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1. Introduction

Harmonic maps between surfaces have been important in studies of Teichmüller
spaces. In [GR], Gerstenhaber and Rauch proposed constructing the Teichmüller
map by a maximum-minimum approach using harmonic maps. This charaterization
of the Teichmüller map was further investigated by Reich and Strebel [R] [RS],
Miyahara [Mi], Leite [Le] and Kuwert [Ku]. Furthermore, Wolf [Wo1] [Wo2]
[Wo3], Fischer and Tromba [FT] [T], and S. Yamada [Y] have used the energy of
maps, harmonic with respect to the hyperbolic metric, to study Teichmüller spaces.
In this paper, we will study the energy of harmonic maps between surfaces with
fixed conformal structures.

It is well known that the energy of maps between surfaces is only dependent on
the conformal class of the domain and is independent of the metric in the conformal
class. On the other hand, the energy is dependent on the choice of a metric on the
target. Fixing a conformal structure on the domain surface and on the target
surface, we consider the energy of the energy minimizing map between the surfaces
as a function of the metric in the conformal class of the target.

More precisely, let Σ1, Σ2 be Riemann surfaces of genus s > 1. Let Dκ be the
space of all conformal metrics g on Σ2 with curvature bounded from above by κ
and area equal to 1. Let φ : Σ1 → Σ2 be a homeomorphism. Define

E : Dκ → R

where E(g) is the energy of the energy minimizing map f : Σ1 → (Σ2, g) in the
homotopy class of φ. Now let

Eκ = inf{E(g) : g ∈ Dκ}.

Because energy is always bounded from below by the area, Eκ ≥ 1. We will show
that for any κ, this inequality is strict.

The Gap Theorem. For any κ <∞, Eκ > 1. In particular, if the curvautre
of (Σ2, g) is bounded from above, then any continuous map f : Σ1 → (Σ2, g) has
energy strictly greater than 1. On the other hand, the limit of the map κ 7→ Eκ, as
κ→∞, is equal to 1.

In proving the above theorem, we will consider metrics on Σ2 that are not
necessarily smooth. A natural class of metrics to consider for this problem are
those associated with distance functions of curvature bounded from above in the
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sense of Alexandrov. We will show the following (see Section 2.3 for the meaning
of distance functions belonging to a Teichmüller class):

Compactness Theorem for Distance Functions. The space of distance
functions of curvature bounded from above by κ, with area equal to 1, whose metric
topology is equivalent to the surface topology, and belonging to a fixed Teichmüller
class is compact under the topology of uniform convergence.

One the fundamental results for harmonic map theory between surfaces is that
when the target metric is smooth, the energy minimizing maps are quasiconformal.
This result was first obtained by Schoen and Yau with an assumption of non-positive
curvature on the target metric and also by Jost and Schoen without the curvature
constraint. Harmonic maps fail to be quasiconformal, or even homeomorphic, when
the target metric is singular. The collapsing behavior of energy minimizing map was
investigated by Kuwert [Ku] for cone metrics and by the author [Me5] for general
singular metrics of curvature bounded from above. Here, we will prove that the
collapse occurs only in the presence of curvature concentrations. Given a distance
function of curvature bounded from above, we define a point to be curvature regular
(see precise definition below) if the curvature measure is bounded by the surface
measure in its neighborhood. We then have the following theorem:

Univalent Harmonic Maps. Let f : Σ1 → (Σ2, g) be an energy minimiz-
ing map with respect to a (possibly nonsmooth and degenerate) metric g. Suppose
(Σ2, g) is a metric space of curvature bounded from above by κ. If P ∈ Σ2 is a
curvature regular point, then there exists a neighborhood of f−1(P ) in which f is
homeomorphic.

This paper is organized as follows: In Section 2, we collect some of the tools
needed in this paper; we outline Korevaar and Schoen’s Sobolev theory for maps
into metric spaces and define what is means for a distance function to be in a
certain conformal class. We prove the homeomorphism property of maps when the
target curvature is controlled in Section 3 and prove the compactness theorem for
distance functions in Section 4. Using these results, we will prove our main result,
The Gap Theorem, in Section 5.

2. Preliminaries

2.1. Definition of Metric Spaces of Curvature Bounded from Above.
First, we review the notion of curvature bounds in a metric space X. We assume
our metric spaces are length spaces, i.e. for each P , Q ∈ X, there exists a curve
γPQ such that the length of γPQ is exactly d(P,Q) (which we will sometimes write
as dPQ). We call γPQ a geodesic between P and Q. We then say that X is an NPC
(non-positively curved) space if every point of X is contained in a neighborhood U
so that for every P,Q,R ∈ U ,

d2
PQτ

≤ (1− τ)d2
PQ + τd2

PR − τ(1− τ)d2
QR (1)

where Qτ is the point on γQR so that dQQτ
= τdQR. Note that equality is achieved

for every triplet P,Q,R ∈ R2. More generally, a length space is said to have
curvature bounded from above by κ if

cosh dPQτ
≤ sinh(1− τ)κdQR

sinhκdQR
cosh dPQ +

sinh τκdQR
sinhκdQR

cosh dPR (2)
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for κ < 0 and

cos dPQτ
≥ sin(1− τ)κdQR

sinκdQR
cos dPQ +

sin τκdQR
sinκdQR

cos dPR (3)

for κ > 0 and dPQ, dQR, dPR < π√
κ
. Note that if X is Sκ, a surface of constant

curvature κ, then the equality is achived for (2) when κ > 0 and for (3) when κ < 0
for every triplet P,Q,R ∈ Sκ

2.2. Sobolev Space Theory in Complete Metric Spaces. Let (Ω, g) be a
compact Riemannian domain and (X, d) any complete metric space. In [KS1] and
[KS2], Korevaar and Schoen develop and investigate the space W 1,2(Ω, X). Here
we define this space and collect some of their results.

