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Abstract: In this paper, we study the structure of locally compact metric spaces of Haus-
dorff dimension 2. If such a space has non-positive curvautre and a local cone structure,
then every simple closed curve bounds a conformal disk. On a surface (a topological man-
ifold of dimension 2), a distance function with non-positive curvature and whose metric
topology is equivalent to the surface topology gives a structure of a Riemann surface. The
construction of conformal disks in these spaces uses minimal surface theory; in particular,
the solution of the Plateau Problem in metric spaces of non-positive curvature.

1 Introduction

One of the basic theorems of two dimensional surfaces is the existence of isothermal
coordinates which implies that an oriented Riemannian surface is a Riemann surface. This
is important in geometry because it gives use of powerful methods in complex analysis in
the study of surfaces.

The importance of removing the regularity requirement in the theorem was realized
by C.B. Morrey. Morrey weakened the regularity requirement in his Bounded Measurable
Riemann Mapping Theorem:

Theorem 1.1 (Morrey) Let Σ be a surface with metric tensor given in local coordinates
by bounded measurable function satisfying

g11g22 − g2
12 ≥ ε > 0 almost everywhere.

For each P ∈ Σ, there is a nbhd U of P and a homeomorphism h : D → U satisfying the
conformality relations
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gij
∂hi

∂x

∂hj

∂y
= 0

almost everywhere.

A natural assumption replacing the hypothesis regarding the regularity of the metric
is to require that the surface is endowed with a distance function satisfying the NPC
(non-positively curved) condition. This essentially means (see section 2 for the precise
definition) that geodesic triangles are thinner than the corresponding comparison triangles
in R2. Furthermore, we are interested in allowing our spaces to not only be topological
surfaces, but to be in a more general class of two dimensional spaces. In particular, a
commonly studied class of spaces are simplicial complexes. For example, these spaces
were used by Gromov and Schoen [GS] in their investigation of p-adic superrigidity for
lattices in groups of rank one. A locally compact NPC simplicial complex has the property
that for each point P , there is a sufficiently small r (depending on P ) so that all geodesic
emanating from P can be extended uniquely to length greater than r. If a point P has
this property, we will say that the cone length at P is r, and any space with positive cone
length at each point is said to have a local cone structure. We prove:

Theorem 1.2 Let (X, d) be a locally compact NPC space with Hausdorff dimension 2
and a local cone structure. Let P ∈ X and assume that there exists a simple closed
curve Γ̃ which is homotopically nontrivial in X − {P}. Then there exists a conformal
homeomorphism u from the unit disk D into X such that P ∈ u(D).

Theorem 1.2 has the following immediate corollary:

Corollary 1.3 Let X be a surface (i.e. a topological manifold of dimension 2) endowed
with a distance function d which makes (X, d) into a NPC space. Furthermore, assume
that the metric topology of (X, d) is equivalent to the surface topology. Then for every
P ∈ X, there is a neighborhood U of P and a conformal homeomorphism u : D → U . In
particular, this gives X a conformal structure making it into a Riemann surface.

Corollary 1.3 is actually implied by an old theorem of Reshetnyak’s from the 1960’s
(see [R1]). We point out that our method of proof is quite different. In [R1], the dis-
tance function given is first approximated by distance functions induced by Riemannian
metrics. The isothermal coordinates for (X, d) are obtained by taking a converging se-
quence of local conformal maps for the approximating Riemannian metrics. Note that
this sort of an argument does not generalize to spaces (such as X in Theorem 1.2) which
cannot be approximated by Riemannian manifolds. Our argument does not rely on this
approximation technique and hence is a more general construction. We hope to find
more applications of the methods outlined below in the investigation of singular spaces of
non-positive curvature.
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This paper is organized as follows: In Section 2, we recall the notion of curvature
bounds in a metric space. Furthermore, we quote some results from the work of Korevaar-
Schoen in [KS1] and of the author in [M] that is needed in this paper. Sections 3 to 6
comprise the proof of Theorem 1.2. The map u in Theorem 1.2 is the solution to a Plateau
Problem which we set up in Section 3. In this way, we obtain a conformal map but we
still need to check that u is actually a homeomorphism. Section 4 discusses the order
function which is needed to construct the homogeneous approximating map of Section 5.
Using the homogeneous approximating map, we prove the injectivity of u in Section 6
thereby completing the proof.

Acknowledgment: This investigation is an extension of the author’s doctoral disser-
tation at Stanford University. The author wishes to thank advisor Richard Schoen for his
encouragement and support. She also thanks the referee for his/her careful reading and
comments of the original manuscript.

