the metric π.
The identity map f0 : Ω → (Ω, π) is a (smooth) harmonic map. In-
deed, if h0 : Ω → (F, π) is so that E(h0) < E(f0) and h0|∂Ω = f0|∂Ω,
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then E(f ◦ h0) < E(f ◦ f0) = E(f), a contradiction. Furthermore,
4|∇f0|2 = 4|∇f |2 = 0, so the Eells-Sampson Bochner’s formula im-
plies that |∇df0|2 = 0 and f0 is a totally geodesic map. Thus, if t 7→ γ(t)
is a unit speed parameterization of a Euclidean line in Ω, then γ(t) is a
geodesic with respect to the metric π. Hence, the Christoffel symbols of
π are identically constant which implies that π is constant. In particu-
lar, this means that π is flat, t 7→ π(γ′(t), γ′(t)) is constant, and given
two constant speed parameterization γ1(t) and γ2(t) of a Euclidean line
emanating from the same point, t 7→ dπ(γ1(t), γ2(t)) is a linear function.
For any z0 ∈ Ω, let (r, θ) be the polar coordinates centered at z0. For
any 0 < r < R with R sufficiently small, we therefore have∣∣∣∣∂f∂r

∣∣∣∣2 (r, θ) =
1
R2

(dπ((R, θ), z0))2

and ∣∣∣∣∂f∂θ
∣∣∣∣2 (r, θ) =

r2

R2

∣∣∣∣∂f∂θ
∣∣∣∣2 (R, θ).

Define h : DR(z0) → Y by setting

h(r, θ) =
(

1− r

R

)
f(z0) +

r

R
f(R, θ).

Note that h maps radial lines to geodesic lines. The NPC condition
implies that

d(h(r, θ1), h(r, θ2)) ≤
r

R
d(f(R, θ1), f(R, θ2)).

Thus, ∣∣∣∣∂h∂θ
∣∣∣∣2 (r, θ) ≤ r2

R2

∣∣∣∣∂f∂θ
∣∣∣∣2 (R, θ) =

∣∣∣∣∂f∂θ
∣∣∣∣2 (r, θ).

Furthermore, the fact that the distance function induced by the pull
back metric always bounds the pull back of the distance function implies∣∣∣∣∂h∂r

∣∣∣∣2 (r, θ) =
1
R2

d2(f(R, θ), f(0)) ≤ 1
R2

(dπ((R, θ), z0))2 =
∣∣∣∣∂f∂r

∣∣∣∣2 (r, θ)

This implies Eh ≤ Ef , but since f is energy minimizing h = f . There-
fore, f maps radial lines emanating from z0 to geodesics. Since z0 is an
arbitrary point in Ω, this proves f |Ω is totally geodesic in Ω.

Since πij is smooth, the set of points in F where π is non-degenerate
is an open set. On the other hand, the above argument shows that π
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is constant on this set, so this set is also closed. Thus, either π is non-
degenerate on all of F or degenerate on all of F . In the former case, we
are done by the argument in the previous paragraph. If Y has strictly
negative curvature, this case is impossible. In the latter case, we choose
local coordinates so that the Hopf differential is equal to dz2, i.e.∣∣∣∣∂fF∂x

∣∣∣∣2 − ∣∣∣∣∂fF∂y
∣∣∣∣2 − 2i

∂fF
∂x

· ∂fF
∂y

= 1.

If π not equal to the zero matrix in a neighborhood, then it follows that∣∣∣∣∂fF∂x
∣∣∣∣2 = 1 and

∣∣∣∣∂fF∂y
∣∣∣∣2 = 0.

This immediately implies that f maps this neighborhood to a Lipschitz
curve. By the same argument as in the non-degenerate case, this line
must be a geodesic. The last statement of the theorem follows from
Theorem 12. q.e.d.

4 The first eigenvalue and order

We now wish to establish assumptions on X for which the order of the
w-harmonic map at a 0-simplex in X is ≥ 1. In this section, we define
the first eigenvalue of a link of a 0-simplex of X with values in an NPC
space and give a lower bound of the order in terms of the lower bound
on the first eigenvalues.