A Borel measurable map u : Ω → X is said to be in L2(Ω, X) if for P ∈ X,∫
Ω

d2(u(x), P )dz <∞.

Note that by the triangle inequality, this definition is independent of P chosen. For
u ∈ L2(Ω, X), we can construct an ε-approximate energy function eε : Ωε → R
where Ωε = {x ∈ Ω : d(x, ∂Ω) > ε} by

eε(x) =
1
ωn

∫
S(x,ε)

d2(u(x), u(y))
ε2

dσ

εn−1
.

where ωn is the area form for the unit sphere S(x, 1). For any Borel measure on
the interval (0,2) satisfying

ν ≥ 0, ν((0, 2)) = 1 and
∫ 2

0

λ−2dν(λ) <∞ (4)

we can also define approximate an energy density function νeε(x) : Ω2ε → R by
averaging eε(x). More precisely,

νeε(x) =
∫ 2

0

eλε(x)dν(λ).

By setting νeε(x) = 0 for x ∈ Ω− Ω2ε, we can consider νeε(x) to be a L1 function
on Ω and hence it defines linear functional Euε : Cc(Ω) → R. We say u ∈ L2(Ω, X)
has finite energy (or that u ∈W 1,2(Ω, X)) if

Eu ≡ sup
f∈Cc(Ω),0≤f≤1

lim sup
ε→0

Euε (f) <∞.

We say Eu is the (Korevaar-Schoen) energy of the map u. It can be shown that if u
has finite energy, the measures νeε(x)dx converge weakly to a measure, indepently
of the choice of ν, which is absolutely continuous with respect to the Lebesgue
measure. Therefore, there exists a function e(x), which we call the energy density,
so that eε(x)dx ⇀ e(x)dx. In analogy to the case of real valued functions, we often
write |∇u|2(x) in place of e(x). In particular,

Eu =
∫

Ω

|∇u|2dx.

Similarly, the directional energy measures |u∗(Z)|2dx for Z ∈ ΓΩ̄ can also be
defined as the weak* limit of measures Zeεdx. Here,

Zeε(x) =
d2(u(x), u(x̄(x, ε))

ε2
.



4 CHIKAKO MESE

where x̄(x, ε) denotes the flow along Z at time ε, starting at point x. For almost
every x ∈ Ω,

|∇u|2(x) =
1
ωn

∫
Sn−1

|u∗(ω)|2dσ(ω).

This definition of Sobolev space W 1,2(Ω, X) is consistent with the usual definition
when X is a Riemannian manifold.

The local existence and regularity for energy minimizing maps in this general
setting has been worked out by Schoen and Korevaar [KS1] for κ ≤ 0 and by
Serbinowski [Se] for κ > 0. A map is called harmonic if it is locally energy min-
imizing. The homotopy problem for harmonic maps was studied in [KS1]. The
regularity theorem can be summarized by the following:

Theorem 1. If X is a metric space of curvature bounded from above by κ,
(Ω, g) is a Riemannian domain, and f : Ω → X is a harmonic map, then f is
locally Lipzschitz continuous in the interior of Ω. The local Lipschitz constant of f
is only dependent on the total energy of f , distance to ∂Ω (if ∂Ω 6= ∅), κ, and g.

Finally, if X has curvature bounded from above by κ, then for any map u ∈
W 1,2(Ω, X), we can also make sense of the notion of the pull back metric

π : Γ(T Ω̄)× Γ(T Ω̄) → L1(Ω̄)

defined by

π(V,W ) =
1
4
|u∗(V +W )|2 − 1

4
|u∗(V −W )|2 for V,W ∈ Γ(T Ω̄).

Suppose Ω is a surface with conformal parameter z = x+ iy. Then u ∈W 1,2(Ω, X)
is said to be conformal if

π

(
∂

∂x
,
∂

∂x

)
= π

(
∂

∂y
,
∂

∂y

)
and π

(
∂

∂x
,
∂

∂y

)
= 0.

λ = π
(
∂
∂x ,

∂
∂x

)
is called the conformal factor of u.

Using the Sobolev Space theory outlined above, the author [Me1] [Me2] [Me4]
has developed the minimal surface theory in metric spaces of curvature bounded
from above by κ. (See Nikolaev [Ni] for a different approach.) We prove the
following two theorems in [Me2].

Theorem 2. Let ∆ be a unit disk in the plane and u : ∆ → (X, d) be an energy
minimizing map into a metric space of curvature bounded from above by κ. Then
for any η ∈ C2

c (∆) with η ≥ 0,∫
∆

|∇u|24η ≥ −2κ
∫

∆

η|∇u|4. (5)

If u is minimal (i.e. also weakly conformal) with conformal factor λ, then∫
∆

λ4η ≥ −2κ
∫

∆

ηλ2. (6)

Theorem 3. Let λ be a conformal factor of the pull back metric under a min-
imal surface (i.e. a weakly conformal energy minimizing map) u : ∆ → (X, d)
into metric space of curvature bounded from above by κ. Then for all non-negative
ϕ ∈ C∞c (∆), ∫

∆

log λ4ϕ ≥ −2κ
∫

∆

ϕλ. (7)
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Theorem 2 is a differential inequality satisfied by the energy density function.
For smooth harmonic maps, it can be derived by using the Bochner’s formula.
Recall that the Gaussian curvature of a surface with metric λ|dz|2 is given by
−1
2λ4 log λ if λ is smooth. Hence the geometric interpretation of Theorem 3 is that
the curvature of a minimal surface is bounded from above by the curvature of the
ambient space. Furthermore, we have

Proposition 4. For a set E ⊂ ∆, let P (E) be the perimeter of E, i.e. if ϕE
is the characteristic function of the set E,

P (E) =
∫

∆

|∇ϕE | = sup{
∫

∆

ϕE div gdx : g ∈ C1
c (∆), |g(x)| ≤ 1}.

