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Abstract

We study the Plateau Problem of finding an area minimizing disk
bounding a given Jordan curve in Alexandrov spaces with curvature
≥ κ. These are complete metric spaces with a lower curvature bound
given in terms of triangle comparison. Imposing an additional condition
that is satisfied by all Alexandrov spaces according to a conjecture of
Perel’man, we develop a harmonic map theory from two dimensional
domains into these spaces. In particular, we show that the solution to
the Dirichlet problem from a disk is Hölder continuous in the interior and
continuous up to the boundary. Using this theory, we solve the Plateau
Problem in this setting generalizing classical results in Euclidean space
(due to J. Doublas and T. Rado) and in Riemannian manifolds (due to
C.B. Morrey).

1 Introduction

The Plateau Problem is the problem of finding a surface minimizing the area
amongst all surfaces which are images of a map from a disk and spanning a
given Jordan curve Γ in a space X. If X is the Euclidean space Rn, we can
formulate this problem more precisely as follows. If D is the unit disk in R2,
the area of a map u : D → Rn is

A(u) =
∫
D

√∣∣∣∣∂u∂x
∣∣∣∣2 ∣∣∣∣∂u∂y

∣∣∣∣2 − (∂u∂x · ∂u∂y
)2

dxdy. (1)

The Plateau Problem in Rn. Given a Jordan curve Γ ⊂ Rn, let

F = {v : D → Rn : v ∈W 1,2(D) ∩ C0(D)
and v

∣∣
∂D

monotonically parameterizes Γ}.

Find u ∈ F so that A(u) ≤ A(v) for all v ∈ F .

The mathematical problem of proving the existence of an area minimiz-
ing surface spanning a given contour was raised by J. Lagrange in the mid-
eighteenth century, but the problem is named after the Belgian physicist J.

1supported by research grant NSF DMS-0706933

1



Plateau who studied soap films. It was not until the 1930’s that J. Douglas
[D] and T. Rado [R1] [R2] properly formulated and independently solved this
problem. In the 1950’s, C.B. Morrey [Mo] generalized the problem by replacing
the ambient Euclidean space by a space belonging to a very general class of
Riemannian manifolds (that includes all compact ones). Further generalization
is due to I. Nikolaev [N] who replaced the Riemannian manifold by a complete
metric space with the curvature bounded above in the sense of Alexandrov.
Our interest here is to extend the generalization to the case when the ambient
space is an Alexandrov space, i.e. when the curvature is bounded from below.

An important ingredient for the Plateau Problem (and minimal surface
theory in general) is the theory of harmonic maps from a domain of dimen-
sion 2. In fact, the solution of the Plateau Problem in Euclidean space and
Riemannian manifolds can be given by a map that is harmonic and conformal.
With the assumption of non-positive curvature, the harmonic map theory into
a singular target space (with the domain assumed to be a Riemannian do-
main of arbitrary dimension) was first considered in the foundational paper of
M. Gromov and R. Schoen [GS] and further generalized by N. Korevaar and
R. Schoen [KS1], [KS2]. This theory was also developed independently by J.
Jost (see [J] and references therein). A generalization to the case when the
curvature is bounded from above by an arbitrary constant was given by T.
Serbinowski [S1]. The aspect that makes the harmonic map theory tractable
in this setting is the convexity property of the energy functional under the as-
sumption of an upper curvature bound. The regularity theory for the Dirichlet
problem (i.e. the problem of finding a map of least energy amongst all maps
with a given boundary condition) states that the Dirichlet solution is Lipschitz
continuous in the interior [KS1] and Hölder continuous up to the boundary if
given a Hölder continuous boundary condition [S2]. Recall also that there of-
ten exists a heavy reliance on the upper sectional curvature bound when one
studies harmonic maps into Riemannian manifolds (see for example [ES]). The
harmonic map approach to the Plateau Problem in metric spaces of curvature
bounded from above is discussed by the first author in [Me1], [Me2], [Me3].
(This differs substantially from the approach pursued in [N].)

To tackle the Plateau Problem when the ambient space has a lower curva-
ture bound, we will develop the relevant harmonic map theory. More specif-
ically, we study the Dirichlet problem for maps into an Alexandrov space X.
The difficulty here is that we do not have the nice convexity properties of the
energy functional and cannot mimic the techniques developed for maps into
non-positively curved spaces. In fact, the solution of the Dirichlet problem is
not continuous in general, even for maps into Riemannian manifolds (cf. [H]).
On the other hand, the regularity of harmonic maps into Riemannian mani-
folds from a two dimensional domain was established by by [Mo], [Gu], [Sc] and
[He]. We generalize this result when the target space is an Alexandrov space
of curvature ≥ κ assuming an additional condition on X which we describe
later in this section.
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Regularity Theorem (cf. Theorem 6, Theorem 9) Let X be an Alexan-
drov space satisfying Perel’man’s conjecture. A Dirichlet solution u : D → X
is Hölder continuous in the interior of D and continuous up to ∂D.

We note that this is the optimal regularity result. A two-dimensional cone
C with vertex angle < π is positively curved and a harmonic map from a disk
into C is Hölder continuous, but not Lipschitz, at a point in the pre-image of
the vertex.

Using the theorem above, we solve the Plateau Problem by using the Dirich-
let solution as a means to obtain an area minimizing disk. One fundamental
point we need to clarify is the notion of area associated to a map into an
Alexandrov space. Note that the area given by (1) for maps into Euclidean
space is obtained by integrating the area element associated with the pull-back
metric. The notion of the pull-back metric for maps into non-positively curved
metric spaces was given in [KS1] and for metric spaces of general upper curva-
ture bound in [Me2]. We prove that this notion also makes sense for maps into
Alexandrov spaces (cf. Theorem 11). Using the pull-back metric, we define
the area functional for maps into X and formulate the Plateau Problem analo-
gously to the statement of the Plateau problem in Euclidean space. The proof
of the existence of the solution of the Plateau Problem parallels a well-known
argument for the Euclidean case [L]. Combined with the regularity theorem
for the Dirichlet problem, this gives us:

Theorem (cf. Theorem 13 and Theorem 18) Let X be a Alexandrov space
satisfying Perel’man’s conjecture and Γ ⊂ X be a Jordan curve. Suppose there
exists a continuous map u0 : D → X of finite energy whose restriction to ∂D
monotonically parameterizes Γ. Then there exists a continuous map u : D → X
which minimizes area amongst all other continuous maps whose restriction of
∂D monotonically parameterizes Γ. Furthermore, u is conformal, energy min-
imizing and Hölder continuous in the interior of D.

We now discuss the space X in the theorems above in more detail. Recall
that an Alexandrov space with curvature bounded below by κ is one in which
geodesic triangles are thicker than comparison triangles in the two-dimensional
simply connected surface of constant curvature κ. This notion of curvature
bounds in metric space seems to be due to A. Wald [W] in the 1930’s and was
developed by a Russian school of mathematicians led by A.D. Alexandrov start-
ing in the 1940’s. More recently, Alexandrov spaces re-emerged into promi-
nence as they are the limiting spaces of a sequence of certain Riemannian mani-
folds under the Gromov-Hausdorff convergence. Perel’man’s Stability Theorem
[P] states that if two Alexandrov spaces of the same dimension are sufficiently
close in the Gromov-Hausdorff distance, they are actually homeomorphic. In
fact, Perel’man asserts something more - the homeomorphism between the two
spaces can be chosen to be bi-Lipschitz. The proof of Perel’man’s claim in its
full generality is not yet available to our knowledge. For a good discussion on
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the Stability Theorem and related issues, we refer to Kapovitch [K1]. We note
the following two properties of an Alexandrov space; first, the tangent cone
TPX at a point of an n-dimensional Alexandrov space X is a cone C(ΠP ) over
the space of directions ΠP at P which is itself an (n − 1) Alexandrov space,
and second, the Hausdorff-Gromov distance between a neighborhood around
P in X and a neighborhood around the vertex of C(ΠP ) at this point can be
made arbitrarily small by taking the neighborhoods sufficiently small. Thus,
Perel’man’s claim implies that if X is an n-dimensional Alexandrov space, then
X satisfies the property that X is locally bi-Lipschitz equivalent to a cone over
a (n−1)-dimensional Alexandrov space. Furthermore, this (n−1)-dimensional
Alexandrov space is locally bi-Lipschitz equivalent to a cone over an (n − 2)-
dimensional Alexandrov space and so forth. This motivates us to say that an
Alexandrov space X satisfies the Perel’man conjecture if it has this property.

The outline of this paper is as follows. In section 2, we give definitions
of Alexandrov spaces and other related concepts. We also recall Korevaar
and Schoen’s Sobolev space theory into metric spaces. Section 3 contains the
two dimensional harmonic map theory. In particular, we discuss the existence
of the solution to the Dirichlet problem and prove its interior and boundary
regularity. In section 4, the solution of the Plateau Problem is shown. This
section also contains the proof of the existence of the pull-back inner product
that allows us to make sense of the area functional (subsection 4.1).

Because the interior regularity proven in subsection 3.1 is central to this
paper and because of the technical nature of its proof, we conclude this section
by illustrating the ideas behind this argument. The main step of the proof is
to establish that, for any Dr(x0) ⊂ D, we have a good bound on the energy
of a map u

∣∣
Dr(x0)

in terms of the energy of u
∣∣
∂Dr(x0)

. This in turn implies an
energy decay estimate which, by Morrey’s Energy Decay Lemma, implies the
Hölder continuity. If the image Γ0 ⊂ X of the boundary map u

∣∣
∂Dr(x0)

is long,
then its energy is large and thus we restrict our attention to the case when Γ0

is short. Hence, we can assume that Γ0 is contained in a neighborhood that
is bi-Lipschitz equivalent to a neighborhood of the vertex of the cone C(ΠP )
for some P ∈ X. Since the ratio of the energy of a given map and the energy
of this map composed with a bi-Lipschitz map is bounded from above and
below by a constant depending on the bi-Lipschitz constant, we can further
assume for the sake of simplicity that u

∣∣
Dr(x0)

maps into this cone. We now
consider the following two cases: (1) the length of Γ0 is short relative to its
distance from the vertex V of the cone and (2) the length of Γ0 is long relative
to its distance from the vertex. In case (1), we extend the map u|∂Dr(x0) to
a map ϕ defined on Dr(x0) by setting ϕ(x0) = V and linearly mapping the
radial ray from x0 to a point ξ ∈ ∂Dr(x0) to a ray from V to u(ξ). By the
construction, the energy of ϕ is bounded in terms of the energy of u

∣∣
∂Dr(x0)

.

