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1 Introduction

Minimal surface theory has been an extremely active and fruitful area of research for more
than two centuries. During the first part of this century, the main emphasis was placed on
the existence of the solution to the Plateau Problem in Rn. Since then, there has been var-
ious work investigating the geometric properties of minimal surfaces. Moreover, numerous
generalizations of the theory have taken place; for example, to higher dimensions, to Rieman-
nian spaces and to wider classes of surfaces. Our present paper involves the generalization
of minimal surface theory to spaces with singularities.

Our study is motivated by the successful study of harmonic maps into singular spaces
which was initiated by Gromov and Schoen in [GS]. Their analysis of harmonic maps into
Riemannian simplicial complexes combined with Corlette’s vanishing theorem [C] is the basis
of their proof of p-adic super-rigidity for lattices in SP (n, 1) and F4. The study of harmonic
maps was further generalized in [KS1], [KS2], and independently by Jost [J1]. Harmonic map
theory in singular spaces have proven to be useful in answering many questions including the
rigidity question mentioned above as well others (for example [J2]). Other examples include
Wolf’s [W1] [W2] investigations of Teichmüller spaces and the actions of fundamental groups
of closed surfaces and Hardt and Lin’s [HL] study of neumatic liquid crystals

The spaces we consider are NPC spaces, i.e. metric spaces with non-positive curva-
ture where the curvature condition is defined in terms of Toponogov’s triangle comparison:
geodesic triangles are required to be thinner than comparison triangles in R2. (See Section
2 for a precise definition.) This notion of curvature was developed by A.D. Alexandrov and
the Russian school of mathematicians in the 1940’s and 1950’s in order to give a synthetic,
coordinate-free description of Riemannian spaces (see for example, [ABN]). They include
smooth Riemannian manifolds and manifolds with cone singularities as well as spaces that
are not topological manifolds such as a Riemannian simplicial complex. In fact, no restriction
is made on the types of singularities allowed in its definition.
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Nikolaev [N] was the first to consider minimal surface theory in this setting and gave the
solution to the Plateau Problem. Following the variational methods developed by Korevaar
and Schoen, we consider a different definition of the area than that by Nikolaev. This allows
us to follow the well-known classical approach (see [Mo]) to obtain the solution to the Plateau
Problem. The solution obtained in this way is a harmonic (energy minimizing) and weakly
conformal map. Since a minimal surface in a smooth space has a parameterization which is
harmonic and conformal, we define a minimal surfaces in this setting to be maps which are
harmonic and weakly conformal. In [Me1], we show that the curvature of minimal surfaces
in a space with curvature bounded from above by κ is also bounded from above by the same
constant, generalizing a well-known fact regarding minimal surfaces in a smooth Riemannian
manifold.

In this paper, we will generalize several additional properties of minimal surfaces which
are well-known in the classical setting. We will show that if u : M → X is a minimal surface
from a smooth compact Riemannian surface M with boundary ∂M to an NPC space X, then

Theorem A The map u cannot tend to a single point along any boundary arc of M .

Theorem B There is a universal constant C so that L2 ≥ CA where L is the length
of the boundary and A is the area of minimal surface.

In the classical case, the coordinate functions of a conformal parameterization u : Ω ⊂
R2 → Rn of a minimal surface are harmonic functions. This combined with the conformal-
ity of the map can be used to show that the boundary map is monotonic. Many proofs of the
isoperimetric inequality with C = 4π exist for minimal surfaces in Rn with various assump-
tions on the configuration of the boundary. Michael and Simon [MS] gave a proof which
handles all minimal surfaces (actually their proof works in higher dimensions and minimal
submanifolds) but with C < 4π.

The key element in the proof of Theorem A is the convexity of the distance function in
the NPC setting. The isoperimetric inequality is proved by using the argument of Michael
and Simon. We note that the conjectured best constant for C is 4π, but this is still unsolved
even for minimal surfaces in R3 without additional assumptions.