Let Eδ = {z ∈ ∆ : λ < δ}. Then P (Eδ) → 0 as δ → 0.

Using Proposition 4, we can show that line element λ|dz|2 induces a distance
function dλ on ∆ whose metric topology is equivalent to the surface topology. It
is shown in [Me2] that (∆, dλ) is a metric space of curvature bounded from above
by κ.

Proof. Since λ satisfies inequality (7), log λ ∈ W 1,1
loc (∆). By the co-area for-

mula for functions of bounded variations,∫ ∞

−∞

∫
∆

|∇ϕEδ
|dtdx =

∫
∆

|∇ log λ| <∞

and the result follows immediately.

2.3. Conformal Representation of Surfaces. The following is a theorem
of Reshetnyak [Re1].

Theorem 5. Suppose a compact surface S is endowed with a distance func-
tion d which makes (S, d) into metric space of curvature bounded from above by κ.
Assume that the metric topology of d is equivalent to the surface topology. Then
for every P ∈ S, there is a neighborhood U of P and a conformal homeomorphism
ψ : ∆ → U from the unit disk ∆ in the complex plane.

Remark 6. In [Re1], Theorem 5 is proved by approximating the distance
function by those induced from Riemannian metrics. The conformal homeomor-
phism is then obtained by taking a converging sequence of local corformal maps
for the approximating metrics. We have shown in [Me3] that Theorem 5 can be
proved using the variational theory of Korevaar and Schoen [KS1] outlined above
and the minimal surface theory for metric spaces of curvature bounded from above
developed in [Me2]. Although Theorem 5 is proved for the κ = 0 case in [Me3], it
is not too difficult to generalize the argument to cover the case when κ > 0.

We also have the following theorem of Huber [Hu]:

Theorem 7. Let U1, U2 ⊂ S and ψ1 : ∆ → U1, ψ2 : ∆ → U2 be conformal
maps with conformal factors λ1 and λ2. If U1 ∩ U2 is non-empty, then the map
T = ψ1

2 ◦ ψ1 : ψ−1
1 (U1 ∩ U2) → ψ−1

2 (U1 ∩ U2) is a conformal map. Moreover,

λ2(z) = |T ′(z)|2λ1(z).

The above two theorem gives (S, d) a structure of a Riemann surface. Thus,
using the uniformization theorem, there is a Riemann surface Σ and a conformal
homeomorphism ι : Σ → (S, d).
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Definition 8. A distance function d on a surface S is said to be in the
conformal class of Riemann surface Σ if there is a conformal homeomorphism
ι : Σ → (S, d).

Recall that a point in the Teichmüller space with base surface S is represented
by a pair (Σ, h) where Σ is a Riemann surface and h : S → Σ is a homeomorphism.
Two pairs (Σ, h) and (Σ′, h′) represent the same point if and only if h′ ◦ h−1 is
homotopic to a holomorphic map.

Definition 9. Let S be a compact surface, d a distance function on S and
(Σ, h) a point in Teichmüller space with base S. Suppose that (S, d) is a metric space
of curvature bounded from above by κ and the metric topology of d is equivalent to
the surface topology. Then d is said to be in the Teichmüller class of (Σ, h) if there
exists a conformal homeomorphism ι : Σ → (S, d) homotopic to h−1.

The conformal factor λ of ι gives rise to a quadratic form g = λ|dz|2 on Σ
which we call the metric induced by d. The quadratic form g induces a distance
function dλ on Σ of curvature bounded from above by κ. By construction d and dλ
are infinitesmally isometric; in particular, if f : Ω → (Σ, dλ) is a finite energy map,
then the energy of the map f is equal to the energy of the map ι ◦ f : Ω → (S, d).
Hence, from here on, if d is a distance function on a surface with curvature bounded
from above by κ, we assume that d is defined on the appropriate Riemann surface
Σ by pulling back d on S to Σ by ι. The area of Σ with respect to d is given by

A(Σ, d) =
∫

Σ

λ|dz|2.

Using the above definitions, we prove in [Me5] that the energy minimizing map
of the homotopy problem can be given as a certain limit of smooth harmonic maps.

Theorem 10. Let Σ1 and Σ2 be Riemann surfaces (with or without boundary)
of genus s and let g0 be a (possibly non-smooth and degenerate) conformal metric
which induces a metric space (Σ2, d0) of curvature bounded from above by κ. Let
h : Σ1 → Σ2, be a degree 1 map. There exists smooth conformal metrics gi,
i = 1, 2, ... (with induced distance functions di) on Σ2 and maps f i : Σ1 → Σ2,
i = 0, 1, 2, ..., energy minimizing in the homotopy class of h (with f i = h on ∂Σ1 if
∂Σ2 6= ∅) with respect to gi so that (i) di(f i(·), f i(·)) converges to d0(f0(·), f0(·))
uniformly on Σ2 × Σ2 and (ii) the (Korevaar-Schoen) energy and the directional
energy of f i with respect to the di converge to that of f0 with respect to d0.