The main step follows immediately since u
∣∣
Dr(x0)

is energy minimizing and has
the same boundary values as ϕ. In case (2), Γ0 is contained in a neighborhood
U far away from the vertex and hence U is bi-Lipschitz equivalent to product
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of ΠP × I for some interval I ⊂ R. We construct a map ϕ by separately
considering the Dirichlet problem in ΠP and in I. Therefore, if we have a good
energy bound for the Dirichlet problem in ΠP , then we are done. Since the
dimension of ΠP is one less than that of X, we are able to prove the main step
by an inductive argument on the dimension of X.

2 Definitions and Background Material

2.1 Alexandrov Spaces

We begin with a discussion of Alexandrov spaces and refer to [Sh], [B1], [B2],
[OS] for more details.

Definition We say a complete metric space (X, d) (or more simply X) is
an Alexandrov space of curvature bounded from below by κ if it satisfies the
following conditions:

(1) X is a length space; i.e. for any two points P,Q ∈ X, there exists a
curve γPQ between P and Q with length equal to d(P,Q).

(2) Let Sκ be a simply connected surface of constant curvature κ. Denote
the distance function of Sκ by d̄ and the geodesic between P̄ , Q̄ ∈ Sκ by P̄ Q̄.
Given a triple P,Q,R ∈ X, let 4(PQR) be a geodesic triangle. Then there ex-
ists a geodesic triangle 4(P̄ Q̄R̄) in Sκ such that d(P,Q) = d̄(P̄ , Q̄) , d(P,R) =
d̄(P̄ R̄) , d(R,Q) = d̄(R̄, Q̄) and if we take two points S̄ ∈ P̄ Q̄ and T̄ ∈ P̄ R̄
with d(P, S) = d̄(P̄ , S̄) , d(P, T ) = d̄(P̄ , T̄ ), then d(S, T ) ≥ d̄(T̄ , S̄). The tri-
angle 4(P̄ Q̄R̄) ⊂ Sκ will be called a comparison triangle of 4(PQR) ⊂ X.

For simplicity, will say that X is an Alexandrov space if there exists some
κ0 so that X is an Alexandrov space of curvature bounded from below by κ.
In this paper, it is not important whether κ is positive, zero or negative; we
only use the fact that there exists some lower bound on curvature. Hence, we
may as well assume κ < 0.

Let α(s) : [0, a] → X and β(t) : [0, b] → X be arclength parameterizations
of two geodesics emanating from a point P ∈ X and let θ(t, s) be the angle at P̄
of a comparison triangle4α(t)P̄ β(s) in Sκ. In particular, ifX is an Alexandrov
space of curvature bounded from below by κ = −1 then θ(t, s) ∈ [0, π] is given
by the equality

cosh d̄(ᾱ(t), β̄(s)) = cosh t cosh s− sinh t sinh s cos θ(t, s).

Condition (2) implies that t 7→ θ(t, s) and s 7→ θ(t, s) are monotone non-
increasing. The angle between geodesics α and β is defined to be

6 (α, β) = lim
t,s→0

θ(t, s).
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We will need the following geometric fact:

Lemma 1 Let X be an Alexandrov space. For any ρ > 0, there exists δ = δ(ρ)
sufficiently small so that if

(i) P,R, T ∈ X with P 6= R, dPR < δ and

|1
2
dPR − dPT | < δ2dPR , |1

2
dPR − dRT | < δ2dPR, (2)

(ii) γTR is a geodesic from T to R and R′ ∈ γTR with

dRR′ = δdPR (3)

(iii) γPR′ is a geodesic from P to R′ with T ′ as its midpoint,

then
dTT ′ < ρdPR. (4)

Remark. The idea behind Lemma 1 is as follows. One of the distinguishing
features of a space X with a lower curvature bound is the non-uniqueness of
geodesics between two given points. Related to this non-uniqueness statement
is the following fact: given two points P,R ∈ X, any point T whose distances
to P and to R are both approximately half of dPR as in (i) may be far away
from the midpoint of a geodesic γPR. For example, let P be the north pole
and R be the south pole on the standard 2-sphere and T be a point on the
equator; There exists a geodesic γPR from P and R whose midpoint is the an-
tipodal point of T . In a smooth Riemannian manifold, the point T satisfying
(i) is close to the midpoint of γPR if P and R are contained in a sufficiently
small neighborhood, but in an Alexandrov space, such a neighborhood does
not generally exist. On the other hand, Lemma 1 says that we can choose a
point R′ close to R as in (ii) so that T is close to a midpoint T ′ of a geodesic
γPR′ .

Proof. We assume that X is an Alexandrov space of curvature bounded
from below by −1. (Given an Alexandrov space of curvature bounded from
below by κ < 0, we can rescale the distance function by a factor of 1

|κ| to
construct an Alexandrov space of curvature bounded from below by −1. Since
the assumption and the conclusion of the lemma is scale invariant, the condition
that the curvature is bounded from below by −1 is without a loss of generality.)
Fix δ > 0 and let P,R, T, γTR, R′, γPR′ , T ′ satisfy (i), (ii) and (iii) above. Since

dTR′ = dTR − dRR′ , dT ′R′ =
1
2
dPR′ , dPR − dRR′ ≤ dPR′ ≤ dPR + dRR′ ,

(2) and (3) imply

dTR′ , dT ′R′ =
(

1
2

+O(δ)
)
dPR. (5)
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Define α by setting

cosh dTT ′ = cosh dTR′ cosh dT ′R′ − sinh dTR′ sinh dT ′R′ cosα.

Using Taylor expansion, we obtain

d2
TT ′ = d2

TR′ + d2
T ′R′ − 2dTR′dT ′R′ cosα+O(d3

PR)
= (dTR′ − dT ′R′)2 + 2dTR′dT ′R′(1− cosα) +O(d3

PR).

Furthermore, apply (5) to obtain

d2
TT ′ = O(δ2)d2

PR +
(

1
2

+O(δ)
)2

(1− cosα)d2
PR +O(d3

PR).

Thus, if we can show that α can be made arbitrarily small by taking δ (and
therefore dPR) sufficiently small, then we obtain O(δ)+

(
1
4 +O(δ)

)
(1−cosα) <

ρ2

2 for sufficiently small δ and hence

d2
TT ′ ≤

ρ2

2
d2
PR +O(d3

PR) < ρ2d2
PR

for δ sufficiently small. Thus, we are left to show that α is small if δ is chosen
to be small. To see this, we let γTR′ ⊂ γTR be a geodesic from T to R′ and
γRR′ ⊂ γTR be a geodesic from R to R′. Next, let α0 be the angle between
γPR′ and γTR′ and β0 the angle between γPR′ and γRR′ . Lastly, let β be the
angle defined by

cosh dPR = cosh dPR′ cosh dRR′ − sinh dPR′ sinh dRR′ cosβ.

By construction, α0 + β0 = π, and by the monotonicity property of angles in
Alexandrov space, α0 ≥ α and β0 ≥ β. Hence

cosh dPR ≤ cosh dPR′ cosh dRR′ − sinh dPR′ sinh dRR′ cosβ0

= cosh dPR′ cosh dRR′ + sinh dPR′ sinh dRR′ cosα0

≤ cosh dPR′ cosh dRR′ + sinh dPR′ sinh dRR′ cosα.

Expanding by Taylor series, we obtain

d2
PR ≤ d2

PR′ + d2
RR′ + 2dPR′dRR′ cosα+O(d3

PR)
≤ (dPR′ + dRR′)2 + 2dPR′dRR′(cosα− 1) +O(d3

PR).

By the triangle inequality along with (2), we have

dPR′ ≤ dPT + dTR′

= dPT + dTR − dRR′

≤ dPR + 2δ2dPR − dRR′ .
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Furthermore, the triangle inequality and (3) gives

dPR′ ≥ dPR − dRR′ = (1− δ)dPR.

Combining the last three inequalities, we obtain

d2
PR ≤ d2

PR(1 +O(δ2))2 + d2
PR(δ − δ2)(cosα− 1) +O(d3

PR).

Dividing by d2
PR and δ and rearranging terms, we get

(1− δ)(1− cosα) ≤ 4δ + 4δ2 +O(dPQ).

Hence, we see that α is small if δ is sufficiently small. q.e.d.

Definition The space of directions ΣP at P ∈ X is the closure of the set of
equivalence classes of geodesics emanating from P endowed with the distance
function dΣP

([α], [β]) = 6 (α, β). Here, α is said to be equivalent to β if and
only if 6 (α, β) = 0.

Definition The tangent cone TP is defined to be the set

ΣP × [0,∞)/ ∼

where ∼ identifies all element of the form ([α], 0) along with a distance function
dTP

defined by

d2
TP

(([γ], s), ([σ], t)) = s2 + t2 − 2st cos dΣP
([γ], [σ]).

The equivalence class of ([α], 0) will be called the vertex of TP .

In this paper, we will usually assume an Alexandrov space X is of finite
Hausdorff dimension. In fact, under this condition, Hausdorff dimension can
be shown to be always integer-valued (cf. [B1]). The space of directions is also
a compact Alexandrov space of curvature bounded below by 1 with diameter
less than or equal to π and dimension 1 less than that of X. The tangent cone,
in turn, is an Alexandrov space of curvature bounded below by 0 (cf. [B1]).
Finally, we define the notion of an Alexandrov spaces satisfying the Perel’man
conjecture given by the following inductive definition.

Definition Let X be a Alexandrov space. We say that a 1-dimensional
Alexandrov space is said to satisfy the Perel’man conjecture if and only if it
is a finite interval or a circle. Assuming that we have given the definition an
(n−1)-dimensional compact Alexandrov space X satifying the Perel’man con-
jecture, we say that an n-dimensional compact Alexandrov space satisfies the
Perel’man conjecture if every point P ∈ X has a neighborhood UP (hereafter
referred to as a conic neighborhood) which is bi-Lipschitz homeomorphic to
a neighborhood of the vertex of a cone over an (n − 1)-dimensional compact
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Alexandrov space which satisfies the Perel’man conjecture.

LetX be a n-dimensional compact Alexandrov space satisfying the Perel’man
conjecture. For each P ∈ X, let UP be a conic neighborhood of P . Because
of the assumption that X is compact, there exists a finite set of point F ⊂ X
so that {UP }P∈F is a covering of X. We will refer to {UP } as a finite cover of
X by conic neighborhoods. A number λ > 0 is a Lebesgue number of a finite
cover {UP }P∈F if A ⊂ UP for some P ∈ F whenever the diameter of A is ≤ λ.

Perel’man’s Stability Theorem is the following:

Theorem (cf. [P], [K1]) Let X be a compact n-dimensional Alexandrov space
of curvature bounded from below by κ. There exists ε = ε(X) > 0 so that if
Y is an n-dimensional Alexandrov space of curvature bounded from below by κ
with the Hausdorff-Gromov distance between X and Y less than ε, then there
exists a homeomorphism between X and Y .