2 Preliminaries

Metric Spaces with Curvature Bounded from Above

First, we review the notion of curvature bounds in a metric space X. We assume our
metric spaces to be length spaces, i.e. for each P , Q ∈ X, there exists a curve γPQ such
that the length of γPQ is exactly d(P,Q). We call γPQ a geodesic between P and Q. We
then say that X is an NPC space or that X has non-positive curvature in the sense of
Alexandrov if geodesic triangles in X are thinner than their comparison triangles in R2.
In other words, for every P,Q,R ∈ X and corresponding points P̄ , Q̄, R̄ ∈ R2 with

d(P,Q) = |P̄ − Q̄|, d(Q,R) = |Q̄− R̄|, d(R,P ) = |R̄− P̄ |,

we have
d(P,Q1/2) ≤ |P̄ − Q̄1/2|

where Q1/2 is the midpoint of γQR and Q̄1/2 is the midpoint of the line segment between
R̄ and Q̄. The more general notion of curvature bounded from above by some constant
κ is defined by replacing R2 with surface Sκ of constant curvature κ and requiring that
diam(4PQR) ≤ 2π√

κ
if κ > 0. (See [ABN] for equivalent definitions.) The following

important result is due to Y.G. Reshetnyak [R2]:

Theorem 2.1 Let (X, d) be a metric space of curvature bounded from above by κ and Γ
be a closed rectifiable curve in X. Then there exists a convex domain V in Sκ and a map
ϕ : V → X such that ϕ(∂V ) = Γ, the lengths of the corresponding arcs coincide, and
dSκ(x, y) ≥ d(ϕ(x), ϕ(y)), for x, y ∈ V .
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For O in X, we define a notion of angle for geodesics emanating from O. Such a definition
is used in [ABN] to define a notion of tangent cone (which generalizes tangent spaces of
Riemannian manifolds) in metric spaces of curvature bounded from above. The definitions
below are special cases of their construction.

Definition 2.2 Let γ, σ geodesics in X emanating from point P . Then

α(γ, σ) = lim
t,s→0

arccos
d2(γ(t), P ) + d2(σ(s), P )− d2(γ(t), σ(s))

2d(γ(t), P )d(σ(s), P )

is called the angle between γ and σ.

Remark: The limit above exists because X is an NPC space.

Definition 2.3 Let ΛO(X) be the set of all geodesics emanating from the point O and
define an equivalence relation γ ∼ σ if α(γ, σ) = 0. Then ΩO(X) = ΛO(X)/ ∼ is called
the space of directions. We denote by Π : ΛO(X) → ΩO(X) the canonical projection and
let α̃ be a distance function in ΩO(X) defined by pushing forward α by Π. The tangent
cone XO is the cone over ΩO(X), i.e. XO is the set ΩO(X)× [0,∞) identifying all points
with zero second coordinate as the point O. The distance function dO on XO is defined by

d2
O(x, y) = t2 + s2 − 2ts cos α̃(ξ1, ξ2) (1)

for x = (ξ1, t), y = (ξ2, s) ∈ ΩO(X)× [0,∞).

The following lemmas are straightforward consequences of the NPC condition. (For more
details see [ABN], where many of the properties of metric spaces are deduced from first
principles.) We let P,Q,R ∈ X.

Lemma 2.4 For Q̂ ∈ γPQ and R̂ ∈ γPR such that t = dPQ̂ = dPR̂, td(Q̂, R̂) ≤ d(Q,R).

Lemma 2.5 Two geodesics emanating from a point diverge in comparison to Euclidean
rays of the same angle. In other words, if α0 = α(γPQ, γPR), then

d2
RQ ≥ d2

PQ + d2
PR − 2dPQdPR cosα0.

Lemma 2.6 Geodesics in an NPC space are continuously dependent on their endpoints.

In particular, this implies that NPC spaces are simply connected.

Variational Theory in Complete Metric Spaces

Let Ω be a compact domain in Rn and (X, d) any complete metric space. In [KS1],
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Korevaar and Schoen develop the space W 1,2(Ω, X). (In [KS1], Ω is allowed to be a Rie-
mannian domain, but an Euclidean domain is sufficient for our purposes.) Here we define
this space and collect some of their results.

A Borel measurable map u : Ω → X is said to be in L2(Ω, X) if for P ∈ X,∫
Ω
d2(u(x), P )dz <∞.

Note that by the triangle inequality, this definition is independent of P chosen. For
u ∈ L2(Ω, X), we can construct an ε approximate energy function eε : Ωε → R,

eε(x) = n|∂Bε(x)|−1
∫
∂Bε(x)

d2(u(x), u(y))

ε2
dΣ.