Let λh|dz|2 be the local expression of the hyperbolic metric and let ρ be the
function on Σ defined by λ|dz|2 = ρλh|dz|2. By Theorem 3 and using the fact that
4 log λh = 2λh, we deduce∫

(4ϕ) log ρ|dz|2 ≥ −2κ
∫
ϕρλh|dz|2 − 2

∫
ϕλh|dz|2 (8)

for every ϕ ∈ C∞c (∆). Equivalently, we can write

4g log ρ ≥ −2κρλh − 2λh weakly. (9)

We call ρ the function associated with d.
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3. Univalent Harmonic Maps Between Surfaces

The following is a theorem of Jost and Schoen:

Theorem 11. Let Σ1 and Σ2 be closed Riemann surfaces and g be a smooth
Riemannian metric on Σ2. If f : Σ1 → (Σ2, g) is a degree 1 energy minimizing
map, it is a diffeomorphism.

Harmonic maps that are not smooth exhibit behavior that is quite different
than the one displayed by smooth harmonic maps; as indicated in [Ku] and [Me5],
degree 1 energy minimizing map f between compact surfaces may collapse along
vertical arcs of the Hopf differential when S contains singularities. In fact, when
the target has a flat metric with cone singularities, the only homeomorphic energy
minimizing map is the Teichmüller map with the Teichüller metric on S (see [Le]
and [Ku]). On the other hand, these energy minimizing maps into surfaces with
cone singularities are local homeomorphisms in neighborhoods mapped away from
cone points. In this section, we study the behavior of an energy minimizing map
f : Σ1 → (Σ2, g) where g is a singular metric and f is mapped to neighborhoods of
Σ2 not containing negative curvature concentrations.

Let S, Σ, d, ι, and λ as in the Section 2.2. Since ι is an energy minimizing map,
λ can be assumed to be bounded above by L locally by Theorem 1. Therefore, by
Theorem 3,

4 log λ ≥ −2κL weakly

in a coordinate neighborhood of Σ. By the Reisz representation of subharmonic
functions (see [HK]), λ can be represented locally by

λ(w) = exp
1
2

(∫
log |w − ξ|dµ1(ξ)−

∫
log |w − ξ|dµ2(ξ) + h(w)

)
(10)

where µ1 and µ2 are positive measures and h is a harmonic function. Let K =
µ1 − µ2. By the Hahn Decomposition Theorem, there exists two mutually singular
positive measures K+ and K− so that K = K− −K+. If λ|dz|2 is a smooth metric,
the curvature of Σ2 with respect to the λ|dz|2 is given by

−K = − 1
2λ
4 log λ.

Hence, the measure K is the curvature measure for λ|dz|2. In other words, for any
E ⊂ Σ2,

K(E) =
∫
E

4 log λ|dw|2.

Since the λ|dz|2 is not necessarily smooth and may be degenerate, the curvature
measure K could be quite singular. We study neighborhoods in Σ2 at which the
curvature measure satisfies some regularity condition.

Definition 12. A point w0 ∈ Σ2 is called a curvature regular point if there
exists a neighborhood U of w0 in which

dK ≤ C|dw|2,

for some constant C.
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Let log λ be represented as in equation (10) in a compact set E and ∆(w) be
the unit disk centered at w. Then

log λ(w) ≥ 1
2

∫
∆(w)∩E

log |w − ξ|dK + h(w)

≥ C

2

∫ 2π

0

∫ 1

0

log r rdrdθ + h(w)

≥ Cπ

∫ 1

0

log r rdr + h(w)

≥ −Cπ
2

+ h(w).

Hence, λ is locally uniformly bounded away from zero in a small compact subset of
a curvature regular set.

Let D2 ⊂ Σ2 and g = λ|dz|2 in D2. When we refer to the euclidean metric, we
will mean D2 with flat metric |dz|2. Now suppose that dK ≤ C|dw|2 in D2. From
the above discussion, we may assume that 0 < ε ≤ λ ≤ ε−1 in D2. Let D1 ⊂ Σ1 be
a coordinate neighborhood so that f(D1) ⊂ D2.

For w1, w2 ∈ D2, let γ be a smooth curve so that

2d(w1, w2) ≥
∫
γ

√
λds.

Then

d(w1, w2) ≥
1
2

∫
γ

√
λds ≥ ε

2
length(γ) ≥ ε

2
|w1 − w2|eucl

where length(γ) is the euclidean length of γ and | · |eucl is the euclidean distance.
This implies that f , which is Lipschitz with respect to d, is also Lipschitz in D1

with respect to the euclidean coordinates on D2. If f has this property, we will
say that f is Lipschitz in D1 with respect to the flat metric. By Radamacher’s
Theorem, f is differentiable a.e. and fz and fz̄ are defined a.e. Therefore, we can
define the stretch factor k(z) for the map f .

Definition 13. Let f : Σ1 → Σ2 be an energy minimizing map. Suppose D2

contains only curvature regular points. Let D1 ⊂ Σ1 so that f(D1) ⊂ D2. Then the
stretch factor of f in D1 is defined by

k(z) =
|fz̄|2

|fz|2

whenever fz and fz̄ exists (see [Ah]).

In our situation, we can prove the following property of k(z).

Lemma 14. The function k(z) is lower semicontinuous.