Perel’man asserts that there actually exists a bi-Lipschitz homeomorphism
between X and Y above. A consequence of Perel’man’s claim is that the
condition that an n-dimensional Alexandrov space satisfies Perel’man’s con-
jecture is actually redundant. This follows immediately from the fact that, for
any point P in a n-dimensional Alexandrov space X, the pointed Hausdorff
limit of the scaling (λX;P ) of X is isometric to (TP (X);V ). In other words, a
small neighborhood around P is close in Hausdorff-Gromov distance to a small
neighborhood around V in TP which is a cone over a (n−1)-dimensional space
of directions.

2.2 Sobolev Space W 1,2(Ω, X)

We summarize Korevaar and Schoen’s Sobolev space theory of [KS1]. Let Ω be
a compact Riemannian domain and (X, d) a complete metric space. A Borel
measurable map u : Ω → X is said to be in L2(Ω, X) if for P ∈ X,∫

Ω

d2(u(x), P )dµ <∞.

This condition is independent of P ∈ X by the triangle inequality. For ε > 0,
set Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε} and let S(x, ε) denote the sphere of
radius ε centered at x in Ω. Construct the ε-approximate energy function
eε(x) : Ωε → R by

eε(x) =
1
ωn

∫
S(x,ε)

d2(u(x), u(y))
ε2

dσ

εn−1

where ωn is the volume of the unit sphere in Rn. Let ν be any Borel measure
on the interval (0, 2) satisfying

ν ≥ 1 , ν((0, 2)) = 1,
∫ 2

0

λ−2dν(λ) <∞.
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Consider an averaged approximate energy density function defined by

νeε(x) =


∫ 2

0

eλε(x)dν(λ) for x ∈ Ω2ε

0 for x ∈ Ω− Ω2ε.

Since νeε(x) ∈ L1(Ω), we can define a functional Euε : Cc(Ω) → R by setting

Euε (f) =
∫

Ω

f(x)νeε(x)dµ.

We will say that u is a finite energy map or u ∈W 1,2(Ω, X) if

Eu = sup
f∈Cc(Ω),0≤f≤1

lim sup
ε→0

Euε (f) <∞.

If u ∈ W 1,2(Ω, X), the measures νeε(x)dµ converge weakly independently of
the choice of ν to a measure which is absolutely continuous with respect to the
Lebesgue measure (cf. Theorems 1.5.1 and 1.10 of [KS1]). Hence, there exists
a function |∇u|2, called the energy density, so that eεdµ ⇀ |∇u|2dµ.

Let Γ(TΩ) be the set of Lipschitz tangent vector fields on Ω. The directional
energy density |u∗(Z)|2 for Z ∈ Γ(TΩ) is defined similarly. We denote x+ εZ
to be the flow along Z at time ε with initial point x. Define

Zeε(x) =
d2(u(x), u(x+ εZ))

ε2
.

If u ∈W 1,2(Ω, X), then Zeεdµ ⇀ |u∗(Z)|2dµ (cf. Theorems 1.8.1 and 1.9.6 of
[KS1]). We set

|u∗(Z)| =
√
|u∗(Z)|2.

and note that this notation is justified by Theorem 1.9.6 of [KS1]. For almost
every x ∈ Ω,

|∇u|2(x) =
1
ωn

∫
Sn−1

|u∗(ω)|2dσ(ω)

where Sn−1 ⊂ TxΩ is the unit sphere (cf. (1.10v) of [KS1]). Lastly,

|u∗(hZ)|2 = |h|2|u∗(Z)|2

for h ∈ C0,1(Ω) (cf. Theorem 1.11 of [KS1]).
If Ω is a Lipschitz domain and u ∈ W 1,2(Ω, X), then there exists a well-

defined notion of a trace of u, denoted Tr(u), which is an element of L2(∂Ω, X).
Two maps u, v ∈ W 1,2(Ω, X) have the same trace (i.e. Tr(u) = Tr(v)) if and
only if d(u(x), v(x)) ∈W 1,2

0 (Ω) (cf. Theorem 1.12.2 of [KS1]).
We will also need the following lemmas. For notational simplicity, we set

Dε(Z,W ) =
d(u(x+ εZ), u(x+ εW ))

ε
, Z,W ∈ Γ(TΩ).
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Lemma 2 Let V ∈ Γ(TΩ) and f ∈ Cc(Ω), f ≥ 0. Then
√
fDε(0, V ) converges

to
√
f |u∗(V )| pointwise almost everywhere, in L2 and in L2-norm, i.e.

fD2
ε (0, V ) → f |u∗(V )|2 a.e.,∫

Ω

f(Dε(0, V )− |u∗(V )|)2 → 0 (6)

and ∫
Ω

fD2
ε (0, V ) →

∫
Ω

f |u∗(V )|2. (7)

Proof. The convergence in L2-norm follows from Theorem 1.8.1 of [KS1].
To see the pointwise a.e. convergence, first observe that (1.9 xix) of [KS1] im-
plies that |u∗(V )| = 0 almost everywhere on {x : V (x) = 0}. Since Dε(0, V ) =
0 on this set, we only need to verify the convergence on {x : V (x) 6= 0}. After
applying a C1,1 change of coordinates from the initial coordinate chart, we can
assume that Z is a coordinate direction. Thus Lemma 1.9.5 of [KS1] implies
that D2

ε (0, V ) → |u∗(V )|2 almost everywhere. The fact that
√
fDε(0, V ) con-

verges to
√
f |u∗(V )| in L2 follows immediately from the other two convergence

statements. q.e.d.

Lemma 3 Let V,U ∈ Γ(TΩ) and f ∈ Cc(Ω), f ≥ 0. Then as ε→ 0, we have∫
Ω

f(Dε(0, V )−Dε(U,U + V ))2 → 0, (8)

∫
Ω

fD2
ε (U,U + V )dµ→

∫
Ω

f |u∗(V )|2dµ (9)

and
fD2

ε (U,U + V ) → |u∗(V )|2 a.e. (10)

Proof. For this proof, we set Dε = Dε(0, V ), D = |u∗(V )| and Tεϕ(x) =
ϕ(x+ εU) for any function ϕ : Ω → R. To see why (8) is true, first note that
TεDε = Dε(U,U + V ) and√

fTεDε = Tε(T−ε
√
f)TεDε

= Tε(
√
f − (

√
f − T−ε

√
f))TεDε

= Tε(
√
fDε) + (Tε

√
f −

√
f)TεDε.

Thus, denoting the L2 norm by ‖ · ‖2, we obtain

‖
√
fTεDε −

√
fDε‖2 ≤ ‖Tε(

√
fDε)−

√
fDε‖2 + ‖(Tε

√
f −

√
f)TεDε‖2.

11



Furthermore, several application of the the triangle inequality yields

‖
√
fTεDε −

√
fDε‖2

≤ ‖Tε(
√
fDε)−

√
fD‖2 + ‖

√
fD −

√
fDε‖2 + ‖(Tε

√
f −

√
f)TεDε‖2

≤ ‖Tε(
√
fDε)− Tε(

√
fD)‖2 + ‖Tε(

√
fD)−

√
fD‖2

+‖
√
fD −

√
fDε‖2 + ‖(Tε

√
f −

√
f)TεDε‖2

≤ ‖Tε(
√
fD)−

√
fD‖2 + 2‖

√
fD −

√
fDε‖2 + ‖(Tε

√
f −

√
f)TεDε‖2.

As ε → 0, the first term on the right hand side converges to 0 since
√
fD ∈

L2(Ω), the second term by Lemma 2 and the third term since Tε
√
f →

√
f

uniformly. Thus, we have established (8).
To see why (9) is true, one can use the change of coordinates method out-

lined in the proof of Lemma 2.3.1 of [KS1]. The convergence of (10) follows
immediately from (8) and (9). q.e.d.

Lemma 4 Let V,U ∈ Γ(TΩ) and f ∈ Cc(Ω), f ≥ 0. Then for all η > 0 there
exists ε0, δ > 0 such that for all Ω̃ ⊂ Ω with µ(Ω̃) < δ and ε < ε0, we have∫

Ω̃

f(x)D2
ε (0, V )dx < η and

∫
Ω̃

f(x)D2
ε (U,U + V )dx < η. (11)

Proof. We use the notation of the proof of Lemma 3. Since fD2 is a non-
negative integrable function on Ω, there exists δ > 0 such that if µ(Ω̃) < δ
then

2
∫

Ω̃

fD2 <
η

2
.

By Lemma 2, there exists ε0 > 0 such that if ε < ε0, then

2
∫

Ω̃

(
√
fDε −

√
fD)2 ≤ 2

∫
Ω

(
√
fDε −

√
fD)2 <

η

2
.

Thus, the first inequality of (11) follows by observing that∫
Ω̃

fD2
ε =

∫
Ω̃

(
√
f(D +Dε −D))2 ≤ 2

∫
Ω̃

fD2 + 2
∫

Ω̃

(
√
fDε −

√
fD)2.

The second inequality follows from∫
Ω̃

fDεTεDε

=
∫

Ω̃

fD2
ε +

∫
Ω̃

fDε(TεDε −Dε)

≤
∫

Ω̃

fD2
ε +

(∫
Ω̃

fD2
ε

)1/2(∫
Ω̃

f(TεDε −Dε)2
)1/2

and the observation that the second term converges to 0 as ε→ 0 by Lemma 3.
q.e.d.
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3 The Dirichlet Problem

We let D be a unit disk in the plane. The Dirichlet Problem for an Alexandrov
space X is formulated as follows:

The Dirichlet Problem Let ψ ∈ W 1,2(D,X) and define W 1,2
ψ = {v ∈

W 1,2(D,X) : Tr(v) = Tr(ψ)}. Let Eψ = inf{Ev : v ∈ W 1,2
ψ }. Find u ∈ W 1,2

ψ

such that Eu = Eψ.

If u ∈ W 1,2(D,X) has the property that Eu ≤ Ev for any v ∈ W 1,2(D,X)
with Tr(v) = Tr(u), then u will be referred to as a Dirichlet solution (for the
boundary data Tr(u)). We first establish the following existence result:

Theorem 5 Given any ψ ∈W 1,2(D,X), there exists a Dirichlet solution u ∈
W 1,2
ψ (D,X).

Proof. The proof is an easy application of the results of Chapter 1 in
[KS1]. We take a sequence of maps {uk} ⊂ W 1,2

ψ (D,X) such that Euk con-
verges to Eψ. Since our spaces are compact, there exists C > 0 so that∫

D

d2(uk(x), Q)dµ(x) + Euk ≤ C.

By the precompactness theorem (Theorem 1.13 of [KS1]), there exists a sub-
sequence {uki} that converges in L2(D,X) to u ∈ W 1,2(D,X). By the lower
semicontinuity of energy (Theorem 1.6.1 of [KS1]) and the trace theory (The-
orem 1.12.2 of [KS1]), Eu = Eψ and Tr(u) = Tr(ψ). q.e.d.

The rest of this section is devoted to the regularity issues of the Dirichlet
solution.