Here Ωε is the set of points in Ω with distance from the boundary more than ε and Bε(x)
is a ball of radius ε centered at x. Letting eε(x) = 0 for Ω−Ωε, we have that eε(x) ∈ L1(Ω)
and by integrating against continuous functions with compact support, these functions
define linear functionals Eε : Cc(Ω) → R. We say u ∈ L2(Ω, X) has finite energy (or that
u ∈ W 1,2(Ω, X)) if

Eu ≡ sup
f∈Cc(Ω),0≤f≤1

lim sup
ε→0

Eε(f) <∞.

It can be shown that if u has finite energy, the measures eε(x)dx converge in the
weak* topology to a measure which is absolutely continuous with respect to the Lebesgue
measure. Hence, there exists a function e(x), which we call the energy density, so that
eε(x)dx ⇀ e(x)dx. In analogy to the case of real valued functions, we write |∇u|2(x) in
place of e(x). In particular,

Eu =
∫
Ω
|∇u|2dx.

Similarly, the directional energy measures |u∗(Z)|2dx for Z ∈ ΓΩ̄ can also be defined
as the weak* limit of measures Zeεdx, where

Zeε(x) =
d2(u(x), u(x+ εZ))

ε2
.

Furthermore, for Z ∈ T Ω̄,

|u∗(Z)|(x) = lim
ε→0

d(u(x), u(x+ εω)

ε
,

a.e. x ∈ Ω. Finally, we have

|∇u|2 =
∫
Sn−1

|u∗(Z)|2dσ(Z).

This definition of Sobolev space W 1,2(Ω, X) is consistent with the usual definition when
X is a Riemannian manifold.

The following is the solution to the Dirichlet Problem in this setting.
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Theorem 2.7 ([KS1], [S1], [S2]) Let Ω be a Lipschitz domain, (X, d) be a complete
metric space of curvature bounded from above by κ and φ ∈ W 1,2(Ω, X). If κ > 0, assume
further that φ(Ω) lies within a sufficiently small geodesic ball in X. Define

W 1,2
φ = {u ∈ W 1,2(Ω, X)| tr(u) = tr(φ)}.

Then there exists u such that
E(u) = inf

v∈W 1,2
φ

E(v).

Furthermore, u is locally Lipschitz continuous in the interior and Hölder continuous up
to the boundary.

The regularity of the map u above is due to Korevaar and Schoen in the case κ ≤ 0 and
due to Serbinowski (using the assumption that φ(Ω) lies in a small geodesic ball) in the
case κ > 0.

Furthermore, (still assuming an upper curvature bound of κ) we can make sense of
the notion of the pull back inner product

π : Γ(T Ω̄)× Γ(T Ω̄) → L1(Ω̄)

for any map u ∈ W 1,2(Ω, X) defined by

π(V,W ) =
1

4
|u∗(V +W )|2 − 1

4
|u∗(V −W )|2 for V,W ∈ Γ(T Ω̄).

The construction of π above is due to Korevaar and Schoen [KS1] in the case κ ≤ 0 and
the author [M] in the case κ > 0. Hence, for u ∈ W 1,2(D,X) where D is the unit disk in
the plane, we can define the area as

A(u) =
∫
D

√
det(π)dz.

Using the variational tools developed in [KS1] and using classical arguments, one can
solve the Plateau Problem in this setting (see [M]) and we have:

The Plateau Problem Let Γ be a closed Jordan curve in X (where X is a metric
space of curvature bounded from above by κ) and let

CΓ = {u ∈ W 1,2(D,X) : u|∂D parameterizes Γ monotonically}.

There exists u ∈ CΓ so that A(u) = inf{A(v)|v ∈ CΓ}. Moreover, u is weakly conformal,
i.e. π11 = π22 and π12 = 0 = π21 and Lipschitz continuous in the interior of D and
continuous up to the boundary.

We call λ = π11 the conformal factor of the pull back inner product. We have the
following in [M]:
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Theorem 2.8 The function λ ∈ L1(D) defined above is actually in H1
loc(D) and satisfies∫

D
log λ4φ ≥ −κ

∫
D
λφ

for any φ ∈ C∞c (D).

In particular, using the properties of subharmonic functions, the above theorem implies
that λ(z) > 0 for a.e z ∈ D. In fact, in [M] we show:

Theorem 2.9 Let u ∈ W 1,2(D,X) be a conformal energy minimizing map with conformal
factor λ̃. Then λ̃ > 0 for a.e. z ∈ D. Furthermore, there is a representative λ in the
L1-equivalence class of the function λ̃ defined by

λ(z) = lim
r→0

1

πr2

∫
Dr(z)

λ̃(x)dx

so that the perimeter of the set {z : λ(z) < t} goes to zero as t→ 0.