Proof. ¿From the proof of Lemma 5 of [Ku], k(z0) = µ−
√
µ2 − 1 where

µ = lim
σ→0

∫
∂Dσ

d2(f(z), f(z0))dΣ

πσm+3

Since µ is a non-increasing limit of continuous functions, µ is upper semicontinuous.
It follows that k is lower semicontinuous.
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Let gi = λi|dz|2 and f i for i = 0, 1, 2, ... as in Theorem 10 with Σ1 = D1. It is
a result of citeserbinowski that the Dirichlet solution in a metric space of curvature
bounded from above by κ is unique as long as the boundary data lies in a small
geodesic ball of the target. Thus if we choose D1 sufficiently small, f0 is equal to
f in D1. Thus, f i converges to f in the sense of Theorem 10. Let giEf

i

(D1) be
the energy of the map f i with respect to the metric gi in the domain D1. Then
giEf

i

(D1) is uniformly bounded. Since 0 < ε ≤ λ ≤ ε−1, the maps f i are uniformly
Lipschitz continuous with respect to the flat metric. Thus, we can assume (by taking
a subsequence if necessary) that the sequence {f i} converges uniformly and H1-
weakly to f with respect to the flat metric. We will write f i(z) = (ui(z), vi(z)) and
f(z) = (u(z), v(z)) in local coordinates. Note that the weak convergence of ∂ui

∂x to
∂u
∂x in L2 implies that ∂ui

∂x converges a.e. to ∂u
∂x . Similarly, we have this property for

∂vi

∂x , ∂u
i

∂y , ∂v
i

∂y and hence for f iz and f iz̄. Furthermore, let Ki be a function on defined
D1 by setting Ki(z) as −1

2λi
4 log λi at f(z). Let dKi be the curvature curvature

measure of gi defined on D2. The curvature measures Ki converges weakly to K
since ε

2 ≤ λi ≤ 2ε−1. Thus, we can assume dKi ≤ C|dw|2.

Lemma 15. Assume z0 ∈ Σ1 so that k(z0) = 1 and f(z0) is a curvature regular
point. Then there is a coordinate neighborhood D1 around z0 so that for some C1,∫

D1

4ϕ log k−1 ≤ C1

∫
D1

ϕ log k−1 (11)

for every ϕ ∈ C∞c (U).

Proof. For any δ > 0, k(z) > 1 − δ in a sufficiently small neighborhood of
z0 since k is lower semicontinuous by Lemma 14. Hence given C2 > 1, there is a
sufficiently small neighborhood of z0 so that,

k−1 − 1 ≤ C2 log k−1. (12)

Therefore, if D1 and D2 are defined as in the above discussion, we can arrange
them so that inequality (12) holds in D1 and dK ≥ C|dw|2 in D2.

Since f i is a smooth energy minimizing map,

4 log
|f iz|2

|f iz̄|2
= −4Kiλi(|f iz|2 − |f iz̄|2),

by [SY]. Noting that |f iz|2 − |f iz̄|2 is the Jacobian of f ,

−4
∫
D1

ϕKiλi
(
|f iz|2 − |f iz̄|2

)
|dz|2 = 2

∫
D2

(ϕ ◦ (f i)−1)4 log λi|dw|2

= 2
∫
D2

(ϕ ◦ (f i)−1)dKσi

≤ 2C
∫
D2

ϕ ◦ (f i)−1|dw|2

= 2C
∫
D1

ϕ(|f iz|2 − |f iz̄|2)|dz|2

Since f iz → fz, f iz̄ → fz̄ a.e. and |f iz|, |f iz̄| ≤ L, by the Lebesgue Convergence
Theorem,

C

∫
D1

ϕ(|f iz|2 − |f iz̄|2)|dz|2 → C

∫
D1

ϕ(|fz|2 − |fz̄|2)|dz|2.
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Furthremore,

C

∫
D1

ϕ(|fz|2 − |fz̄|2)|dz|2 ≤ C

∫
D1

ϕ|fz̄|2(k−1 − 1)|dz|2

≤ CC2L
2

∫
D1

ϕ log k−1|dz|2

On the other hand, log |fi
z|

2

|fi
z̄|2

→ log |fz|2
|fz̄|2 a.e. and

0 ≤
∫
D1

ϕ4 log
|f iz|2

|f iz̄|2
|dz|2

=
∫
D1

(4ϕ) log
|f iz|2

|f iz̄|2
|dz|2

≤ C

∫
D2

ϕdKσi
.

By the Lebesgue Dominated Convergence Theorem,∫
D1

4ϕ log
|f iz|2

|f iz̄|2
|dz|2 →

∫
D1

4ϕ log
|fz|2

|fz̄|2
|dz|2

We are done by letting C1 = 2C · C2 · L2.

Theorem 16. Let φ : Σ1 → Σ2 be a homeomorphism. Let f : Σ1 → Σ2 be
energy minimizing in the homotopy class of φ with respect to a (possibly nonsmooth
and degenerate) metric g. Suppose (Σ2, g) is a metric space of curvature bounded
from above by κ and U ⊂ Σ2 contains only curvature regular points. Then f is a
local homeomorphism in f−1(U).

Proof. Suppose f is not a local homeomorphism in f−1(U). Then by [Me5],
f collapses a vertical arc of its Hopf differential and for some z ∈ U , k(z) = 1. It
is well known that the differential inequality (11) implies that the infimum of k−1

in a ball of radius r
2 is bounded below by a constant times its average value on the

concentric ball of radius r for r < 1 (see for example [Mo]). Hence, if k = 1 then
at a point, then k ≡ 1 in its neighborhood. But this is a contradiction since the
collapse occurs only along the vertical arcs of the Hopf differential of f .

This immediately yields the following generalization of [SY].

Corollary 17. Let f : Σ1 → Σ2 be energy minimizing with respect to a (pos-
sibly nonsmooth) metric g. Suppose (Σ2, g) is a metric space of curvature bounded
from above by κ and every point of Σ2 is curvature regular, then there exists a
homeomorphic energy minimizing map f : Σ1 → Σ2.

Proof. By Theorem 10, there exists an energy minimizing map f which is a
limit of smooth energy minimizing maps. By Theorem 16, f is a local homeomor-
phism and hence a global homeomorphism.