Let G be a metric graph. We denote the edges of G by e1, ..., eL and
assume that each edge el has an associated weight ŵl = ŵ(el). In the
case G = Lk(p) where p ∈ X(0), X is an Euclidean admissible 2-complex
with weight w, there is a one-to-one correspondence between the edges
and the 2-simplices F1, .., FL incident to p; namely, Fl is the join (i.e.
convex hull) of v and el. Moreover, the length of the edge el is equal to
the angle at vertex p in Fl. We define

ŵ(el) = w(Fl).

Returning to the case of a general metric graph G with weights ŵl,
l = 1, ..., L, we define a measure ŵldτ on each edge el where τ is the
arclength parameter of the edge. Let ds be the measure on G so that
ds|el

= ŵldτ .
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Let T be an NPC space. A center of mass of a map ϕ ∈ L2(G,T ) is
a point ϕ̄ ∈ T so that∫

G
d2
T (ϕ, ϕ̄)ds = inf

P∈T

∫
G
d2
T (ϕ, P )ds.

The unique existence of such a point is guaranteed by the NPC condition
(cf. [KS1] Proposition 2.5.4). Now let G(T ) be the set of Lipschitz
functions ϕ : G→ T into an NPC space T and define the first eigenvalue
of G with values in T as

λ1(G,T ) = inf
G(T )

∫
G

∣∣∣dϕdτ ∣∣∣2 ds∫
G d

2(ϕ, ϕ̄)ds
. (6)

In the application, the NPC space T will be a tangent cone of an NPC
space Y . We will need the following lemma.

Lemma 14 Suppose f : X → Y is a continuous map and Q ∈ Y so
that ∫

∂Bσ(p)
d2(f,Q)ds = inf

P∈Y

∫
∂Bσ(p)

d2(f, P )ds.

If π : Y → TQY is the projection map into the tangent cone of Y at Q,
then ∫

∂Bσ(p)
d2
TQY

(π ◦ f, 0)ds = inf
V ∈TQY

∫
∂Bσ(p)

d2
TQY

(π ◦ f, V )ds,

where 0 is the origin of TQY .

Proof. Let t 7→ c(t) be a geodesic so that c(0) = Q. By the
minimizing property of c(0) = Q, we have

0 ≤
∫
∂Bσ(p)

d2(f, c(t))ds−
∫
∂Bσ(p)

d2(f, c(0))ds.

Furthermore, by Bridson-Haeflinger, Corollary II 3.6, we have

lim
t→0

d(f, c(t))− d(f, c(0))
t

= − cos 6 (c, γy)

where γy is the geodesic from c(0) to f(y) and 6 (γy, c) is the angle
between γy and c at c(0) = Q. Therefore,

0 ≤ lim
t→0

∫
∂Bσ(p)

d2(f, c(t))− d2(f, c(0))
t

dt

= lim
t→0

∫
∂Bσ(p)

d(f, c(t))− d(f, c(0))
t

(d(f, c(t)) + d(f, c(0)))ds

= −2
∫
y∈∂Bσ(p)

cos 6 (γy, c)d(f(y), c(0))ds.
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Let [c] be the equivalence class of c and V = ([c], 1) ∈ TQY . Since
π ◦ γy is the (radial) geodesic from the origin 0 and π ◦ f(y) in TQY ,

cos 6 (γy, c)d(f(y), f(0)) =< π ◦ f(y), V >,

and thus
0 ≤ −

∫
y∈∂Bσ(p)

< π ◦ f(y), V > ds. (7)

By the continuity of the inner product, (7) holds for all V = (V0, t) ∈
TQY where V0 = V/|V |. Therefore, for t ≥ 0,∫

∂Bσ(p)
d2
TQY

(π ◦ f(y), (V0, t))ds

=
∫
∂Bσ(p)

t2 + |π ◦ f(y)|2 − 2t < π ◦ f(y), V0 > ds

≥
∫
∂Bσ(p)

|π ◦ f(y)|2ds

=
∫
∂Bσ(p)

d2
TQY

(π ◦ f(y), 0)ds.

q.e.d.