3 The Plateau Problem

¿From this point on in the paper, we will assume the hypothesis of Theorem 1.2, and
in particular, dimX = 2. Let P ∈ X have cone length r. The map u corresponding
to P in Theorem 1.2 will be the solution to a Plateau Problem. In order to set up this
Plateau Problem, we will first construct a simple closed curve Γ of finite length. (Note
that Γ̃ = ∂Br(P ) need not be of finite length.) For this Γ, Lemma 3.3 says that the
solution u : D → X of the Plateau Problem has the property that P ∈ u(D).

Lemma 3.1 Let Q1, Q2 ∈ Γ̃. Let Γ̃1 and Γ̃2 be the two components of Γ̃ − {Q1, Q2}.
For all δ > 0, there exists ε > 0 with the following property: For any Q1, Q2 ∈ Γ̃ and
components Γ̃1, Γ̃2 of Γ̃ − {Q1, Q2}, if Q ∈ Γ̃1 with d(Q,Q1), d(Q,Q2) ≥ δ > 0, then
d(Q, Γ̃2) > ε.

Proof: Suppose the statement of the lemma is not true. Then there exist sequences
Q1,j, Q2,j ∈ Γ̃, components Γ̃1,j and Γ̃2,j of Γ̃ − {Q1,j, Q2,j} and sequence Qj ∈ Γ̃1,j such
that d(Qj, Q1,j), d(Qj, Q2,j) ≥ δ and d(Qj, Γ̃2,j) → 0. We may assume that d(Q1,j, Q2,j) ≥
κ > 0 since Γ̃ is a simple closed curve and d(Q1,j, Q2,j) → 0 implies that diam(Γ1,j) → 0.
Since Γ̃ is compact, we may choose subsequence j′ → ∞ such that Q1,j′ → Q1 and
Q2,j′ → Q2 and Qj′ → Q ∈ Γ̃1 where Γ̃1 and Γ̃2 are the components of Γ̃−{Q1, Q2}. But
this implies d(Q, Γ̃2) = 0, contradicting the fact that Γ̃ is a simple curve. 2

Given ε > 0, {Bε(Q)}Q∈Γ̃ form an open covering of Γ̃. Since Γ̃ is compact, there exists

a finite set Q such that {Bε(Q)}Q∈Q covers Γ̃. There is a natural ordering of elements in
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Q defined by a choice of a parameterization γ̃ : [0, T ] → X of the simple closed curve Γ̃,
i.e. we order Q= {Q0, Q1, ..., QN−1} so that t0 < t2 < ... < tN−1 where ti = γ̃−1(Qi). In
what follows, the index i will be denoted modulo N .

Lemma 3.2 Let ε0 be the ε corresponding to δ = r
4

in Lemma 3.1. Let Q be as above
with choice of ε = min{ε0, r2}. Then d(Qi, Q) < r

2
for each Q = γ̃(t), t ∈ [ti, ti+1].

Proof: Suppose d(Qi, Q) ≥ r
2

for Q = γ̃−1(t), t ∈ [ti, ti+1]. Then there exists t′ so that

ti < t′ < t, Q′ = γ̃(t′) and d(Qi, Q
′), d(Q,Q′) ≥ r

4
. By Lemma 3.1, d(Q′, Γ̃2) > ε where Γ̃2

is the component of Γ̃− {Qi, Q} that does not contain Q′. Hence Q′ is not contained in
Bε(Qj) for all Qj ∈ Q. This is a contradiction. 2

Now let σi be the geodesic from Qi to Qi+1. The above lemma tells us that each point
of σi is at a distance less than r

2
from Qi since the distance from Γ̃ to P is equal to r.

This combined with Lemma 2.6 tells us that τi = σi
⋃
γ̃([ti, ti+1]) is contractible to Qi in

X − {P}. In other words, σi and γ̃ restricted to [t1, ti+1] are homotopically equivalent
in X − {P}. Hence Γ̄, the closed curve defined by taking the union of geodesics σi, is
homotopically equivalent to γ̃. Furthermore, it is of finite length since it is a finite union
of geodesics. Let γ̄ : S1 → X be a parameterization of Γ̄ and let ξt : [0, 1] → X be the
arclength proportional parameterization of the geodesic from P to γ̄(t). Let γ(t) = ξt(r0)
where r0 > 0 is chosen so that for each t, d(P, ξt(r0)) is less than the cone length at
P . The fact that γ is continuous and has finite length follows directly from Lemma 2.4.
By construction, it is also clear that γ(S1) is homotopically equivalent to Γ̄ and hence
non-trivial in X − {P}. Thus, we can choose Γ ⊂ γ(S1) which is simple, closed and
non-trivial in X − {P}. By the local cone structure of X, it is easy to see that Γ bounds
a topological disk containing P which is just the union of geodesics from P to points on
Γ. We will call this surface C(Γ). We will show in Section 5 that:

Lemma 3.3 For the Plateau solution u : D → X with boundary data Γ, u(D) = C(Γ).
In particular, P ∈ C(Γ).