4. Compactness Theorem for Distance Functions

Let (S, h) be a point in Teichmüller space. Let Dκ be a space of all distance
functions on d of curvature bounded above by κ, area equal to 1, and in the Te-
ichmüller class of (Σ, h). For d ∈ Dκ, let ι : Σ → (S, d) be the conformal map
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homotopic to h−1 with conformal factor λ. We can indentify Dκ with the space of
metrics g = λ|dz|2 on Σ induced by d. Since ι is a conformal map, its total energy
is equal to the area. Hence for any d, its conformal factor λ = |∇ι|2 is bounded
(where the bound only depends on κ since total energy is equal to 1 for any d ∈ Dκ)
by Theorem 1. Hence we let λ < ε−1 for some ε > 0.

We prove the following compactness theorem for Dκ.

Theorem 18. Let {di} be a sequence of distance function in Dκ. Then there
exists a subsequence of {di} converging uniformly to a distance function in Dκ.

Proof. Let d ∈ Dκ and let ι : Σ → (S, d) as above. Whenever convenient, we
will identify S and Σ by ι. We work in a coordinate neighborhood ∆ ⊂ S. Let
(w1, w2), (ξ1, ξ2) ∈ ∆×∆, we have

|d(w1, w2)− d(ξ1, ξ2)| ≤ d(w1, ξ1) + d(w2, ξ2)

≤
∫
γ1

√
λds+

∫
γ2

√
λds

≤ ε−1(|w1 − ξ1|+ |w2 − ξ2|)
≤ 2ε−1

√
|w1 − ξ1|2 + |w2 − ξ2|2,

where γi is the Euclidean lines between wi and ξi.
Hence Dκ is an equicontinuous family of functions on ∆ ×∆ and there exists

a subsequence of {di} converging uniformly. Since S is compact, there exists a
subsequence of {di} (which we still denote {di} by an abuse of notation) converging
uniformly, say to a function d : S × S → R.

Now we must show that d is an distance function of curvature bounded from
above by κ and d is in the Teichmüller class of (S, h). Let ιi : Σ → (S, di) be a
conformal homeomorphism homotopic to h−1. (Note that we can also think of ι
as the identity map if we assume that di is defined on Σ.) By Theorem 10, there
is an energy minimizing map ι : Σ → (S, d) and a subsequence of {ιi} so that the
Sobolev and directional energies converges weakly to that of ι. Because {ιi} is a
sequence of conformal maps, ι is also conformal. Let λi and λ be the conformal
factors of ιi and ι respectively. Furthermore, let ιi,ε : ∆ → (S ×∆, di,σ) be defined
by ιi,σ(z) = (ιi ◦ φ, z) and where d2

i,σ = d2
i + σ2|z|2. Then ιi,σ is a conformal map

with conformal factor λi,σ =
√
λ2 + σ. By Theorem 3∫
4ϕ log λi,σ ≥ 2κ

∫
ϕλi,σ.

Since the energy of ιi uniformly bounded, λi is locally uniformly (i.e. in-
dependently of i) bounded and hence we assume λi ≤ ε−1 in supp ϕ. Hence
log σ2 ≤ log λi,σ ≤ log(ε−1 + σ2) in supp ϕ. By the Lebesque Dominated Conver-
gence Theorem, ∫

4ϕ log λσ ≥ 2κ
∫
ϕλσ

as i→∞. Now let σ → 0 and we see that∫
4ϕ log λ ≥ 2κ

∫
ϕλ
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by Lemma 5.5 of [Me2]. By Theorem 6.1 of [Me2], this inequality shows that
the line element

√
λ|dz|2 induces a distance function dλ whose metric topology is

equivalent to the surface topology and that its curvature is bounded above by κ.
This then shows that d has the desired properties.

5. The Minimum Energy for Maps between Two Surfaces

5.1. The Variational Problem. We now describe our variational problem.
Let Σ1 and Σ2 be Riemann surfaces of genus s > 1 and φ : Σ1 → Σ2 be a homeo-
morphism. Let S be a surface of genus 1 and let Dκ as in Section 4 with Σ = Σ2

and h = φ. Recall that each d ∈ Dκ induces a metric g = λ|dz|2 on Σ2 and g can
be written as g = ρgh where gh = λh|dz|2 is the hyperbolic metric and ρ : Σ2 → R
satisfies inequality 9. We will call ρ the function associated with d. Again, we
identify Dκ with the space of metrics g induced by d ∈ Dκ.

We define the function E : Dκ → R by

E(d) = dEf

where dEf is the (Korevaar-Schoen) energy of the energy minimizing map f : Σ1 →
Σ2 in the homotopy class of φ with respect to d ∈ Dκ. Let

Eκ = inf
d∈Dκ

E(d).

Theorem 19. There exists d ∈ Dκ so that Eκ = E(d).

Proof. Let {di} ⊂ Dκ be a minimizing sequence for E in Dκ. By Theorem 18,
we can choose a subsequence of {di} (which we still denote by {di}) so that di
converges uniformly, say to d ∈ Dκ. Let fi : Σ1 → Σ2 be the energy minimizing
map with respect to distance function di homotopic to ψ. Since {di} is a mini-
mizing sequence for E : Dκ → R, the energy of fi (with respect to di) is bounded
indenpendently of i. Hence by Theorem 15 of [Me5], there exists a map f , en-
ergy minimizing with respect to d, and a subsequence of {fi′} so that the Sobolev
energies converge to that of f . Hence,

Eκ ≤ gEf = lim
i′→∞

giEfi′ = Eκ.

Hence Eκ = E(d).

We call (d, f) the minimizer for κ if the energy with respect to d ∈ Dκ of the
energy minimizer f homotopic to φ achieves the minimum value of Eκ. Since the
energy of a map is always bounded from below by the area, Eκ ≥ 1.

5.2. The First Variation Argument. We will investigate the behavior of
a minimizer (d, f) for κ. To do so, we use the first variation argument which we
describe below.