3.1 The Interior Hölder Continuity

The goal of this subsection is to prove:

Theorem 6 Let X be a finite dimensional compact Alexandrov space satis-
fying the Perel’man conjecture. Let u ∈ W 1,2(D,X) be a Dirichlet solution.
Then for each R ∈ (0, 1), there exists C and α dependent only on R,Eu and
X so that

d(u(z1), u(z2)) ≤ C|z1 − z2|α, ∀z1, z2 ∈ DR(0).

Here, DR(z0) ⊂ R2 is the disk of radius R centered at z0. In particular,
D1(0) = D. Before we prove Theorem 6, we will need several preliminary
lemmas. In the following, let Π be a compact Alexandrov space. We define
two metric spaces P(Π) and C(Π) associated with Π. The first is the product
of Π with R; more precisely, P(Π) is the set

Π×R = {(P, t) : P ∈ X, t ∈ R}

13



endowed with the distance function dP defined by

d2
P((P, t), (Q, s)) = d2(P,Q) + (t− s)2.

For any r1, r2 ∈ [0,∞) with r1 < r2, we define the truncated product space as

P(Π, r1, r2) = {(P, t) ∈ P(Π) : r1 < t < r2}.

The second space is the cone over Π; more precisely, C(Π) is the set

Π× [0,∞)/ ∼ where (P, 0) ∼ (Q, 0)

endowed with the distance function dC defined by

d2
C((P, t), (Q, s)) = t2 + s2 − 2ts cos d(P,Q).

The vertex of C(Π) (i.e. any point of the form (P, 0)) will be denoted O. For
any r1, r2 ∈ [0,∞) with r1 < r2, we define the truncated cone as

C(Π, r1, r2) = {(P, t) ∈ C(Π) : r1 < t < r2}.

Given a map u ∈ W 1,2(D,P(Π)) (resp.u ∈ W 1,2(D, C(Π))) we will denote
energy, energy density function and directional energy function by EuP , |∇u|2P
and |u∗(V )|2P (resp. EuC , |∇u|2C and |u∗(V )|2C) to avoid confusion.

If 0 < r1 < r2 <∞, then u ∈W 1,2(D,P(Π)) if and only if u ∈W 1,2(D, C(Π)).
In fact, a simple computation shows that there exists

L = L(r1, r2) (12)

so that
1√
L
dP(P,Q) ≤ dC(P,Q) ≤

√
LdP(P,Q)

and hence
1
L
EuP ≤ EuC ≤ LEuP .

Lemma 7 Given a finite dimensional compact Alexandrov space X satisfying
Perel’man’s conjecture, a finite cover of X by conic neighborhoods and λ the
Lebesgue number of this cover, there exists κ depending only on X so that if
u ∈W 1,2(D,X) is a Dirichlet solution, Tr(u) = γ ∈W 1,2(∂D,X) and∫

∂D

|γ∗(
∂

∂θ
)|2dθ < λ2

2π
, (13)

then
Eu ≤ κ

∫
∂D

|γ∗(
∂

∂θ
)|2dθ. (14)

14



Proof. We prove this by an induction on the dimension of X. We first
verify the inductive step. Assume Lemma 7 is true whenever the dimension is
n and suppose that the dimension of X is n+1. Let {Up}p∈F be a finite cover
of X by conic neighborhoods and λ be its Lebesgue number. By the definition
of conic neighborhoods, for each p ∈ F , there exists a bi-Lipshitz map

ϕp : Up → ϕp(Up) ⊂ C(Πp)

where we refer to Πp by an abuse of notation as the space of directions at p of
X. For each p ∈ F , let {V pq }q∈Fp be a finite cover Πp by conic neighborhoods
and λp be its Lebesgue number. Let

ϕpq : Upq → ϕpq(V
p
q ) ⊂ C(Πp

q)

be a bi-Lipschitz map where Πp
q is the space of directions at q of Πp. Let K, η

be sufficiently large so that for all p ∈ F and P,Q ∈ Up,

1√
K
d(P,Q) ≤ dC(ϕp(P ), ϕp(Q)) ≤

√
Kd(P,Q) (15)

and
1
η

L(1− 1
η )
≤ min

p∈F
λp and

π

η
<

1
4

(16)

where L = L( 1
2 ,

3
2 ) as in (12). The assumption (13) implies∫

∂D

|γ∗(
∂

∂θ
)|dθ ≤

√
2π
(∫

∂D

|γ∗(
∂

∂θ
)|2dθ

)1/2

≤ λ.

Therefore, the image of γ is contained in Up for some p ∈ F and we can let

σ = ϕp ◦ γ : ∂D → ϕp(Up) ⊂ C(Πp).

We will write σ = (σ1, σ2) where σ1 : ∂D → Πp and σ2 : ∂D → R are the
natural projection maps. We consider two cases:

Case 1. ∃θ0 ∈ ∂D such that

d2
C(σ(θ0),O) ≤ η

∫
∂D

|σ∗(
∂

∂θ
)|2Cdθ. (17)

Let (r, θ) be the polar coordinates of D and define ψ = (ψ1, ψ2) : D → C(Π)
by setting

ψ(r, θ) := (σ1(θ), rσ2(θ)).

It is clear by construction that ψ ∈ W 1,2(D, C(Π)) and Tr(ψ) = σ. Further-
more, we have

d2
C(ψ(r1, θ), ψ(r2, θ)) = |r1 − r2|2d2

C(σ(θ),O) (18)
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and
d2
C(ψ(r, θ1), ψ(r, θ2)) = r2d2

C(σ(θ1), σ(θ2)) (19)

by the definition of ψ and the definition of the distance function dC . If we divide
(18) by |r1− r2|2 and (19) by |θ1− θ2|2 and take the limit as r1 → r2, θ1 → θ2,
we obtain (cf. section 1.9 of [KS1])

|ψ∗(
∂

∂r
)|2C(r, θ) = d2

C(σ(θ),O) and |ψ∗(
∂

∂θ
)|2C(r, θ) = r2|σ∗(

∂

∂θ
)|2C(θ) for a.e. (r, θ).

(20)

From the triangle inequality and (17), we see that

d2
C(σ(θ),O) ≤ (dC(σ(θ0),O) + dC(σ(θ), σ(θ0)))

2

≤ 2
(
d2
C(σ(θ0),O) + d2

C(σ(θ), σ(θ0))
)

≤ 2

η ∫
∂D

|σ∗(
∂

∂θ
)|2Cdθ +

(∫ θ

θ0

|σ∗(
∂

∂θ
)|Cdθ

)2


≤ 2(η + 2π)
∫
∂D

|σ∗(
∂

∂θ
)|2Cdθ.

Thus, (20) along with the above inequality gives us

Eψc =
∫
∂D

∫ 1

0

(
|ψ∗(

∂

∂r
)|2C +

1
r2
|ψ∗(

∂

∂θ
)|2C
)
rdrdθ

=
∫
∂D

∫ 1

0

(
d2
C(σ(θ),O) + |σ∗(

∂

∂θ
)|2C(θ)

)
rdrdθ

≤ Λ
∫
∂D

|σ∗(
∂

∂θ
)|2C

for some constant Λ dependent only on η.

Case 2. ∀θ ∈ ∂D,

d2
C(σ(θ),O) > η

∫
∂D

|σ∗(
∂

∂θ
)|2Cdθ.

Integrating over θ ∈ ∂D, we obtain

1
2π

∫
∂D

d2
C(σ,O)dθ > η

∫
∂D

|σ∗(
∂

∂θ
)|2Cdθ

or
1

1
2π

∫
∂D

d2
C(σ,O)dθ

∫
∂D

|σ∗(
∂

∂θ
)|2Cdθ <

1
η
.
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If we define σ̃ = (σ̃1, σ̃2) : ∂D → C(Πp) by

(σ̃1(θ), σ̃2(θ)) =

(
σ1(θ),

1
1
2π

∫
∂D

d2
C(σ,O)dθ

σ2(θ)

)

then we have
1
2π

∫
∂D

d2(σ̃(θ),O) = 1 (21)

and ∫
∂D

|σ̃∗(
∂

∂θ
)|2Cdθ <

1
η
. (22)

Now note that σ̃ is continuous; indeed, for any θ, θ′ ∈ ∂D,

dC(σ̃(θ), σ̃(θ′)) ≤
∫ θ′

θ

|σ̃∗(
∂

∂θ
)|Cdθ ≤

(∫
∂D

|σ̃∗(
∂

∂θ
)|2Cdθ

)1/2

|θ−θ′|1/2 ≤ 1
√
η
|θ−θ′|1/2.

Thus, (21) implies there exists θ′ ∈ ∂D so that dC(σ̃(θ′),O) = 1. Furthermore,
that fact that |θ − θ′| ≤ π implies that

dC(σ̃(θ), σ̃(θ′)) <
√
π

η
<

1
2

by choice of η in (16). Thus,

|1− dC(σ̃(θ),O)| = |dC(σ̃(θ′)− dC(σ̃(θ),O)| ≤ dC(σ̃(θ), σ̃(θ′)) <
1
2

which implies
1
2
< dC(σ̃(θ),O) ≤ 3

2
.

Let v1 : D → Πp be the Dirichlet solution with Tr(v1) = σ̃1 and v2 : D → R
be the Dirichlet solution with Tr(v2) = σ̃2. Since the dimension of Πp is n,
the inductive hypothesis implies that exists constant κ′ so that

Ev1Πp
≤ κ′

∫
∂D

|(σ̃1)∗(
∂

∂θ
)|2Πp

dθ

where we have used the subscript to denote quantities associated to the metric
space Πp. If we let v = (v1, v2) ∈ P(Πp), then the definition of a product space
immediately implies that

EvP ≤ (κ′ + 1)
∫
∂D

|σ̃∗(
∂

∂θ
)|2Pdθ

which in turn implies that

EvC ≤ L2(κ′ + 1)
∫
∂D

|σ̃∗(
∂

∂θ
)|2Cdθ.
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If we define w = (w1, w2) = (v1, 1
2π

∫
∂D

dC(σ,O)dθ · v2), then Tr(w) = σ and

EwC ≤ L2(κ′ + 1)
∫
∂D

|σ∗(
∂

∂θ
)|2Cdθ.

Finally, using the definition of K, we see that

Eu ≤ E
ϕp◦w
P ≤ K2L2(κ′ + 1)

∫
∂D

|γ∗(
∂

∂θ
)|2dθ.

By letting κ = max{Λ,K2L2(κ′ + 1)}, we have verified the inductive step.
Now assume that that the dimension of X is 2. Then the space of direction

at any point of X is either an interval or a circle and we can follow the proof
of the inductive step to prove the base case of the inductive argument. q.e.d.

To summarize, we have demonstrated that if u is an energy minimizing map
with Sobolev trace map γ which is small in energy, then we have an estimate of
the energy of u in terms of its trace. We use this fact along with the Morrey’s
Energy Decay Lemma for maps into X to prove Hölder continuity. We let
DR(z0) denote the disk of radius R centered at z0 and Eu[Dr(z0)] the energy
of u in the disk Dr(z0).