Acknowledgments: The author wishes to thank the referee for many valuable sugges-
tions. They were particularly helpful in shortening many arguments and improving the
exposition of the paper. She also thanks Professor Richard Schoen and Professor Paul Yang
for their interest in this work.
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2 Preliminaries

2.1 Metric Spaces of Curvature Bounded from Above

We review the notion of curvature bounds in a metric space (X, d). (We will use the short-
hand notation of writing dPQ instead of d(P,Q).) First, we assume our metric spaces to
be length spaces, i.e. for each P , Q ∈ X, there exists a curve, which we denote PQ, such
that the length of PQ is exactly dPQ. We call PQ a geodesic between P and Q. We then
say that X is an NPC space (also referred as CAT(0) spaces in literature) or that X has
non-positive curvature in the sense of Alexandrov if geodesic triangles in X are thinner than
their comparison triangles in R2. In other words, for every P,Q,R ∈ X and corresponding
points P̄ , Q̄, R̄ ∈ R2 with

dPQ = |P̄ − Q̄|, dQR = |Q̄− R̄|, dRP = |R̄− P̄ |,

we have
dPQt ≤ |P̄ − Q̄t|

where Qt is the point of PQ and Q̄t is the point of the line segment between R̄ and Q̄ so
that dPQt = tdPQ and |P −Qt| = t|P −Q|. By calculating |P̄ − Q̄t|, we have a more explicit
formula:

d2
PQt

≤ (1− t)d2
PQ + tdPR − t(1− t)dQR. (1)

The more general notion of curvature bounded from above by some constant κ is defined by
replacing R2 with surface Sκ of constant curvature κ and requiring that dPQ+dQR+dRP < π√

κ

if κ > 0. (See [ABN] for equivalent definitions.) Furthermore, we have

Definition 2.1 Let γ, σ geodesics in X emanating from point P . Then

α(γ, σ) = lim
t,s→0

arccos
d2(γ(t), P ) + d2(σ(s), P )− d2(γ(t), σ(s))

2d(γ(t), P )d(σ(s), P )

is called the angle between γ and σ.

The limit above exists because X is an NPC space. Since geodesics are unique in an NPC
space, the above definition implies that for P,Q,R ∈ X we can define

6 (QPR) = α(PQ,PR)

The following important result is given in [R2]:

Theorem 2.2 (Reshetnyak) Let (X, d) be a metric space of curvature bounded from above
by κ and Γ be a closed rectifiable curve in X with length less than π√

κ
if κ > 0. Then there

exists a convex domain V in Sκ and a map ϕ : V → X such that ϕ(∂V ) = Γ, the lengths of
the corresponding arcs coincide, and dSκ(x, y) ≥ d(ϕ(x), ϕ(y)), for x, y ∈ V .
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In particular, this implies that for an ordered sequence {P,Q,R, S} ⊂ X, there exists an
ordered sequence {P̄ , Q̄, R̄, S̄} ⊂ R2 which form the consecutive vertices of a convex quadri-
lateral and which satisfies

dPQ = |P̄ − Q̄|, dQR = |Q̄− R̄|
dRS = |R̄− S̄|, dSP = |S̄ − P̄ |
dPR ≤ |P̄ − R̄|, dQS ≤ |Q̄− S̄|

We call {P̄ , Q̄, R̄, S̄} the subembedding of {P,Q,R, S}. In particular, we see that

6 (PQR) ≤ 6 (P̄ Q̄R̄) 6 (QRS) ≤ 6 (Q̄R̄S̄)

6 (RSP ) ≤ 6 (R̄S̄P̄ ) 6 (SPQ) ≤ 6 (S̄P̄ Q̄)

2.2 Variational Theory in Complete Metric Spaces

In [KS1], Korevaar and Schoen develop the Sobolev space theory for maps into complete
metric spaces. A map u : Ω → X from a Riemannian domain to a complete metric space is
in L2(Ω, X) if for some point Q ∈ X, d(u(x), Q) is in L2(Ω). The energy density |∇u|2(x)
and norm of directional derivative |u∗(V )|(x) for V ∈ Γ(T Ω̄) are generalized in this setting.
The energy of the map u is defined as

E(u) =
∫
Ω
|∇u|2dΩ

and u ∈ W 1,2(Ω, X) (or u is finite energy) if E(u) < ∞. Let x̄(x, t) be the flow generated
by Z ∈ Γ(T Ω̄). Then for a.e. x ∈ Ω,

|u∗(V )|(x) = lim
σ→0

d(u(x), u(x̄(x, ε)))

ε

and
|∇u|2 =

∫
Sn−1

|u∗(ω)|2dΣ, (2)

where Sn−1 ⊂ TxΩ. For a Lipschitz Riemannian domain Ω and u ∈ W 1,2(Ω, X), there is
a well-defined trace map tr(u) ∈ L2(∂Ω, X). With this and assuming an upper curvature
bound, the Dirichlet Problem can be solved:

Theorem 2.3 ([KS1],[S1],[S2]) Let (Ω, g) be a Lipschitz Riemannian domain with bound-
ary and let (X, d) be a complete metric space of curvature bounded from above. Let φ ∈
W 1,2(Ω, X). Define

W 1,2
φ = {u ∈ W 1,2(Ω, X)|tr(u) = tr(φ)}.
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Then there exists u such that
E(u) = inf

v∈W 1,2
φ

E(v).