Before we do this, we need to analyze the local behavior of conformal energy minimizing
maps.

4 The Order Function

In this section, we use ideas developed in Part I, Sections 1 through 3 of [GS] for energy
minimizing maps into non-positively curved Riemannian simplicial complexes. Here, u is
assumed to be a conformal energy minimizer from the disk D into X as in Theorem 1.2
and λ is the conformal factor of the pull back inner product under u. The following is
essentially Lemma 1.3 of [GS] adapted to our setting.
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Lemma 4.1 For almost every z ∈ D, we have

lim
σ→0

σ
∫
Dσ(z) |∇u|2∫

∂Dσ(z) d
2(u(x), u(z))

= 1.

Here, Dσ(z) ⊂ D denotes the disk of radius σ centered at z.

Proof: By Theorem 1.9.6 and equation (1.10v) of [KS1], for a.e. z ∈ D, we have that

λ(z) = lim
σ→0

(2πσ)−1
∫
∂Dσ(z) d

2(u(x), u(z))

σ2
.

Furthermore, since λ is a L1 function, for a.e. z ∈ D by the Lebesgue Point Lemma,

λ(z) = lim
σ→0

1

πσ2

∫
Dσ(z)

λ

=
1

2
lim
σ→0

1

πσ2

∫
Dσ(z)

|∇u|2.

Since for a.e. z ∈ D, λ(z) > 0, the conclusion follows immediately. 2

Following the notation of [GS], we let

Ordu(z, σ,Q) =
σ
∫
Dσ(z) |∇u|2∫

∂Dσ(z) d
2(u(x), Q)

and
Ordu(z) = lim

σ→0
Ordu(z, σ,Qz,σ),

where Qz,σ is the unique minimum point of function Q 7→
∫
∂Dσ(z)

d2(u,Q). The limit exists

because the function σ 7→ Ordu(z, σ,Qz,σ) is monotone increasing in σ. Furthermore,
z 7→ Ordu(z, σ,Qz,σ) is continuous and hence z 7→ Ordu(z) is an upper semicontinuous
function. (See [GS, Section 1.2] for more details.) This (combined with Lemma 4.1) gives
Ord(z) ≥ 1 for all z ∈ D.

Using the order function above, we will analyze the behavior of the map u near a point
z ∈ D. For now, we will analyze this at the origin 0 ∈ D and let O = u(0). Consider the
blow up maps uσ : D → (X, dµ(σ)) defined by uσ(z) = u(σz). Here the distance function
dµ(σ) is defined by

dµ(σ)(P,Q) = µ(σ)−1d(P,Q)

with

µ(σ) =

√
σ−1

∫
∂Dσ(0)

d2(u,O).
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Note that ∫
Dκ(0)

|∇uσ|2 = µ(σ)−2
∫
Dσκ(0)

|∇u|2

and ∫
∂Dκ(0)

d2
µ(σ)(uσ, O) = µ(σ)−2σ−1

∫
∂Dσκ(0)

d2(u,O).

Hence, ∫
∂D1(0)

d2
µ(σ)(uσ, O) = µ(σ)−2σ−1

∫
∂Dσ

d2(u,O) = 1

and
Orduσ(0, 1, O) = Ordu(0, σ, O).

Let α = Ordu(0) = limσ→0Ord
u(0, σ,Q0,σ). Since Q0,σ → u(0) = O as σ → 0, for

sufficiently small σ, we have
Ordu(0, σ, O) ≤ 2α,

i.e.
Orduσ(0, 1, O) ≤ 2α.

Hence ∫
D1(0)

|∇uσ|2 ≤ 2α,

and uσ restricted to Dr for r < 1 is uniformly Lipschitz in the sense that for every
x, y ∈ Dr, there exists constant L such that for sufficiently small σ

dµ(σ)(uσ(x), uσ(y)) ≤ L|x− y|.

The above follows directly from the fact that energy minimizers into NPC spaces are
Lipschitz away from the boundary with Lipschitz constant depending on total energy and
distance to the boundary(see [KS1, Theorem 2.4.6]). Using this fact, we will obtain a
homogeneous approximating map which we will use to analyze u near 0.

5 The Homogeneous Approximating Maps

Our goal is to obtain a homogeneous approximating map to u : D → X. First, we need
the following construction.