Lemma 8 (Morrey) Let u ∈W 1,2(D,X) satisfy

Eu[Dr(z0)] ≤ C2
Rr

2α, 0 ≤ r < 1−R (23)

for each z0 ∈ DR(0) ⊂ D where CR is a constant depending on R. Then there
exists a constant K so that for every z1, z2 ∈ DR(0),

d(u(z1), u(z2)) ≤ KCR|z1 − z2|α.

Proof. Using the Sobolev theory of maps into metric space targets devel-
oped in Chapter 1 of [KS1], the assertion of the lemma follows from Morrey’s
argument in [Mo]. q.e.d.

Proof of Theorem 6. Fix a finite cover of X by conic neighborhood and
let λ be its Lebesgue number. Let R ∈ (0, 1) and let z0 ∈ DR. By [KS1] Section
1.9, u restricted to ∂Dr(z0) is absolutely continuous and W 1,2 for almost every
choice of such r ∈ (0, 1 − R). Let s be the arclength parameter of ∂Dr(z0)
and û be the composition of u with the dilation and translation of the plane
which takes Dr(z0) to D. If

∫
∂Dr(z0)

|u∗( ∂∂s )|
2ds < λ

r , then change of variables
s = rθ gives

∫
∂D
|û∗( ∂∂θ )|

2dθ < λ. By Lemma 7 and invariance of the energy
under conformal transformation, we obtain

Eu[Dr(z0)] = Eû ≤ κ

∫
∂D

|û∗(
∂

∂θ
)|2dθ ≤ rκ

∫
∂Dr(z0)

|u∗(
∂

∂s
)|2ds

= r
d

dr
Eu[Dr(z0)].
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If ∫
∂Dr(z0)

|u∗(
∂

∂s
)|2ds ≥ λ

r
,

then
Eu[Dr(z0)] ≤ r

Eu

λ

∫
∂Dr(z0)

|u∗(
∂

∂θ
)|2dθ.

Thus, for almost every r ∈ (0, 1−R),

Eu[Dr(z0)] ≤ max{κ, E
u

λ
}r
∫
∂Dr(z0)

|u∗(
∂

∂θ
)|2(r, θ)dθ

≤ max{κ, E
u

λ
}r d
dr
Eu[Dr(z0)].

Integrating the differential inequality and letting C2
R = max{κ, E

u

λ } gives us
the estimate needed to employ Lemma 8. q.e.d.

3.2 Boundary Regularity

The goal of this section is to prove:

Theorem 9 Let γ ∈ C0(∂D,X) be a continuous map and u ∈W 1,2(D,X) be
its Dirichlet solution. Then u is continuous in D.

To prove the boundary regularity, we need the following lemma which gives
a lower bound on the energy of a harmonic map if a point is mapped sufficiently
away from the boundary values.

Lemma 10 Let ε,M > 0. There exists η = η(ε,M) > 0 so that for any ϕ ∈
C0(∂D,X) and its Dirichlet solution v ∈W 1,2(D,X) with d(v(0), ϕ(∂D)) > ε
and Ev ≤M , we have

Ev[v−1(Bε(v(0)))] ≥ η.

Proof. We prove this theorem by way of contradiction. Suppose that
the statement is false. Then there exists a sequence of Dirichlet solutions
vi ∈W 1,2(D,X) with ϕi = Tr(vi) satisfying d(vi(0), ϕi(∂D)) > ε and

Evi [v−1
i (Bε(vi(0)))] → 0. (24)

Since X is compact, we may assume that vi(0) → p ∈ X by taking a subse-
quence if necessary. Suppose x ∈ D has the property that d(vi(x), p) < ε

2 .
The triangle inequality d(vi(x), vi(0)) ≤ d(vi(x), p) + d(vi(0), p) implies that
d(vi(x), vi(0)) < ε for sufficietly large i. Therefore, v−1

i (B ε
2
(p)) ⊂ v−1

i (Bε(vi(0)))
which implies

Evi [v−1
i (B ε

2
(p))] ≤ Evi [v−1

i (Bε(vi(0)))]. (25)
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Since Evi ≤ M for all i, we can apply the precompactness theorem and
the trace theory (cf. [KS1] Theorem 1.13 and Theorem 1.12.2) to obtain a
subsequence (which we denote {vi} by an abuse of notation) so that vi → v in
L2(D,X) and ϕi = Tr(vi) → ϕ = Tr(v) in L2(∂D,X). Fix δ ∈ (0, 1) and let
D1−δ be a disk of radius 1− δ centered at the origin. By Theorem 6, vi

∣∣
D1−δ

is Hölder continuous; more specifically,

d(vi(z1), vi(z2)) ≤ C(X, δ) | z1 − z2 |α(X,δ) , ∀z1, z2 ∈ D1−δ.

Note that the modulus of continuity depends only on the geometry of the tar-
get and on the arbitrary constant δ. Hence, {vi

∣∣
D1−δ

} form an equicontinuous
family and converge uniformly to a Hölder continuous map according to the
Arzela-Ascoli Theorem. The limit map must be the restriction of v constructed
above to the smaller disk D1−δ. Consequently, v(0) = p and, since δ is arbi-
trary, v is continuous in D. In particular, this implies v−1(B ε

4
(p)) is an open

set. By the triangle inequality, d(vi(z), p) ≤ d(vi(z), v(z)) + d(v(z), p), and
hence if z ∈ D1−δ and d(v(z), p) < ε

4 then d(vi(z), p) ≤ ε
2 for sufficiently large

i depending only on ε,X and δ and not on the chosen z since the convergence of
vi to v is uniform in D1−δ. Therefore, v−1(B ε

4
(p))∩D1−δ ⊂ v−1

i (B ε
2
(p))∩D1−δ

for sufficiently large i and

∫
v−1(B ε

4
(p))∩D1−δ

| ∇vi |2 dµ ≤
∫
v−1

i
(B ε

2
(p))∩D1−δ

| ∇vi |2 dµ ≤ Evi [v−1
i (B ε

2
(p))].

By the lower semicontinuity of the energy functional (cf. [KS1] Theorem 1.6.1),
(24) and (25), we conclude that∫

v−1(B ε
4
(p))∩D1−δ

| ∇v |2 dµ = 0.

Therefore,
Ev[v−1(B ε

4
(p))] = 0

by the Lebesgue Dominated Convergence Theorem which in turn implies that
v must be constant on each connected component of v−1(B ε

4
(p)). In particular,

it must be identically equal to p on the component K of v−1(B ε
4
(p)) containing

0. The continuity of v implies that v−1(p) is closed and henceK is closed. Since
K is both open and closed, K = D. Therefore, v and hence ϕ is identically
equal to p.

On the other hand, the triangle inequality says

d2(ϕi, p) ≤ 2d2(ϕi, ϕ) + 2d2(ϕ, p)

and hence
2πε ≤ 2

∫
∂D

d2(ϕi, ϕ)dθ + 2
∫
∂D

d2(ϕ, p)dθ.
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Letting i→ 0, we obtain

2πε ≤ 2
∫
∂D

d2(ϕ, p)dθ = 0,

a contradiction. q.e.d.

The proof of boundary regularity is now an easy application of Lemma 10.

Proof of Theorem 9. Suppose a Dirichlet solution u : D → X with a
continuous trace γ : ∂D → X is not continuous at some point x0 ∈ ∂D. There
exists ε > 0 and xi → x0 with

d(u(xi), γ(x0)) > 2ε. (26)

By the Courant-Lebesgue lemma and the continuity of γ, we may choose δi → 0
such that u restricted to ∂Dδi(x0)∩D is continuous and the length of the curve

Γi := u(∂Dδi(x0) ∩D) ∪ γ(Dδi(x0) ∩ ∂D)

converges to 0 as i→∞. This combined with (26) implies that

d(Γi, u(xi)) > ε (27)

for sufficiently large i. By choosing subsequence if necessary, assume that
xi ∈ Dδi(x0)∩D. By the Riemann Mapping Theorem, there exists a conformal
map ψi from Dδi(x0)∩D to D which sends xi to 0. Let vi = u ◦ψ−1

i : D → X
and ϕi = Tr(vi). Note that vi(0) = ui(xi), the image of ϕi is Γi and (27)
implies that d(vi(0), ϕ(∂D)) > ε. Thus, Lemma 10 says there exists η > 0
such that Evi [v−1

i (Bε(vi(0)))] ≥ η for all i. By conformal invariance of en-
ergy, Eu[Dδi(x0) ∩ D] ≥ η. However, since u ∈ W 1,2(D,X), we see that
Eu[Dδi(x0) ∩D] → 0 as i→∞ and we arrive at our contradiction. q.e.d.

4 The Plateau Problem

4.1 The area functional

Before we can properly state the Plateau Problem for an Alexandrov space,
we must formulate a notion of area. Our definition is analogous to the usual
definition of the area functional for a map from a surface into a Riemannian
manifold; in other words, it is obtained by integrating the area element of the
pull-back metric. Thus, we first need to generalize the notion of the pull-back
metric in this setting. This is accomplished by (28) and Theorem 11 below.

Let Ω be a Riemannian domain and X an Alexandrov space. (Note that we
do not need to assumeX is finite dimensional or satisfies Perel’man’s conjecture
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in this subsection.) For Z,W ∈ Γ(TΩ) (i.e. Z,W are Lipschitz vector fields
on Ω), we define

π(Z,W ) =
1
4
|u∗(Z +W )|2 − 1

4
|u∗(Z −W )|2. (28)

If (Ω, g) has local coordinates (x1, x2, . . . , xn) and corresponding tangent basis
{∂1, ∂2, . . . , ∂n}, we write

πij = π(∂i, ∂j).

We show in Theorem 11 below that π generalizes the notion of the pull-back
metric. The analogous result for the case when X is a NPC (non-positively
curved) space is proven in [KS1] and the case when the curvature of X is
bounded from above is proven in [Me2].

Theorem 11 The operator π defined above,

π : Γ(TΩ)× Γ(TΩ) → L1(Ω, R)

is continuous, symmetric, bilinear, non-negative and tensorial; more specifi-
cally

π(Z,Z) = |u∗(Z)|2

π(Z,W ) = π(W,Z)
π(Z, hV +W ) = hπ(Z, V ) + π(Z,W ) for any h ∈ C0,1(Ω).

For Z = Zi∂i and W = W i∂j, we have

π(Z,W ) = πijZ
iW j .

If ψ : Ω1 → Ω is a C1,1 map, then writing v = u◦ψand πv for the corresponding
operator, we have the formula

(πv)ij = πlm
∂ψl

∂xi
∂ψm

∂xj
. (29)

Proof. Assuming Proposition 12 below, we can follow the proof of Theo-
rem 2.3.2 of [KS1] to prove Theorem 11. q.e.d.