Let ∆ be a unit disk on the plane. We will say that a map f : ∆ → Σ2 is
Lipschitz with respect to the flat metric if there is a coordinate chart ψ : ∆ →
f(∆) ⊂ Σ2 so that ψ−1 ◦ f : ∆ → ∆ is Lipschitz with respect to the standard
euclidean coordinate on ∆.
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Lemma 20. Let g = ρ|dz|2 be a metric induced by a distance function d ∈ Dκ.
If f : ∆ → (Σ2, g) is a finite energy map and ρ ≥ ε > 0 in f(∆) then the (Korevaar-
Schoen) energy of f with respect to d can be written

dEf =
∫

∆

λ

(
|∂f
∂x
|2 + |∂f

∂y
|2

)
.

Proof. Let gi = λi|dz|2 and f i as in Theorem 10 and let di be the distance
function associated with gi. By the paragraph preceeding Lemma ??, we see that
{f i} is uniformly Lipschitz in ∆ with respect to the flat metric and

|∂f
i

∂x
| → |∂f

∂x
|, |∂f

i

∂y
| → |∂f

∂y
|, λi → λ

and dEf = limı→∞
diEf

i

. Since gi is a smooth metric,

diEf
i

=
∫

∆

λi

(
|∂f

i

∂x
|2 + |∂f

i

∂y
|2

)
.

By the Lebesgue Convergence Theorem, letting i→∞,

dEf =
∫

∆

λ

(
|∂f
∂x
|2 + |∂f

∂y
|2

)
.

Suppose d, d̃ ∈ Dκ and let g and g̃ be the metrics induced from d and d̃ re-
spectively. Furthermore, assume that g and g̃ only differs from each other in a
coordinate neighborhood ∆ ⊂ Σ2. Assume f is of finite energy with respect both
metrics and let g = ρλh|dz|2, g̃ = ρ̃λh|dz|2 and η =

√
ρρ̃. Define

ρt =
(1− t)ρ2 + tη2∫

Σ
((1− t)ρ2 + tη2)dµg

and let dt be the distance function associated to gt = ρtλh|dz|2. We see that

ρ̇t =
1
2

(
η2

ρ
− ρ

(∫
η2

ρ

))
=

1
2
(ρ̃− ρ).

We also assume f is Lipschitz with respect to the flat metric on f−1(∆) ⊂ Σ1.
Since f is of finite energy with respect to both g and g̃,∫

f−1(∆)

ρtλh

(
|∂f
∂x
|2 + |∂f

∂y
|2

)
|dz|2 <∞

and∫
f−1(∆)

(
d

dt
ρt

)
|t=0λh

(
|∂f
∂x
|2 + |∂f

∂y
|2

)
|dz|2

=
1
2

∫
f−1(∆)

ρ̃λh

(
|∂f
∂x
|2 + |∂f

∂y
|2

)
|dz|2 − 1

2

∫
f−1(∆)

ρλh

(
|∂f
∂x
|2 + |∂f

∂y
|2

)
|dz|2

If (d, f) is a minimizer for κ, then d
dt

dtEf |t=0 = 0. Thus, by the calculation above,
d̃Ef = dEf and (d̃, f) is also a minimizer for κ.
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5.3. The Gap Property. In this section, we prove our main theorem which
implies that if a metric g on the target surface Σ2 has curvature bounded from
above, then the energy of any continuous map f : Σ1 → Σ2 with respect to g is
strictly greater than the area of Σ2 with respect to g.

Theorem 21. For every κ, there exists κ̃ > κ so that Eκ > Eκ′ for every κ′ > κ̃.
In particular, for every κ, Eκ > 1.

Proof. Let (d, f) be a minimizer for κ and let g = ρλh|dz|2 be the metric
induced by d. By Proposition 4, there exists a point w0 ∈ Σ2 so that ρ ≥ ε > 0
in a neighborhood of w0. Take a coordinate neighborhood ∆ ⊂ Σ2 of w0 and let
λ = ρλh in ∆. Assume ∆ is a disk of radius 1, the point w0 corresponds to the
origin O of ∆, and ε ≤ λ ≤ L in ∆. We first want to deform λ|dz|2 in ∆ so that the
new metric λ̃|dz|2 has a cone singularity at O. We let r be the radial coordinate
in ∆ and χ be a smooth non-increasing function of r so that χ = 1 for r < 1

3 and
χ = 0 for r > 2

3 . Let α > 1. We now let λσ be the mollification of λ by a symmetric
mollifyer ϕσ and λσ = (log λ)σ where (log λ)σ is the mollification of log λ by ϕσ.
By choosing σ sufficiently small, we assume that ε

2 ≤ λσ, λσ ≤ 2L. Since∫
4ϕσ(|z − ξ|) log λ(ξ)|dξ|2 ≥ −2κ

∫
ϕσ(|z − ξ|)λ(ξ)|dξ|2

λσ satisfies the inequality

4 log λσ ≥ −2κλσ = −2κ
λσ
λσ
λσ ≥ −2κ

4L
ε
λσ. (13)

Let
λ̃σ =

√
(χrα)2 + ((1− χ)λσ)2.

If z ∈ ∆ 1
3

then λ̃σ = |z|α and hence 4 log λ̃σ ≥ 0. If z ∈ ∆ − ∆ 2
3

(where ∆r is
the disk of radius r) then λ̃σ = λσ, so λ̃σ satisfies inequality (13). If z ∈ ∆ 5

6
−∆ 1

6
,

then λ̃σ ≥ max{χ|z|α, (1− χ)λσ} ≥ max{ |χ|6 ,
ε|1−χ|

2 } ≥ ε
24 .