Consider distance functions dλ on the space X defined by dλ(x, y) = λ−1d(x, y) for
λ > 0. Note that (X, dλ) is still an NPC space. We let Bλ

r (O) denote the closed geodesic
ball in X of radius r about O ∈ X with respect to the distance function dλ and B∗r (O)
be the closed ball of radius r about the origin O in the tangent cone (XO, dO). We have
the following:

Lemma 5.1 The metric spaces (Bλ
R(O), dλ) converge in Hausdorff distance to the metric

space (B∗R(O), dO).
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Proof: It is enough to show that for every ε > 0, there exist ε-nets Nλ
R and NR of

Bλ
R(O) and B∗R(O) such that Nλ

R converge to NR in the Lipschitz distance as λ→ 0 (see
[P] and [G]). For 0 = r0 < r1 < r2 < ... < rn = R with ri+1 − ri < ε, the union of the
ε
2
-nets of ∂Bri(O) forms a ε-net of BR(O) as can be seen by the following claim.

Claim The interior of a quadrilateral in Σ with side lengths less than ε is covered
by ε-balls centered at the vertices.

Proof: The statement of the claim is true if Σ = R2. Hence the claim follows from
Theorem 2.1. 2(claim)

Hence it is sufficient to find ε-nets Nλ of ∂Bλ
1 (O) converging in the Lipschitz distance

to ε-net N of ∂B∗1(O). To do this, we first let N be an ε
2
-net of ∂B∗1(O). ∂B∗1(O) is

compact and we can choose N which is finite, say {(γ1, 1), ..., (γn, 1)}. By definition,

dO((γi, 1), (γj, 1)) =
√

2− 2 cosα(γi, γj)

and since

cosα(γi, γj) = lim
λ→0

2λ2 − d2(γi(λ), γj(λ))

2λ2
,

we have
dO((γi, 1), (γj, 1)) = lim

λ→0
λ−1d(γi(λ), γj(λ)). (2)

Hence for sufficiently small λ, Nλ = {γi(λ)}ni=1 forms an ε-net of ∂Bλ
1 (O). Consider

fλ : (Nλ, dλ) → (N, dO) defined by γi(λ) 7→ (γi, 1). By the NPC condition,

dO((γi, 1), (γj, 1)) ≤ dλ(γi(λ), γj(λ)).

Furthermore, by equation 2,

dλ(γi(λ), γj(λ)) ≤ dO((γi, 1), (γj, 1)) + 0(λ).

Letting
m = min

i6=j
d((γi, 1), (γj, 1)),

we see that

1 ≤ dλ(γi(λ), γj(λ))

dO((γi, 1), (γj, 1))
≤ 1 +

0(λ)

m
.

This shows that Nλ converges to N in the Lipschitz distance. 2

Lemma 5.2 Suppose (Xk, dk) are compact metric spaces converging in Hausdorff distance
to a compact metric space (X, d). Let fk : D̄ → (Xk, dk) be Lipschitz functions with
Lipschitz constant L and assume dk(fk(·), fk(·)) converge uniformly to a pseudo distance
d0(·, ·) in D̄. Then there exists f : D̄ → X such that d(f(x), f(y)) = d0(x, y).

11



Proof: Let dH(·, ·) denote the Hausdorff distance and without the loss of generality,
assume dH(Xk, X) ≤ 1

k
and |dk(fk(·), fk(·))− d0(·, ·)| ≤ 1

k
. For each k, there exist metric

space (Zk, dZk
) and isometries ψk : X → Zk and φk : Xk → Zk such that

ψk(X) ⊂ (φk(Xk)) 2
k

(3)

and
φk(Xk) ⊂ (ψk(X)) 2

k
.

Here the notation (Y )ε is used to denote the ε-neighborhood of the set Y . For x ∈ D, let
Px,k be the point such that

dZk
(Px,k, φk(fk(x))) = inf

Q∈ψk(X)
dZk

(Q, φk(fk(x))).

Note that Px,k ∈ ψk(X) since X is compact and ψk is an isometry and, furthermore,

dZk
(Px,k, φk(fk(x))) ≤

2

k

by equation 3. Let Qx,k = ψ−1(Px,k) ∈ X. Since X is compact, there exists a subsequence
Qx,k′ converging to point Qx.