Proposition 12 Let Ω be a Riemannian domain and let X be an Alexandrov
space. If u ∈ W 1,2(Ω, X), then for any Z,W ∈ Γ(TΩ) the parallelogram
identity

|u∗(Z +W )|2 + |u∗(Z −W )|2 = 2|u∗(Z)|2 + 2|u∗(W )|2 (30)

holds.
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Proof of Proposition 12. Recall that for any Z,W ∈ Γ(TΩ), we denote
by x+ εZ the flow along V with initial point x ∈ Ω at time ε and

Dε(Z,W ) :=
d(u(x+ εZ), u(x+ εW ))

ε
.

Now fix f ∈ Cc(Ω), f ≥ 0 and Z,W ∈ Γ(Ω). Let

Ω+ = {x ∈ sptf : |u∗(Z)|2, |u∗(W )|2, |u∗(Z +W )|2, |u∗(Z −W )|2 6= 0},

ΩN = {x ∈ sptf :
1

2N
< |u∗(Z)|2, |u∗(W )|2, |u∗(Z+W )|2, |u∗(Z−W )|2 < N

2
}.

F (x, ε) := 2D2
ε (Z,

Z +W

2
) + 2D2

ε (W,
Z +W

2
) +D2

ε (0, Z +W )

−D2
ε (0, Z)−D2

ε (Z,Z +W )−D2
ε (W,Z +W )−D2

ε (0,W ).

We claim the following:

Claim 1 µ(Ω+\ΩN ) → 0 as N →∞.

Claim 2 Fix N . For any ρ > 0, let δ(ρ) be as in Lemma 1. Then there
exists a function Gρ(x, ε) so that if the following three inequalities:

1
N

< Dε(0, Z+W ), Dε(0, Z), Dε(0,W ), Dε(Z,W ), Dε(Z,Z+W ), Dε(W,Z+W ) < N

(31)

|1
2
Dε(0, Z +W )−Dε(0,

Z +W

2
)| < δ(ρ)2Dε(0, Z +W ) (32)

|1
2
Dε(0, Z +W )−Dε(Z +W,

Z +W

2
)| < δ(ρ)2Dε(0, Z +W ) (33)

are satisfied for ε > 0 and x ∈ ΩN , then

F (x, ε) ≥ Gρ(x, ε). (34)

Furthermore, there exists a function Gρ(x) so that

lim
ε→0

∫
ΩN

f(x)|Gρ(x, ε)|dµ =
∫

ΩN

f(x)|Gρ(x)|dµ+O(ρ2) (35)

and
lim
ρ→0

∫
ΩN

f(x)|Gρ(x)|dµ = 0. (36)

Claim 3 For x ∈ Ω− Ω+, the parallelogram identity (30) holds.
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Assuming the validity of the three claims, we prove the parallelogram iden-
tity as follows. Fix η > 0. By Lemma 4, there exists ε0, δ > 0 so that for any
Ω̃ with µ(Ω̃) < δ and ε < ε0, we have∫

Ω̃

fF (x, ε) > −η.

By Lemmas 2 and 3,

Dε(0, Z +W ) → |u∗(Z +W )|, Dε(0, Z) → |u∗(Z)|, Dε(0,W ) → |u∗(W )|

Dε(Z,W ) → |u∗(Z−W )|, Dε(Z,Z+W ) → |u∗(W )|, Dε(W,Z+W ) → |u∗(Z)|
pointwise almost everywhere. By Egoroff’s Theorem, there exists set a A so
that µ(A) < δ

2 and these convergences are uniform on Ω − A. By Claim 1,
there exists N sufficiently large so that µ(Ω+\ΩN ) < δ

2 . Hence,∫
(Ω+\ΩN )∪A

f(x)F (x, ε) > −η.

For ρ > 0, the uniform convergence implies that there exists ε0 > 0 sufficiently
small so that (31), (32) and (33) hold for for all ε < ε0 and all x ∈ ΩN\A.
Thus, by Claim 2 (34),∫

Ω+
f(x)F (x, ε)dµ =

∫
(Ω+−ΩN )∪A

f(x)F (x, ε)dµ+
∫

ΩN\A
f(x)F (x, ε)dµ

≥ −η +
∫

ΩN\A
f(x)Gρ(x, ε)dµ

≥ −η −
∫

ΩN\A
f(x)|Gρ(x, ε)|dµ.

Take ε→ 0 and apply Lemma 2, Lemma 3 and Claim 2 (35) to obtain∫
Ω+

f
(
|u∗(Z +W )|2 + |u∗(Z −W )|2 − 2|u∗(Z)|2 − 2|u∗(W )|2

)
dµ

≥ −η −
∫

Ω

f(x)|Gρ(x)|.

Now by taking ρ → 0, applying Claim 2 (36) and noting that η can be made
arbitrarily small, we obtain∫

Ω+
f(|u∗(Z +W )|2 + |u∗(Z −W )|2 − 2|u∗(Z)|2 − 2|u∗(W )|2)dµ ≥ 0.

Combined with Claim 3,∫
Ω

f(|u∗(Z +W )|2 + |u∗(Z −W )|2 − 2|u∗(Z)|2 − 2|u∗(W )|2)dµ

=
∫

Ω+
+
∫

Ω−Ω+
f(|u∗(Z +W )|2 + |u∗(Z −W )|2 − 2|u∗(Z)|2 − 2|u∗(W )|2)dµ

≥ 0.
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Replacing Z and W by Z+W
2 and Z−W

2 respectively in the above argument,
we obtain∫

Ω

f(2|u∗(Z)|2 + 2|u∗(W )|2 − |u∗(Z +W )|2 − |u∗(Z −W )|2)dµ ≥ 0.

Finally, since the choice of f is arbitrary, we obtain the parallelogram identity.
q.e.d.

We are now left to prove the three claims.

Proof of Claim 1. If

Ω≤
1
N =

{
x ∈ sptf : min{|u∗(Z)|2, |u∗(W )|2, |u∗(Z +W )|2, |u∗(Z −W )|2} ≤ 1

2N

}
and

Ω≥N =
{
x ∈ sptf : max{|u∗(Z)|2, |u∗(W )|2, |u∗(Z +W )|2, |u∗(Z −W )|2} ≥ N

2

}
,

then Ω+\ΩN = Ω≤
1
N ∪ Ω≥N . Since

Ω<
1

N+1 ⊂ Ω<
1
N and ∩∞N=1 Ω<

1
N ∩ Ω+ = ∅,

we have that µ(Ω<
1
N ) → 0 as N → 0. Furthermore,

N

2
µ(Ω>N ) ≤

∫
Ω>N

|u∗(Z)|2 + |u∗(W )|2 + |u∗(Z +W )|2 + |u∗(Z −W )|2 <∞.

which implies µ(Ω>N ) → 0 as N → 0. q.e.d.

Proof of Claim 2. For x ∈ Ω and ε > 0, assume (31), (32) and (33)
are satisfied and let

P = u(x), Q = u(x+ εZ) R = u(x+ ε(Z +W )),
S = u(x+ εW ), T = u(x+ ε(Z+W

2 )). (37)

The inequalities (32) and (33) imply

|1
2
dPR − dPT | < δ2(ρ)dPR , |1

2
dPR − dRT | < δ2(ρ)dPR.

Let γRT be a geodesic from R to T and R′ be a point on γRT so that

dRR′ = δ(ρ)dPR. (38)

Let γPR′ be a geodesic from P to R′ and T ′ be its midpoint. By Lemma 1, we
have

dTT ′ < ρdPR.
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Define γ to be the curve which is the sum of geodesics from Q = u(x + εZ)
to T ′ and from T ′ to S = u(x + εW ). Let d̄ be the distance function in the
hyperbolic plane H2 and construct points P̄ , Q̄, R̄′, S̄ ∈ H2 with the property
that

dPQ = d̄P̄ Q̄, dQR′ = d̄Q̄R̄′ , dR′S = d̄R̄′S̄ , dSP = d̄S̄P̄ , dPR′ = d̄P̄ R̄′ (39)

and so that geodesic triangles 4P̄ Q̄R̄′ and 4P̄ S̄R̄′ intersect only along the
geodesic γ̄P̄ R̄′ from P̄ to R̄′. If T̄ ′ is the midpoint of γ̄P̄ R̄′ ,

d̄Q̄T̄ ′ ≤ dQT ′ d̄T̄ ′S̄ ≤ dT ′S (40)

by the property of an Alexandrov space. Hence

d̄Q̄S̄ ≤ d̄Q̄T̄ ′ + d̄T̄ ′S̄ ≤ dQT ′ + dT ′S .

Therefore, if

E(x, ε) := d̄2
Q̄S̄ + d̄2

P̄ R̄′ − d̄2
P̄ Q̄ − d̄2

Q̄R̄′ − d̄2
R̄′S̄ − d̄2

P̄ S̄ ,

then

E(x, ε) ≤ L2(γ) + d2(u(x), R
′
)− d2(u(x), u(x+ εZ))− d2(R

′
, u(x+ εZ))

−d2(R
′
, u(x+ εW ))− d2(u(x), u(x+ εW )).

Dividing by ε2, we obtain

E(x, ε)
ε2

≤
(
L2(γ)
ε2

−D2
ε (0, Z)−D2

ε (0,W )
)

+

(
d2(u(x), R

′
)

ε2
− d2(R

′
, u(x+ εW ))
ε2

− d2(R
′
, u(x+ εZ))
ε2

)
=: (I) + (II). (41)

Hence, by the triangle inequality, we have,

L(γ) = dQT ′ + dT ′S

≤ dQT + dTS + 2dTT ′

≤ dQT + dTS + 2ρdPR

= d(u(x+ εZ), u(x+ ε
Z +W

2
)) + d(u(x+ εW ), u(x+ ε

Z +W

2
))

+2ρd(u(x), u(x+ (εZ +W )).