For p ∈ X(0) and σ > 0 sufficiently small so that Bσ(p) ⊂ star(p),
define

σ : B1(p) → Bσ(p), σ(x) = σx

to be the dilation by σ as was done in defining the domain of the blow
up maps fσ (cf section 2.4). Since the edge el of Lk(p) are isometrically
identified with the interval [0, θ] where θ is the angle of p in Fl, ∂B1

is isometrically identified with Lk(p). Thus, Lemma 14 immediately
implies

Corollary 15 Suppose f : X → Y is a Lipschitz map and Q ∈ Y so
that ∫

∂Bσ(p)
d2(f,Q)ds = inf

P∈Y

∫
∂Bσ(p)

d2(f, P )ds.

If π : Y → TQY is the projection map into the tangent cone of Y at Q,
then ∫

Lk(v)

∣∣∣∂(π◦f◦σ)
∂τ (x)

∣∣∣2 ds∫
Lk(v) |π ◦ f ◦ σ(x)|2ds

≥ λ1(Lk(v), TQY ).
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Proof. By Lemma 14, the center of mass of the map π ◦ f ◦ σ
is 0. Thus, the assertion follows immediately from the definition of
λ1(Lk(v), TQY ). q.e.d.

A consequence of Corollary 15 is the following theorem which asso-
ciates the first eigenvalue with the order of a w-harmonic map.

Theorem 16 Let f : X → Y be a w-harmonic map. If λ1(Lk(p), TQY ) ≥
β (> β) for p ∈ X(0) and all Q ∈ Y , then α :=ord(p) ≥

√
β (>

√
β).

Proof. Let σi → 0 so that fσi → f∗ : B1 → Y∗. From (1), we can
fix λ so that ∫

∂Bλ

∣∣∣∣∂fσi

∂τ

∣∣∣∣2 ds→ ∫
∂Bλ

∣∣∣∣∂f∗∂τ
∣∣∣∣2 ds.

By [GS], pages 200-201, we have

0 6= α = lim
σ→0

σλE(σλ)∫
∂Bσλ(p) d

2(f,Qσλ)ds
= lim

σ→0

σλE(σλ)∫
∂Bσλ(p) d

2(f, f(0))ds
,

which then implies

lim
σ→0

∫
∂Bσλ(p) d

2(f,Qσλ)ds∫
∂Bσλ(p) d

2(f, f(0))ds
= 1. (8)

Let Qi ∈ Y be the point so that∫
∂Bσiλ(p)

d2(f,Qi)ds = inf
Q∈Y

∫
∂Bσiλ(p)

d2(f,Q)ds

and πi : Y → TQiY be a projection map into the tangent cone of Y at
Qi. By the previous lemma,∫

∂Bσiλ(p)
d2(πi ◦ f, 0)ds = inf

V ∈TQi
Y

∫
∂Bλσi

(p)
d2(πi ◦ f, V )ds. (9)

Additionally,

d2(f,Qi) = |πi ◦ f |2 and
∣∣∣∣∂f∂τ

∣∣∣∣ ≥ ∣∣∣∣∂(πi ◦ f)
∂τ

∣∣∣∣ (10)

23



since πi is distance non-increasing. Thus, by (8) and (10),

lim
σi→0

λ2
∫
∂Bλ

∣∣∣∂fσi
∂τ

∣∣∣2 ds∫
∂Bλ

d2
σi

(fσi , fσi(0))ds
= lim

σi→0

(σiλ)2
∫
∂Bσiλ

∣∣∣∂f∂τ ∣∣∣2 ds∫
∂Bσiλ

d2(f, f(0))ds

= lim
σi→0

(σiλ)2
∫
∂Bσiλ

∣∣∣∂f∂τ ∣∣∣2 ds∫
∂Bσiλ

d2(f,Qi)ds

≥ lim
σi→0

(σiλ)2
∫
∂Bσiλ

∣∣∣∂(πi◦f)
∂τ

∣∣∣2 ds∫
∂Bσiλ

|πi ◦ f |2ds
.

By change of coordinates y = σiλx, (9) and Corollary 15,

(σiλ)2
∫
y∈∂Bσiλ

∣∣∣∂(πi◦f)
∂τ (y)

∣∣∣2 ds∫
∂Bσiλ

|πi ◦ f(y)|2ds
=

∫
x∈∂B1

∣∣∣∂(πi◦f◦(σiλ))
∂τ (x)

∣∣∣2 ds∫
x∈∂B1

|πi ◦ f ◦ (σiλ)(x)|2ds

=

∫
x∈Lk(p)

∣∣∣∂(πi◦f◦(σiλ))
∂τ (x)

∣∣∣2 ds∫
x∈Lk(p) |πi ◦ f ◦ (σiλ)(x)|2ds

≥ λ1(Lk(v), TQiY )
≥ β(> β).