We need the following calculation. Let φ, ψ be function in ∆. Then

((1− t)φ+ tψ)24 log((1− t)φ+ tψ)
= ((1− t)φ+ tψ)4((1− t)φ+ tψ)− |∇((1− t)φ+ tψ)|2

= ((1− t)φ+ tψ)[(1− t)(φ4 log φ− |∇φ|2
φ ) + t(ψ4 logψ − |∇ψ|2

ψ )]

−|∇((1− t)φ+ tψ)|2

= (1− t)|∇φ|2[ (1−t)φ+tψ
φ − (1− t)] + t|∇ψ|2[ (1−t)φ+tψ

ψ − t]

+((1− t)φ+ tψ)[(1− t)φ4 log φ+ tψ4 logψ]
−2t(1− t)∇φ · ∇ψ

= t(1− t)|∇φ|2 ψφ − 2t(1− t)∇φ · ∇ψ + t(1− t)|∇ψ|2 φψ
((1− t)φ+ tψ)[(1− t)φ4 log φ+ tψ4 logψ]

≥ ((1− t)φ+ tψ)[(1− t)φ4 log φ+ tψ4 logψ].

Therefore,

4 log((1− t)φ+ tψ) ≥ ((1− t)φ+ tψ)−1[(1− t)φ4 log φ+ tψ4 logψ]. (14)

Let t = 1
2 in inequality (14), then we have

4 log(φ+ ψ) ≥ (φ+ ψ)−1(φ4 log φ+ ψ4 logψ). (15)
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Substitute φ = (χrα)2 and ψ = ((1− χ)λσ)2. Then

4 log λ̃σ ≥ (λ̃σ)−2[(χrα)2(4 logχrα) + ((1− χ)λσ)2(4 log(1− χ)λσ)]

Thus,

4 log λ̃σ ≥ (λ̃σ)−2(rα(χ4χ− |∇χ|2)) + (1− χ)4χ− |∇χ|2 − 8κL
ε
λσ

≥ − 4
ε2

(χ4χ− |∇χ|2) + (1− χ)4χ− |∇χ|2 − 16κL2

ε
.

Therefore, 4 log λ̃σ ≥ −C where C is independent of σ and hence 4 log λ̃σ ≥
− 2C

ε λ̃
σ = −2κ̃λ̃σ for κ̃ ≥ 2L

ε independently of σ. Thus,

λ̃ =
√

(χrα)2 + ((1− χ)λ,

satisfies
4 log λ̃ ≥ −2κ̃λ̃ weakly.

Define λσt , λt by

λσt =
√

(1− t)(λσ)2 + t(λ̃σλσ)
and

λt =
√

(1− t)λ2 + t(λ̃λ)

Substitute φ = (λσ)2 and ψ = λ̃σλσ in inequality 14. Then

2(λσt )
24 log λσt ≥ 2(1− t)(λσ)24 log λσ + tλ̃σλσ4 log λ̃σλσ

≥ −(1− t)
8L
ε
κ(λσ)3 − 2tκ̃(λ̃σ)2λσ − 8κLt

ε
λ̃σ(λσ)2.

Assume that we have chosen κ̃ so that κ̃ > 8L
ε κ. Since λσt → λσ uniformly as t→ 0

(independently of σ), for sufficiently small t,

4 log λσt ≥ −2κ̃λσt
independently of σ. Letting σ → 0 ,

4 log λt ≥ −2κ̃λt weakly

for sufficiently small t.
We let g̃ be the metric which is equal to g in Σ2−∆ and λ̃|dz|2 in ∆ and let gt

be a family of metrics equal to g in Σ2−∆ and λt|dz|2 in ∆. By abuse of notation,
we let g̃ (resp. gt) the metric defined by g̃/A(g) (resp. ( gt/A(gt)) where A(g̃) (resp.
A(gt)) is the area of g̃ (resp. gt). In this way, we may asumme A(g̃), A(gt) = 1.
Let d̃, and dt be the distance functions associated with g̃ and gt respectively. By
choosing κ̃ sufficiently large, we see from the above argument that d̃, dt ∈ Dκ̃ for
t sufficiently small. We now claim that Eκ̃ < Eκ. If Eκ̃ = Eκ, then (d, f) would
be a minimizer for κ̃. Using the first variation argument, d̃Ef = dEf and (d̃, f)
is also a minimizer for κ̃. Hence f is an energy minimizing map for the metric
g̃. Since g̃ has a cone singularity at O of ∆, the map f collapses a vertical arc of
its Hopf differential to O by [Me5]. But since f is an energy minimizing map of
g = λ|dz|2 and λ ≥ ε > 0 in ∆, by Theorem 16, f is a local homeomorphism. This
is a contradiction and hence (d, f) cannot be a minimizer for κ̃. Therefore, Eκ̃ < Eκ.
Since κ 7→ Eκ is clearly a non-increasing function, for any κ′ > κ̃, Eκ′ < Eκ′ .

Theorem 22. The limit of the map κ 7→ Eκ as κ→ 1 is 1.
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Proof. Let ε > 0 be given. By Theorem 5.3.2, for every disk ∆ ⊂ Σ2, there
exists a smooth homeomorphism h : Σ1 → Σ2 so that h restricted to Σ1 − h−1(∆)
is a conformal map. Let ρ be a smooth function so that

∫
ρλh|dz|2 = 1 and

ρ sufficiently small in ∆ so that the energy of h in h−1(∆) is less than ε. Let
g = ρλh|dz|2. Since h is conformal in Σ1 − h(∆), the energy of h in Σ1 − h−1(∆)
is equal to the area of Σ2 −∆ with respect to g. Thus,

gEh < Area(Σ1 −∆, g) + ε < 1 + ε.

Since ρ is smooth, there is κ large enough so that g ∈ Dκ.
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