If we square this inequality, divide by ε2 and assume that ρ << 1, we have

L2(γ)
ε2

≤ D2
ε (Z,

Z +W

2
) +D2

ε (W,
Z +W

2
) + 2D2

ε (Z,
Z +W

2
)D2

ε (W,
Z +W

2
)
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+4ρDε(0, Z +W )
(
Dε(Z,

Z +W

2
) +Dε(W,

Z +W

2
)
)

+4ρ2D2
ε (0, Z +W )

≤ 2D2
ε (Z,

Z +W

2
) + 2D2

ε (W,
Z +W

2
)

+8ρ
(
D2
ε (0, Z +W ) +D2

ε (Z,
Z +W

2
) +D2

ε (W,
Z +W

2
)
)

which immediately implies

(I) ≤ 2D2
ε (Z,

Z +W

2
) + 2D2

ε (W,
Z +W

2
)−D2

ε (0, Z)−D2
ε (0,W )

+8ρ
(
D2
ε (0, Z +W ) +D2

ε (Z,
Z +W

2
) +D2

ε (W,
Z +W

2
)
)
. (42)

Furthermore, assuming ρ << 1, we also obtain

d2
PR′ ≤ (dPR + dRR′)2 = (1 + δ(ρ))2d2

PR ≤ (1 + 3δ(ρ))d2
PR

d2
QR′ ≥ (dQR − dRR′)2 = (dQR − δ(ρ)dPR)2

≥ d2
QR − 2δ(ρ)dQRdPR ≥ (1− δ(ρ))d2

QR − δ(ρ)d2
PR

d2
SR′ ≥ (dSR − dRR′)2 = (dSR − δ(ρ)dPR)2

≥ d2
SR − 2δ(ρ)dSRdPR ≥ (1− δ(ρ))d2

SR − δ(ρ)d2
PR,

which immediately implies

d2(u(x), R
′
)

ε2
≤ (1 + 3δ(ρ))D2

ε (0, Z +W )

−d
2(u(x+ εZ), R′)

ε2
≤ −(1− δ(ρ))D2

ε (Z,Z +W )) + δ(ρ)D2
ε (0, Z +W )

−d
2(u(x+ εZ), R′)

ε2
≤ −(1− δ(ρ))D2

ε (W,Z +W )) + δ(ρ)D2
ε (0, Z +W ).

These combine to give

(II) ≤ D2
ε (0, Z +W )−D2

ε (Z,Z +W )−D2
ε (W,Z +W )

+5δ(ρ)(D2
ε (0, Z +W ) +D2

ε (Z,Z +W ) +D2
ε (W,Z +W )). (43)

Combining (41), (42) and (43), we obtain

E(x, ε)
ε2

≤ 2D2
ε (Z,

Z +W

2
) + 2D2

ε (W,
Z +W

2
) +D2

ε (0, Z +W )

−D2
ε (0, Z)−D2

ε (0,W )−D2
ε (Z,Z +W )−D2

ε (W,Z +W )
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+8ρ
(
D2
ε (0, Z +W ) +D2

ε (Z,
Z +W

2
) +D2

ε (W,
Z +W

2
)
)

+5δ(ρ)(D2
ε (0, Z +W ) +D2

ε (Z,Z +W ) +D2
ε (W,Z +W ))

≤ F (x, ε) + 8ρ
(
D2
ε (0, Z +W ) +D2

ε (Z,
Z +W

2
) +D2

ε (W,
Z +W

2
)
)

+5δ(ρ)(D2
ε (0, Z +W ) +D2

ε (Z,Z +W ) +D2
ε (W,Z +W )).

Let

G1(x, ε) := −8ρ(D2
ε (0, Z +W ) +D2

ε (Z,
Z +W

2
) +D2

ε (W,
Z +W

2
)

−5δ(ρ)(D2
ε (0, Z +W )−D2

ε (Z,Z +W )−D2
ε (W,Z +W ))

Inequality (31) implies that
ε

N
< dPQ, dQR, dRS , dPS , dPR, dQS < Nε.

By also using the fact that dRR′ = δ(ρ)dPR ≤ ρNε, we can apply Lemma 19
of the Appendix to obtain,∣∣∣∣E(x, ε)

ε2

∣∣∣∣ ≤ CN
(∣∣D2

ε (V, V +W )−D2(0,W )
∣∣+ ∣∣D2

ε (0, V )−D2(W,V +W )
∣∣

+ |Dε(V, V +W )−D(0,W )|+ |Dε(V, V +W )−D(0,W )|)
+K1ρ

2 +K2ε

for some constants K1, K2 sufficiently large. Define G2(x, ε) to be the right
hand side of the inequality above. Thus, (34) holds if we set Gρ(x, ε) =
G1(x, ε)−G2(x, ε). Furthermore, set

Gρ(x) := −8ρ(|u∗(Z +W )|2 +
1
2
|u∗(Z −W )|)

−5δ(ρ)|u∗(Z +W )|2 + |u∗(W )|2 + |u∗(Z)|2) +O(ρ2).

Then (35) and (36) hold by Lemmas 2 and 3. q.e.d

Proof of Claim 3. Let Ω0 denote the set of all points in Ω so that
|u∗(Z +W )|2 = 0. If P,Q,R, T be as in (37). Then

d2
QT − d2

PQ = (dQT − dPQ)(dQT + dPQ) ≤ dPT (dQT + dPQ).

Thus, for any f ∈ Cc(Ω0) , 0 ≤ f ≤ 1,∫
Ω0

f(D2
ε (Z,

Z +W

2
)−D2

ε (0, Z))dµ

≤
∫

Ω0

fDε(0,
Z +W

2
)
(
Dε(Z,

Z +W

2
) +Dε(0, Z)

)
≤

(∫
Ω0

fD2
ε (0,

Z +W

2
)
)1/2(∫

Ω

fD2
ε (Z,

Z +W

2
) +

∫
Ω0

fD2
ε (0, Z)

)1/2

.

28



We take the limit as ε goes to 0 to obtain∫
Ω0

f

(
|u∗(

−Z +W

2
)|2 − |u∗(Z)|2

)
≤

(∫
Ω0

f |u∗(
Z +W

2
)|2
)1/2(∫

Ω0

f |u∗(
−Z +W

2
)|2 + |u∗(Z +W )|2

)1/2

≤
(

1
4

∫
Ω0

f |u∗(Z +W )|2
)1/2(∫

Ω0

f |u∗(
−Z +W

2
)|2 + |u∗(Z +W )|2

)1/2

= 0.

Thus we arrive at

|u∗(
Z −W

2
)|2 ≤ |u∗(Z)|2 a.e. x ∈ Ω0.

Similarly, using

d2
PQ − d2

QT = (dPQ − dQT )(dPQ + dQT ) ≤ dPT (dPQ + dQT ),

we obtain the opposite inequality. Hence, we conclude

|u∗(
Z −W

2
)|2 = |u∗(Z)|2 a.e. x ∈ Ω0.

Interchanging Z and W in the argument above, we also obtain

|u∗(
Z −W

2
)|2 = |u∗(W )|2 a.e. x ∈ Ω0.

Therefore,

|u∗(Z +W )|2 + |u∗(Z −W )|2 = 0 + 4|u∗(
Z −W

2
)|2 = 2|u∗(Z)|2 + 2|u∗(W )|2

for a.e. x ∈ Ω0. Similar arguments apply when we examine points of Ω where
the other directional energy measures vanish. q.e.d

4.2 The Plateau Problem

We can define the area functional for u ∈W 1,2(D,X) by

A(u) =
∫
D

√
detπ dx1dx2 =

∫
D

√
π11π22 − π2

12 dx
1dx2.

The Plateau Problem for a compact Alexandrov spaces satisfying Perel’man’s
conjecture is formulated as:

The Plateau Problem Let Γ be a closed Jordan curve in X, let

FΓ = {u ∈W 1,2(D,X) ∩ C0(D,X) : u|∂D parametrizes Γ monotonically}.
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Find u ∈ FΓ so that A(u) = inf{A(v) : v ∈ FΓ}.

The main result of this section is that we can solve the Plateau Problem if
there exists at least one continuous finite energy map whose trace monotoni-
cally parametrizes Γ.

Theorem 13 If FΓ 6= ∅, there exsits u ∈ FΓ so that A(u) = inf{A(v) : v ∈
FΓ}.

We separate the proof of Theorem 13 into two claims. The first claim is that
there exists a map which minimizes the energy functional in FΓ. The second
claim is that an energy minimizing map is also an area minimizer. These
claims are proved by an extending the arguments used for the Euclidean case
(cf. [L]).

In order to prove the first claim, we need Lemma 14 and 15 below.

Lemma 14 The energy functional is invariant under conformal reparametriza-
tions of the disk.

Proof. This follows by adapting a well-known computation in the smooth
setting to the current situation. This can be justified by the change of variables
formula (29). q.e.d.

Lemma 15 Fix x1, x2, x3 ∈ ∂D and P1, P2, P3 ∈ Γ. If

F
′

Γ = {u ∈ FΓ : u(xi) = Pi for i = 1, 2, 3 and Eu ≤ 2 inf
u∈FΓ

E(u)},

then
F = {u|∂D : u ∈ F

′

Γ , Eu ≤ 2 inf
u∈FΓ

E(u)}

forms an equicontinuous family of maps.

Proof. This follows from the same argument given in Proposition 6 of [L].
q.e.d.

We now prove the first claim:

Claim 1 There exists u ∈ FΓ so that Eu = infu∈FΓ E
u.

Proof. For any v ∈ FΓ, there exists a Möbius transformation so that
v ◦ ψ(xi) = Pi. Furthermore, Ev◦ψ = Ev by Lemma 14. Therefore,

inf
u∈FΓ

Eu = inf
u∈F ′

Γ

Eu.

which implies
inf
u∈FΓ

Eu = inf
φ∈F ′

Γ

Eφ.
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where
Eφ = inf{Ev : v ∈W 1,2

φ (D,X)}.
Let {vm} ⊂ F ′Γ be a sequence so that limm→∞Evm = infu∈FΓ E

u. By
the equicontinuity of F , there exists a subsequence {vm′} so that {vm′

∣∣
∂D
}

converges uniformly to a continuous map φ : ∂D → Γ. By the uniform con-
vergence, we are guaranteed to have φ(pi) = qi for i = 1, 2, 3. Let um′ be the
solution to the Dirichlet Problem for boundary data vm′ . From the precom-
pactness theorem (cf. Theorem 1.13 of [KS1]), we may choose a subsequence
which converges in L2(D,X) to u ∈W 1,2(D,X). By the lower semicontinuity
of the energy functional (cf. Theorem 1.6.1 of [KS1]),

Eu ≤ lim inf
m′→∞

Eum′ ≤ lim inf
m′→∞

Evm′ = inf
v∈FΓ

Ev (44)

Since the trace functions converge in L2 distance (cf. Theorem 1.12.2 in [KS1]),
we have Tr(u) = φ and hence u ∈ F ′

Γ ⊂ FΓ and infu∈FΓ E
u ≤ Eu which com-

bined with (44) implies Ev = infv∈FΓ E
u. q.e.d.

We now claim that u obtained above not only minimizes energy in FΓ, but
also minimizes the area functional. We need the following two lemmas.

Lemma 16 If u ∈ FΓ satisfies Eu = infu∈F ′
Γ
Eu, then u is weakly conformal;

in other words, u satisfies the conformality relation π11 = π22 and π12 = 0.

Proof. This follows by adapting a well-known computation in the smooth
setting to the current situation. This can be justified by the change of variables
formula (29). q.e.d.

Lemma 17 For any v ∈ FΓ and δ > 0, there exists a continuous map F :
D → D monotonically taking ∂D to ∂D such that 1

2E(v ◦ F ) ≤ A(v) + δ.