Furthermore, u is locally Lipschitz continuous in the interior and Hölder continuous up to
the boundary. u is called a harmonic map.

Furthermore, (still assuming an upper curvature bound) we can make sense of the notion of
the pull back inner product

π : Γ(T Ω̄)× Γ(T Ω̄) → L1(Ω̄)

for any map u ∈ W 1,2(Ω, X) defined by

π(V,W ) =
1

4
|u∗(V +W )|2 − 1

4
|u∗(V −W )|2 for V,W ∈ Γ(T Ω̄).

Hence, for u ∈ W 1,2(D,X) where D is the unit disk in the plane, we can define the area as

A(u) =
∫

D

√
det(π)dz.

Using the variational tools developed in [KS1], we can solve the Plateau Problem in this set-
ting (a complete proof which is a straightforward extension of an argument due to Morrey
[Mo] is contained in [Me2]) and we have:

The Plateau Problem Let Γ be a closed Jordan curve in X where X is a complete locally
compact metric space of curvature bounded from above by κ (with length of Γ less than π√

κ
if

κ > 0) and let

CΓ = {u ∈ W 1,2(D,X) : u|∂D parametrizes Γ monotonically}.

There exists u ∈ CΓ so that A(u) = inf{A(v)|v ∈ CΓ}. Moreover, u is weakly conformal, i.e.
π11 = π22 and π12 = 0 = π21 and Lipschitz continuous in the interior of D and continuous
up to the boundary.

We call λ = π11 the conformal factor of the pull back inner product. Recall in the case
when X is a smooth Riemannian manifold, the Gauss curvature of the minimal surface is
expressed by

K =
1

2λ
4 log λ.

Hence the following theorem in [Me1] essentially says that the curvature of the minimal
surface is bounded from above by κ when X is a metric space of curvature bounded from
above by κ.
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Theorem 2.4 Let u : D → X be a conformal harmonic map with conformal factor λ. The
function log λ is in W 1,1

loc (D) and satisfies∫
Ω

log λ4φ ≥ −2κ
∫
Ω
λφ

for any φ ∈ C∞c (Ω).

Using the properties of subharmonic functions discussed below, the above theorem also
implies that λ(z) > 0 for a.e z ∈ Ω. In fact, in [Me1] we show:

Theorem 2.5 Let u ∈ W 1,1(D,X) be a conformal harmonic map with conformal factor λ̃.
Then λ̃ > 0 for a.e. z ∈ D. Furthermore, there is a representative λ in the L1-equivalence
class of the function λ̃ defined by

λ(z) = lim
r→0

1

πr2

∫
Dr(z)

λ̃(x)dx (3)

where Dr(z) is a disk of radius r around z so that the perimeter of the set {z : λ(z) < t}
goes to zero as t→ 0.

For the remainder of the paper, when we say “λ is the conformal factor of a map u”, we
mean the function defined by equation 3.

2.3 Subharmonic Functions

The theory of subharmonic functions is important in the study of minimal surfaces in NPC
spaces so we review the definitions.

Definition 2.6 Let Ω be a domain in Rn. A function f ∈ W 1,1
loc (Ω) is said to be weakly

subharmonic if for every non-negative ϕ ∈ C∞c (Ω),

0 ≤
∫
Ω
−∇ϕ · ∇fdx.