Therefore,

R :=

∫
∂B1

∣∣∣∂f∗∂τ ∣∣∣2 ds∫
∂B1

d2(f∗, f∗(0))ds

=
λ2
∫
∂Bλ

∣∣∣∂f∗∂τ ∣∣∣2 ds∫
∂Bλ

d2(f∗, f∗(0))ds

= lim
σi→0

λ2
∫
∂Bλ

∣∣∣∂fσi
∂τ

∣∣∣2 ds∫
∂Bλ

d2
σi

(fσi , fσi(0))ds

≥ β(> β).

For y ∈ ∂B1, the homogeneity of f∗ implies

d(f∗(ry), f∗(0)) = rαd(f∗(y), f∗(0)),

and hence

Ef∗(1) =
∫
y∈∂B1

∫ 1

0

∣∣∣∣∂f∗∂r (ry)
∣∣∣∣2 +

1
r2

∣∣∣∣∂f∗∂τ (ry)
∣∣∣∣2 rdrds
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=
∫
y∈∂B1

∫ 1

0
α2r2α−1d2(f∗(y), f∗(0)) + r2α−1

∣∣∣∣∂f∗∂τ (y)
∣∣∣∣2 drds

=
α

2

∫
y∈∂B1

d2(f∗(y), f∗(0)) +
1
2α

∣∣∣∣∂f∗∂τ (y)
∣∣∣∣2 drds.

Thus,

α =
Ef∗(1)
If∗(1)

=
α

2
+

1
2α
R

and
α2 = R ≥ β(> β).

q.e.d.

5 The fixed point and rigidity theorems

We can now record our main theorem.

Theorem 17 Let X be an admissible, Euclidean 2-complex with weight
w and Y an NPC space. Assume λ1(Lk(p), TQY ) ≥ 1 for all p ∈ X(0)

and all Q ∈ Y . If f : X → Y is a w-harmonic map, then f is totally
geodesic on each 2-simplex F of X. If the curvature of Y is strictly
negative, f maps each 2-simplex into a geodesic of Y . Furthermore, if
λ1(Lk(p), TQY ) > 1 for all p ∈ X(0) and all Q ∈ Y , then f is constant.

Proof. Follows immediately from Theorem 12, Theorem 13 and
Theorem 16. q.e.d.

An important example of NPC space is the Weil-Petersson comple-
tion T̄ of Teichmüller space T marked genus g, n-punctured Riemann
surfaces. Recently Wolpert showed that the tangent cone of T̄ at a
point in the boundary is isometric to the tangent cone of Rk

≥0 × T ′,
where Rk

≥0 is the half space in Rk and T ′ is a lower genus Teichmüller
space (cf. [Wo]). We can thus deduce the following theorem:

Theorem 18 Let X be a 2-dimensional admissible simplicial complex
such that λ1(Lk(p)) ≥ 1 for all p ∈ X(0). Then any w-harmonic map to
the Weil-Petersson completion of Teichmüller space is totally geodesic
on each simplex of X. Furthermore if λ1(Lk(p)) > 1 for all p ∈ X(0)

then f is constant.
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Proof. By the variational definition (6) and Section 4 of [DM2]

λ1(Lk(p), TQT̄ ) = λ1(Lk(p),Rk
≥0 × Rl)

≥ λ1(Lk(p),Rk+l)
= λ1(Lk(p),R).

It follows that in this case the condition λ1(Lk(p), TQT̄ ) ≥ 1 can
be replaced by the simpler condition λ1(Lk(p)) ≥ 1, which immediately
yields the result. q.e.d.

As noted in the introduction, it follows from [DM2] that the con-
dition λ1(Lk(p)) ≥ 1(> 1) is equivalent to the combinatorial condition
λcomb1 (Lk(p)) ≥ 1/2(> 1/2) in the special case when 2-simplices of X
are isometric to equilateral triangles. Hence Theorem 18 immediately
implies the rigidity of representations of Γ = π1(X) into the mapping
class group in the case when the complex X satisfies the combinatorial
condition λcomb1 (Lk(p)) > 1/2 for all p ∈ X(0) (cf. also [Wo]).