Proof. Consider the disk D as a subset of the complex plane C and let
X ×C be the metric space equipped with the distance function

d((P, z), (Q,w)) =
√
d2(P,Q) + |z − w|2

for P,Q ∈ X and z, w ∈ C. For v ∈W 1,2(D,X), consider vε : D → X ×C,

vε(z) = (v(z), εz).

For V ∈ Γ(TD) and a.e. z ∈ D,

|(vε)∗(V )|2 = lim
κ→0

d
2
(vε(z), vε(z + κV ))

κ2

= lim
κ→0

d2(vε(z), vε(z + κV )) + |εz − ε(z + κV )|2

κ2

= |(vε)∗(V )|2 + ε2|V |2.
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Hence, letting πε = πvε , we have

(πε)11 = (πv)11 +
ε2

4
, (πε)22 = (πv)22 +

ε2

4
, (πε)12 = (πv)12.

We now choose ε0 such that

A(vε0) ≤ A(v) + δ.

We mollify functions (πε0)ij to obtain the metric (τσij) defined on D1−σ = {z ∈
D : |z| < 1− σ}. For sufficiently small σ, we have τσ11τ

σ
22 − (τσ12)

2 >
ε40
32 . Hence,

there exist C∞ conformal diffeomorphisms Fσ : Dσ → (Dσ, τ
σ) and

E(Fσ, τσ, Dσ) = 2A(Fσ, τσ, Dσ) = 2A(Dσ, τ
σ) = 2A(D,πε0) +O(σ)

= 2A(vε0) +O(σ) = 2A(v) + 2δ +O(σ).

For sufficiently small σ,

(τσ)11 = (πv)11 +
ε2

8
, (τσ)22 = (πv)22 +

ε2

8
.

Therefore E(Fσ, πv) ≤ E(Fσ, τσ). Let σn = 1
n+1 . Since E(Fσ, πv) is uniformly

bounded independently of σ, the Courant-Lebesgue Lemma and Arzela-Ascoli
Theorem imply that there exists an increasing sequence of integers S1 such
that {Fσk

}k∈S1 converges uniformly to a continuous map F1 in Dσ1 . Now
inductively define a sequence Sn ⊂ Sn−1 such that {Fσk

}k∈Sn uniformly to
a continuous map Fn in Dσn . Note that by the choice of Sn, we have that
Fn = Fm in Dσm for m ≤ n. Define F : D → D by

F (z) = Fn(z) z ∈ Dσn
.

For any σ, choose σn ≤ σ, hence,

1
2
E(F, πv, Dσ) ≤

1
2
E(Fn, πv, Dσn

) ≤ A(v) + δ.

Since the above is true for σ arbitrarily small, 1
2E(v ◦F ) ≤ 1

2E(F, πv) ≤ A(v).
q.e.d.

We now prove our second claim.

Claim 2 If u ∈ FΓ satisfies Eu = infv∈FΓ E
v, then A(u) = inf{A(v) :

v ∈ FΓ}.
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Proof. By the Cauchy-Schwarz lemma,√
π11π22 − (π12)2 ≤

√
π11π22 ≤

1
2
(π11 + π22)

with √
π11π22 − (π12)2 =

1
2
(π11 + π22) ⇐⇒ π11 = π22 and π12 = 0.

Since u satisfies the conformality equations by Lemma 16, we deduce that
A(u) = 1

2E
u. Furthermore, if δ > 0, v ∈ FΓ and F are as in Lemma 17, then

v ◦ F ∈ FΓ and

A(u) =
1
2
Eu ≤ 1

2
Ev◦F ≤ A(u) + δ.

Since δ can be chosen arbitrarily small, we are done. q.e.d.

In establishing the above claims, we have also shown:

Theorem 18 The solution u of the Plateau Problem is a conformal, energy
minimizing map. As such, u is Hölder continuous in the interior of D and
continuous up to ∂D.

5 Appendix

We establish the following fact about quadrilaterals in hyperbolic plane. The
purpose is to estimate the difference between the sum of the lengths of the
diagonals and the sum of the lengths of the sides.

Lemma 19 If P̄ , Q̄, R̄′, S̄ ∈ H2 so that
ε

N
≤ d̄P̄ Q̄, d̄Q̄R̄′ , d̄R̄′S̄ , d̄P̄ S̄ , d̄P̄ R̄′ , d̄Q̄S̄ ≤ Nε,

then

|d̄2
Q̄S̄ + d̄2

P̄ R̄′ − d̄2
P̄ Q̄ − d̄2

Q̄R̄′ − d̄2
R̄′S̄ − d̄2

P̄ S̄ |

≤ CN

(
|d̄2
Q̄R̄′ − d̄2

P̄ S̄ |+ |d̄2
P̄ Q̄ − d̄2

R̄′S̄ |+ ε(|d̄Q̄R̄′ − d̄P̄ S̄ |+ |d̄P̄ Q̄ − d̄R̄′S̄ |)
)

+O(ε3)

where CN is a constant dependent on N and O(εk) has the property that
O(εk)
εk−1 → 0 as ε→ 0 .

Proof. Let

E = d̄2
Q̄S̄ + d̄2

P̄ R̄′ − d̄2
P̄ Q̄ − d̄2

Q̄R̄′ − d̄2
R̄′S̄ − d̄2

P̄ S̄ .

Define λ, δ ∈ [0, π] by

cosh d̄P̄ R̄′ = cosh d̄Q̄R̄′ cosh d̄P̄ Q̄ − sinh d̄Q̄R̄′ sinh d̄P̄ Q̄ cosλ

cosh d̄Q̄S̄ = cosh d̄Q̄R̄′ cosh d̄R̄′S̄ − sinh d̄Q̄R̄′ sinh d̄R̄′S̄ cos δ.
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By Taylor series expansion, we obtain

d̄2
P̄ R̄′ = d̄2

Q̄R̄′ + d̄2
P̄ Q̄ − 2d̄Q̄R̄′ d̄P̄ Q̄ cosλ+O(ε3)

d̄2
Q̄S̄ = d̄2

Q̄R̄′ + d̄2
R̄′S̄ − 2d̄Q̄R̄′ d̄R̄′S̄ cos δ +O(ε3)

We have then

E = d̄2
Q̄R̄′ − d̄2

P̄ S̄ − 2d̄Q̄R̄′ d̄P̄ Q̄ cosλ− 2d̄Q̄R̄′ d̄R̄′S̄ cos δ +O(ε3)

= d̄2
Q̄R̄′ − d̄2

P̄ S̄ − 2d̄Q̄R̄′
(
(d̄R̄′S̄ − d̄P̄ Q̄) cos δ + d̄P̄ Q̄(cos δ + cosλ)

)
+O(ε3).

and hence

E ≤ |d̄2
Q̄R̄′ − d̄2

P̄ S̄ |+ 2Nε|d̄R̄′S̄ − d̄Q̄P̄ |+ 2N2ε2| cos δ + cosλ|+O(ε3)

≤ CN (|d̄2
Q̄R̄′ − d̄2

P̄ S̄ |+ ε|d̄R̄′S̄ − d̄Q̄P̄ |+ ε2| cos δ + cosλ|) +O(ε3). (45)

We now estimate | cos δ + cosλ|. Let A be the area of 4R̄′Q̄P̄ . Since the
perimeter of 4R̄′Q̄P̄ is bounded by some constant times Nε, we have A =
O(ε2). Define α, β ∈ [0, π] by

cosh d̄Q̄R̄′ = cosh d̄P̄ R̄′ cosh d̄P̄ Q̄ − sinh d̄P̄ R̄′ sinh d̄P̄ Q̄ cosα

cosh d̄P̄ S̄ = cosh d̄P̄ R̄′ cosh d̄R̄′S̄ − sinh d̄P̄ R̄′ sinh d̄R̄′S̄ cosβ. (46)

The interior angles of the triangle 4R̄′Q̄P̄ are α, λ and δ − β. Since A =
π − α− λ− (δ − β), we see that

| cos δ+cosλ| ≤ | cos δ− cos(δ+(A+α−β))| ≤ A+ |α−β| = |α−β|+O(ε2).

where we used the Mean Value Theorem in the second inequality. The fact that
the ratios of any two pairwise distances of P̄ , Q̄, R̄′ and S̄ are bounded from
below by 1

N2 and from above by N2 implies that α and β are bounded away
from 0 and π. Thus, |α − β| ≤ L| cosα − cosβ| for some constant dependent
on N . Therefore, we obtain

| cos δ + cosλ| ≤ L| cosα− cosβ|+O(ε2)

which combined with (45) gives

E ≤ |d̄2
Q̄R̄′ − d̄2

P̄ S̄ |+ 2Nε|d̄R̄′S̄ − d̄Q̄P̄ |+ 2LN2ε2| cosα− cosβ|+O(ε3). (47)

By (46), we also have

sinh(d̄P̄ R̄′) sinh(d̄R̄′S̄) sinh(d̄P̄ Q̄)| cosα− cosβ|
=

∣∣ sinh(d̄P̄ Q̄)(− cosh(d̄P̄ S̄) + cosh(d̄P̄ R̄′) cosh(d̄R̄′S̄))

− sinh(d̄R̄′S̄)(− cosh(d̄Q̄R̄′) + cosh(d̄P̄ R̄′) cosh(d̄P̄ Q̄))
∣∣.
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The right hand side can be estimated as∣∣∣d̄R̄′S̄ (d̄2
P̄ Q̄ + d̄2

P̄ R̄′ − d̄2
Q̄R̄′

)
− d̄P̄ Q̄

(
d̄2
P̄ R̄′ + d̄2

R̄′S̄ − d̄2
P̄ S̄

)∣∣∣+O(ε5)

≤ d̄2
P̄ Q̄

∣∣d̄R̄′S̄ − d̄P̄ Q̄
∣∣+ d̄P̄ Q̄

(
d̄2
P̄ Q̄ − d̄2

R̄′S̄

)
+ d̄2

P̄ R̄′

∣∣d̄R̄′S̄ − d̄P̄ Q̄
∣∣

+d̄P̄ Q̄
(
d̄2
P̄ S̄ − d̄2

Q̄R̄′

)
+ d̄2

R̄′S̄

∣∣d̄P̄ Q̄ − d̄R̄′S̄
∣∣+O(ε5).

Furthermore,

ε3

N3
≤ d̄P̄ R̄′ d̄R̄′S̄ d̄P̄ Q̄ ≤ sinh(d̄P̄ R̄′) sinh(d̄R̄′S̄) sinh(d̄P̄ Q̄).

Therefore, we obtain

| cosα− cosβ| ≤ CN
ε2

(
ε|d̄R̄′S̄ − d̄P̄ Q̄|+ (d̄2

P̄ Q̄ − d̄2
R̄′S̄) + (d̄2

P̄ S̄ − d̄2
Q̄R̄′)

)
.

Combining this with (47), we obtain the desired inequality. q.e.d.
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