Let C = {xn} be a countable dense subset of D. By the diagonalization process, we
can extract sequence k1 < k2 < ... so that for each n, Qxn,kj

converge to Qxn . Furthermore,

d(Qxn , Qxm) = lim
j→∞

d(Qxn,kj
, Qxm,kj

)

= lim
j→∞

dZkj
(Pxn,kj

, Pxm,kj
)

= lim
j→∞

dZkj
(φkj

(fkj
(xn)), φkj

(fkj
(xm)))

= lim
j→∞

dkj
(fkj

(xn), fkj
(xm)) (4)

= d0(xn, xm)

Define f : D̄ → X in the following way: first for x ∈ C, let f(x) = Qx. Now note that
any y, z ∈ C, equation 4 and the fact that the Lipschitz constant for fk is L independently
of k shows that d(Qy, Qz) ≤ L|y − z|. Hence for x ∈ D and a subsequence {xi} ⊂ C
converging to x, Qxi

converges, say to a point Q. We define f(x) = Q. By construction,
f has the desired properties. 2

We follow the notation of Section 4 and let (r, θ) be the standard polar coordinates
of Dr. Let σi be a sequence converging to 0. Fix r < 1 and consider pseudo distance
functions dσi

on D̄r defined by pulling back the distance functions dµ(σi) under uσi
. We

claim that the functions
dσi

: D̄r × D̄r → R

12



are uniformly Lipschitz (independent of i) with respect to the product topology on D̄r ×
D̄r. This follows easily from the triangle inequality and the fact that {uσi

} is uniformly
Lipschitz: let (x1, x2), (y1, y2) ∈ D̄r × D̄r, then

dσi
(x1, x2)− dσi

(y1, y2) = |dµ(σi)(uσi
(x1), uσi

(x2))− dµ(σi)(uσi
(y1), uσi

(y2)|
≤ dµ(σi)(uσi

(x1), uσi
(y1)) + dµ(σi)(uσi

(x2), uσi
(y2))

≤ L|x1 − y1|+ L|x2 − y2|.

Hence there is a subsequence of {dσi
}, which we still call {dσi

}, that converges uni-
formly to a pseudo distance function d∞ defined on D̄r. From Lemmas 5.1 and 5.2, there is
a map u0 : D̄r → (X0, dO) such that dO(u0(·), u0(·)) = d∞(·, ·). We call u0 a homogeneous
approximating map and justify this terminology as follows. Notice, by construction, we
have

Orduσi (0, κ, O) =
κ
∫
Dκ(0) |∇uσi

|2∫
∂Dκ(0) d

2
µ(σi)

(uσi
(x), O)

=
σiκ

∫
Dσiκ(0) |∇u|2∫

∂Dσiκ(0) d
2(u(x), O)

.

Hence, letting σi → 0 (and using limi→∞Q0,σi
= O on the left hand side), we get that for

all κ > 0,
Ordu0(0, κ, O) = Ordu(0) = α ≥ 1.

By Lemma 3.2, [GS], u0 : Dr → (XO, dO) is intrinsically homogeneous, i.e.

dO(u0(x), u0(0)) =

(
|x|
r

)α
dO(u0(

rx

|x|
), u0(0)). (5)

By Theorem 3.11 of [KS2], u0 is a conformal map and hence

dO(u0(x), u0(0)) = |x|αβ

for some constant β. Furthermore (again by [GS]) the image of the curve t → u(tx),
0 ≤ t ≤ r, is a geodesic for any x ∈ ∂Dr and dO(u0(·), u0(·)) defines a cone metric on D̄r.
This shows that the image of ∂Dr under u0 is a closed curve (and not a segment). By the
cone structure and the two dimensionality of X0, this implies that u0(∂Dr) is non-trivial
in X0 − {O}. Therefore:

Lemma 5.3 There exists δ0 > 0 such that for all θ ∈ [0, 2π], u0(r, θ) 6= u0(r, θ + δ0).

13



Proof: This follows from the fact that the length of a closed loop in X0 − {O} at a
distance r away is at least 2πr by the NPC condition. 2.

We now wish to show:

Lemma 5.4 There exists σi such that uσi
(∂Dr) is homotopically non-trivial in X −

{uσi
(0)}.

Proof: Let γi(·) = uσi
(r, ·). Suppose for every i, γi is trivial. Fix δ0 > 0 as in

Lemma 5.3. By the local cone structure of X, for all i sufficiently large, there exists θi
such that γi(θi) is a point on the geodesic from uσi

(0) to γi(θi+δ0) or γi(θi+δ0) is a point
on the geodesic from uσi

(0) to γi(θi). Choose a subsequence which we still denote {θi}
such that θi → θ0. Recall that dσi

converges to d0; in particular

|dσi
((r, θi), 0))− dσi

((r, θi + δ0), 0)|

converges to
|d0(u0(r, θ0), u0(0))− d0(u0(r, θ0 + δ0), u0(0))|.

as i→∞ and therefore

|dσi
((r, θi), 0))− dσi

((r, θi + δ0), 0)| → 0.