6 Appendix

Let R = [0, 1] × [0, 1] ⊂ R2 and f : R → Y be a Lipschitz energy
minimizing map with Lipschitz constant L so that the pull-back inner
product π = (πij) is non-degenerate and smooth in R. The purpose of
the appendix is to show:

Theorem 19 The smooth Riemannian manifold (R, π) is a non-positively
curved surface.

Remark. Petrunin [P] claims a more general result. Namely, given
any metric minimizing map (which includes energy minimizing maps),
he states that the pull back metric (see below) defines a NPC space.
Because many of the details are only sketched in his paper, we provide
a complete proof here for the specific case that we need (cf. proof of
Theorem 13) based on the outline in his paper.

The rest of this section is devoted to its proof of Theorem 19.

For any spaces Ω1 and Ω2, a distance function d on Ω2 and a Lips-
chitz map g : Ω1 → (Ω2, d), we define two types of pull backs of d. The
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pull back distance function ρg : Ω1 × Ω1 → R+ is

ρg(z, w) = d(g(z), g(w))

and the pull back metric dg : Ω1 × Ω1 → R+ is

dg(z, w) = inf
γ∈Λ

length(g ◦ γ)

where Λ is the set of all Lipschitz curves γ : [0, 1] → R with γ(0) = z
and γ(1) = w. Generally, these are only pseudo-distance functions, but
we will refer to them as distance functions by an abuse terminology.
Clearly, we have the inequality

ρg(z, w) ≤ dg(z, w), (11)

but, if g(Ω1) = Ω2 then

ρg(z, w) = dg(z, w). (12)

Let
R(n) = {zij =

(
i

2n
,
j

2n

)
: i, j = 0, ..., 2n},

∂R(n) = R(n) ∩ ∂R and R′(n) = R(n)− ∂R(n). We let Rij denote the
box defined by zij , zij+1, zi+1j+1 and zi+1j . Two points z, z′ ∈ R(n) are
said to be adjacent if z =

(
i

2n ,
j
2n

)
and z′ =

(
i±1
2n ,

j
2n

)
or z′ =

(
i

2n ,
j±1
2n

)
.

We will write this relationship by z ∗ z′.
Since π is a smooth inner product, df is equal to the distance func-

tion induced by π, i.e.

df (z, w) = inf
γ∈Λ

∫ 1

0

√
π(γ′(t), γ′(t))dt.

The smoothness of π also implies that there exists κ so that the Gaussian
curvature of R is less that κ > 0. For n sufficiently large, there exists a
convex quadrilateral Q̄ij in a sphere of constant curvature κ with side
lengths of Q̄ij equal to those of Rij measured with respect to df . Con-
struct a piecewise spherical space Sn by gluing together the edges of Q̄ij
in the obvious way and let d̄n be the natural distance function defined
on Sn. Since df is smooth, there exists a Lipschitz homeomorphism
αn : (R, df ) → (Sn, d̄n) which takes Rij diffeomorphically to Q̄ij so that

dαn(z, w) ≤ df (z, w) +O(n)|z − w| (13)
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for z, w ∈ R and where O(n) → 0 as n → ∞. Let {e1, e2} be the
standard orthonormal vectors in R and γ0(t) = z + tεei. Then

df (z, z + εei) ≤
∫ 1

0

√
π(γ′0(t), γ

′
0(t))dt ≤ ε sup

t∈[0,1]

√
πii(γ0(t)).

By the smoothness of π, it follows that

lim
ε→0

df (z, z + εei)2

ε2
≤ πii(z). (14)

On the other hand, (11) implies

ραn(z, z + εei)2

ε2
≤ dα(z, z + εei)2

ε2

and hence

|(αn)∗(ei)|2 ≤ lim
ε→0

dα(z, z + εei)2

ε2
(15)

for a.e. z ∈ R by Lemma 1.9.4 of [KS1]. Combining (13), (14) and (15),
we obtain

Eαn ≤ Ef +O(n).

Let Fn be a set of maps ψ : R(n) → Y so that

(i) ψ|∂R(n) = f |∂R(n)

and, for z, z′ ∈ R(n) with z ∗ z′,

(ii) d(ψ(z), ψ(z′)) ≤ d(f(z), f(z′)).