Hence we see that
dσi

((r, θi), (r, θi + δ0)) → 0

and this implies
d0(u0(r, θ0), u0(r, θ0 + δ0)) = 0.

But this contradicts Lemma 5.3. 2

Since we can do this analysis at any point x ∈ D, we see that:

Lemma 5.5 Let u : D → X be a solution to the Plateau Problem. For each x ∈ D, there
exists σ > 0 sufficiently small such that u(∂Dσ(x)) is non-trivial in X − {u(x)}.

We can finally prove Lemma 3.3.

Proof of Lemma 3.3: Suppose there exists x ∈ D such that x is not in the set C(Γ).
Let γ be a geodesic from P to u(x). Let γ̃ be the union of all geodesic extensions of γ.
D′ = {y ∈ D̄ : u(y) ∈ γ̃} is a closed set and hence there exists x0 ∈ D̄ such that

d(u(x0), u(0)) = max
y∈D′

d(u(y), u(0)). (6)
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Since x is not in C(Γ), x0 is not in ∂D. By Lemma 5.5, there is a σ > 0 sufficiently small
such that u(∂Dσ(x0)) is non-trivial in X −{u(x0)}. Let G be the union of geodesics from
P to u(∂Dσ(x0)). Then u(x0) ∈ G; otherwise we contradict the fact that u(∂Dσ(x0))
is non-trivial in X − {u(x0)}. Hence, there exists a geodesic from u(0) to a point Q on
u(∂Dσ(x0)) that contains u(x0) in the interior and hence d(u(x0), u(0)) < d(Q, u(0)). This
contradicts equation 6. Hence u(D) ⊂ C(Γ). On the other hand, for any Q,Q′ ∈ C(Γ), Γ
is not contractible to Q in C(Γ)− {Q′}. Hence u(D) = C(Γ). 2

6 Proof of Injectivity

Here, we finally show that u is a homeomorphism. The important fact is that in the last
section, we proved u(D) = C(Γ). Let Σ = C(Γ) in this section.

Lemma 6.1 The map u is a homeomorphism.

Proof: Suppose that there exists x1, x2 ∈ D with x1 6= x2 so that u(x1) = u(x2). Let
(r1, θ1) and (r2, θ2) be the standard polar coordinates of x1 and x2. Let σ0 be the curve in
D obtained by taking the union of the ray from (r1, θ1) to (1, θ1), one of boundary arc of
D from (1, θ1) to (1, θ2) and, lastly, the ray from (1, θ2) to (r2, θ2). Then the curve u ◦ σ0

is a closed curve. Let R0 be the subset in Σ bounded by u ◦ σ0. Since u restricted to ∂D
is a monotone parameterization of Γ, R0, is not all of u(D). The portion of u ◦ σ0 that is
the boundary of R0 is a closed curve, hence there exists y1, y2 with y1 6= y2 on σ0 so that
u(y1) = u(y2) ∈ ∂R0. Since u is a continuous map, y1, y2 are boundary points of u−1(R̄0).
Choose any curve σ1 from y1 to y2 which does not intersect u−1(R̄0) except at y1 and y2.
Note that u ◦ σ1 is a closed curve.

By choice of σ1, u ◦ σ1 does not intersect R̄0 except at u(y1) = u(y2). Hence, by con-
struction, the subset R1 of Σ bounded by u◦σ1 does not intersect R0 and R̄0∩ R̄1 = {Q},
where Q = u(y1) = u(y2).

Claim There exists a connected set C containing y1 and y2 which is mapped to Q.

Proof: Let Ω be the region in D bounded by the union of curves σ0 and σ1. Let
z0 ∈ σ0 and z1 ∈ σ1 with zi 6= yj, i, j = 1, 2. If there exist no connected set as in the
statement of the claim, then there exists a curve γ in Ω̄ so that u ◦ γ does intersect the
point Q. But this is impossible because Ω̄ is mapped into R̄∪ R̄1 as we will show. If Ω̄ is
not mapped into R̄∪ R̄1, then there exists z ∈ Ω− ∂D such that u(z) ∈ ∂(R̄0 ∪ R̄1). But
there is σ > 0 sufficiently small so that u(∂Dσ(z)) is a non-trivial curve in Σ−{u(z)} by
Lemma 5.5. Therefore, since Σ is a surface, u(z) cannot be a boundary of the set R0

⋃
R1.
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But the assertion of this claim contradicts the fact that there exists σ > 0 so that
u(∂Dσ(y1)) is non-trivial in Σ − {u(y1)} . Hence, there cannot be x1, x2 ∈ D such that
u(x1) = u(x2) unless x1 = x2. 2
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