Define the step n discrete energy En : Fn → Y by setting

En(ψ) =
1
2

∑
z∈R′(n)

∑
z′∗z

d2(ψ(z), ψ(z′)).

Lemma 20 There exists ψn ∈ Fn so that En(ψn) = en := infψ En(ψ)
where inf is taken over all ψ ∈ Fn.

Proof. Since f |R(n) ∈ Fn, Fn is non-empty. Let ψi ∈ Fn so that
En(ψi) → en. If ψij ∈ Fn is defined so that ψij(z) is the midpoint on
the geodesic between ψi(z) and ψj(z), then

d(ψij(z), ψij(w))

≤ 1
2
d(ψi(z), ψi(w)) +

1
2
d(ψj(z), ψj(w))

−1
4
(d(ψi(z), ψj(z))− d(ψi(w), ψj(w)))2
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and hence

en ≤ Eψ
ij

n ≤ 1
2
Eψ

i

n +
1
2
Eψ

j

n − 1
4

∑
z∈R′(n)

(d(ψi(z), ψj(z))−d(ψi(z), ψj(w)))2

Thus,

lim
i,j→∞

∑
z∈R′(x)

(d(ψi(z), ψj(z))− d(ψi(z), ψj(w)))2 = 0,

which says that {ψi(z)} is a Cauchy sequence for each z ∈ R′(n) and
hence ψi(z) converge to ψn(z) and En(ψn) = en by the continuity of
the distance function. q.e.d.

Since Y is an NPC space, there exists a convex quadrilateral Qij
in the Euclidean plane with side lengths of Rij measured with respect
to ρψn . We denote the vertices of Qij corresponding to the vertices
zij , zi+1j , zi+1j+1, zij+1 by qij , qi+1j , qi+1j+1, qij+1. Construct a piece-
wise linear space Ln by gluing together the edges of Qij in the obvious
way and let dn be the natural distance function defined on Ln. By
condition (ii) and the fact that Sn is piecewise spherical (of constant
curvature κ) and Ln is piecewise Euclidean, there exists a homeomor-
phism βn : Sn → (Ln, dn) which takes Q̄ij diffeomorphically to Qij so
that

dβn(p, q) ≤ d̄n(p, q)

for p, q ∈ Sn. Setting p = αn(z) and q = αn(w), this implies that

dβn◦αn(z, w) ≤ df (z, w) +O(n)|z − w|

for z, w ∈ R and
Eβn◦αn ≤ Ef +O(n).

Connect the ordered points

ψn(qij), ψn(qij+1), ψn(qi+1j) and ψn(qi+1j+1)

by geodesics, except when the two consecutive points lie on the bound-
ary of Ln in which case we use the corresponding boundary value of f to
connect them. The resulting quadrilateral in Y will be denoted by Qij .
(Note that this modification from geodesic lines to the boundary value
of f becomes irrelevant as n → ∞ in the sense the modified version
or the unmodified version become uniformly close as n → ∞.) From
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these geodesic quadrilaterals, we construct a ”ruled surface” (in the
sense of Alexandrov [A]). This is constructed as follows. First, choose a
pair of opposite edges in Qij and give a constant speed parametrization
γ, σ : [0, 1] → Y of these edges so that γ(0) and σ(0) lie on one side
of the quadrilateral. Second, connect γ(t) and σ(t) by a geodesic for
each t ∈ [0, 1]. We call this surface Qij . We define Rn as an abstract
space made up of disjoint union of Qij with the identification along the
adjacent boundaries. Note that Rn is similar to the piecewise linear
space Ln but with linear pieces replaced by ruled surfaces in Y .

Lemma 21 The metric space Rn is NPC.

Proof. By the result of Alexandrov, ruled surfaces in NPC spaces
are NPC (cf. [A]). Thus, R is a piecewise NPC surface. Therefore, we
need only to check that the total angle at the vertices, i.e p = ψn(z) for
z ∈ R′(n) where four ruled sufaces meet, are ≥ 2π. Let geodesics l1, l2, l3
and l4 be the interfaces of the four ruled surfaces meeting at p = ψn(z)
for some z ∈ R′(n). Denote the other endpoint of li by ψn(zi) for zi ∗ z.

Since the distance measured along the surface is always greater or
equal to the distance measured in the ambient space, we need only check
that the sum of the angle between li, li+1 (i = 1, 2, 3) and l4, l1 measured
in terms of the distance function d on Y is ≥ 2π. So suppose not. Let
[Wi, ti] be the endpoint of the geodesic π(li) emanating from the origin
where π : Y → TpY is the projection map to the tangent cone at
ψn(z) = p. Since π is a non-expanding map, < Wi,Wi+1 >≤ 6 (li, li+1).
Since W1, ...,W4 are points in the space of directions, SpY , which is a
CAT(1) space, there exists a convex quadrilateral Q̄ in S2 with vertices
W̄1, ..., W̄4 preserving distances of W1, ...,W4 and a non-expanding map
r : Q̄→ SpY . Since Q̄ has length < 2π, we can assume Q̄ is compactly
contained in the upper hemisphere. Thus, if N is the north pole of S2,
then < W̄i, N >< π

2 which then implies < Wi, r(N) >< π
2 . Hence

d

dτ
d2
TPY

([r(N), τ ], [Wi, ti]) =
d

dτ
(τ2 + t2i − 2τti cos < Wi, r(N) >)

= 2τ − 2ti cos < Wi, r(N) >< 0

for small τ > 0 which then implies

τ 7→
4∑
i=1

d2
TPY

([r(N), τ ], π ◦ ψn(zi))
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is a decreasing function for small τ > 0. On the other hand, ψn is a step
n energy minimizing map, which implies that 0 ∈ Tf(z)Y is the center
of mass of π ◦ ψn(z1), π ◦ ψn(z2), π ◦ ψn(z3) and π ◦ ψn(z4) (cf. [IN]).
This contradiction implies

6 (l1, l2) + 6 (l2, l3) + 6 (l3, l4) + 6 (l4, l1) ≥ 2π (i mod 4)

which proves our assertion. q.e.d.

By a theorem of Reshetnyak [R] (see also [KS1], Theorems 2.1.1 and
2.1.2), there exists a non-expanding map γn : Ln → Rn with γn(qij) =
ψn(zij), γn(qij+1) = ψn(zij+1), γn(qi+1j) = ψn(zi+1j) and γn(qi+1j+1) =
ψn(zi+1j+1). Thus,

dγn(r, s) ≤ dn(r, s)

for r, s ∈ Ln. We define

fn : R→ Y, by fn = ιn ◦ γn ◦ βn ◦ αn,

where ιn : Rn → Y is a map which embedds each ruled surface Qij into
Y in the obvious way. Set r = βn ◦ αn(z) and s = βn ◦ αn(w), we see
that

dfn(z, w) ≤ df (z, w) +O(n)|z − w|.

and
Efn ≤ Ef +O(n).

Therefore, fn is a minimizing sequence converging uniformly in the pull
back sense to f by Theorem 3.11 of [KS2].

We set f̄n = γn ◦ βn ◦ αn, i.e. f̄n : R → Rn is fn viewed as a map
with target Rn. Since f̄n(R) = Rn, we have

df̄n = ρf̄n .

By construction, f̄n : R → Rn is a uniformly Lipschitz sequence
of maps into NPC spaces. Proposition 3.7 of [KS2] implies that there
exists a subsequence (denoted again f̄n by an abuse of notation) so
that it converges locally uniformly in the pull back sense to a map
f̄∗ : R → R∗. In particular, this means that df̄n = ρf̄n converges
uniformly to ρf̄∗ which equals df̄∗ by definition of Korevaar-Schoen limit
(cf. [KS2]). Since ιn is a piecewise isometry, we see that dfn = df̄n and
πfn and πf̄n (the pull back inner products of fn and f̄n respectively)
agree a.e.. Since πfn converges to πf and πf̄n converges to πf̄∗ , we see
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that πf = πfn which immediately implies that df = df̄∗ by smoothness.
In conclusion, we have shown that dfn = df̄n converges uniformly to df .

Since Rn is an NPC space and f̄n(R) = Rn, df̄n defines a NPC dis-
tance function on R (after identifications of points of zero df̄n distance).
Thus, the uniform convergence of df̄n to df implies that df defines an
NPC space. This shows that (R, π) is a smooth manifold of non-positive
curvature.
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