The following definition is due to Riesz (see [HK])

Definition 2.7 A function f defined in a domain Ω ⊂ Rn is said to be subharmonic in Ω if
(i) −∞ ≤ f(x) <∞ in Ω.
(ii) f(x) is upper semicontinuous in Ω.
(iii) If x0 is any point in Ω then there exists arbitrarily small positive values of r such that

f(x0) ≤
1

cnrm−1

∫
∂Br(x0)

f(x)dσ(x),

where dσ(x) denotes surface area on ∂Br(x0).
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It is known that if f is a weakly subharmonic map, there is a L1-representative of f which
is subharmonic and if f is upper semicontinuous and weakly subharmonic, then f is subhar-
monic. The following is due Cartan (see [HK] Theorem 5.32):

Theorem 2.8 Let f(x) be a subharmonic function not identically −∞ in a domain Ω ⊂ Rn.
Then the subset E of D where f(x) = −∞ is a Gδ set of capacity zero.

3 Monotonicity of the Boundary Map

For any set S ⊂ X and any P ∈ X, the distance from P to S is defined d(P, S) =
infQ∈S d(P,Q). Let C be a closed convex set. Then for each point P ∈ X there exists a
unique point Q ∈ C such that dPQ = d(P, C) as can be seen from the following: the ex-
istence of Q is guaranteed by the fact that C is closed. Suppose Q′ ∈ C is another point
so that dPQ′ = d(P, C). By convexity, QQ′ ⊂ C. Denoting by Qt the point on QQ′ with
dQQt = tdQQ′ , inequality 1 gives

d2
PQt

≤ (1− t)dPQ + tdPQ′ − t(1− t)dQQ′ ,

and hence dPQt < dPQ = dPQ′ for 0 < t < 1 and this is a contradiction. Therefore, we can
define a projection map π : X → C by setting π(P ) = Q. We claim that for each P,Q ∈ X,

d(π(P ), π(Q)) ≤ d(P,Q). (4)

To see this, we set R = π(P ) and S = π(Q) and let {P̄ , Q̄, R̄, S̄} be a subembedding
of {P,Q,R, S}. By convexity, RS ⊂ C and hence 6 (PSR), 6 (QRS) ≥ π

2
; otherwise we

contradict the fact that dPS = d(P, C) and dQR = d(P, C). Therefore 6 (P̄ S̄R̄), 6 (Q̄R̄S̄) ≥ π
2

which implies dPQ = |P̄ − Q̄| ≥ |R̄− S̄| = dRS.

Lemma 3.1 Let u : M → X be a harmonic map. Then u(M) is contained in the convex
hull of u(∂M).

Proof: Let C be the convex hull of u(∂M) and π : X → C be a projection map. For every
x, y ∈M , we have d(π◦u(x), π◦u(y)) ≤ d(u(x), u(y)) by equation 4. Hence E(π◦u) ≤ E(u).
Harmonic maps for a given boundary data is unique in an NPC space (see [KS1]), so this
implies π ◦ u = u. 2

Lemma 3.2 Let u : M → X be a weakly conformal harmonic map and r : M → R be
defined by r(x) = d(u(x), Q) for some point Q ∈ X. The function log r is in W 1,1

loc (M) and
is weakly subharmonic, i.e. for every non-negative ϕ ∈ C∞c (M),

−
∫

M
∇ϕ · ∇ log r2 ≥ 0. (5)
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Proof: Using a partition of unity argument, it suffices to prove this inequality locally.
Furthermore, the invariance of harmonicity with respect to a conformal change of coordi-
nates, it is sufficient to prove the inequality where u : D → X and D is a unit disk in the
complex plane.

Let r : D → X be defined by r(x) = d(u(x), Q). If u is harmonic then u is Lipschitz in
the interior of D, thus so is r. r satisfies the following weak inequality:

−
∫

D
∇ϕ · ∇r2 ≥ 2

∫
D
ϕ|∇u|2 (6)

for every non-negative ϕ ∈ C∞c (M). The above inequality is due to Gromov and Schoen
[GS] in the case when X is a Riemannian simplicial complex of non-negative curvature. In
the general case where X is an NPC space, the proof of this inequality is contained in [S1]
where it is credited to Korevaar and Schoen.

Since r is Lipschitz, ∇r exists a.e. Let A = {x ∈ D : ∇r exists and |∇r| 6= 0} and let

W = ∇r(x)
|∇r(x)| for x ∈ A. By the triangle inequality and the conformality of u,

|∇r|2 = lim
ε→0

|r(x+ εW )− r(x)|2

ε2

≤ lim
ε→0

d2(u(x+ εW ), u(x))

ε2

=
1

2
|∇u|2

for a.e. x ∈ D. Thus,

−
∫

D
∇ϕ · ∇r2 ≥ 4

∫
D
ϕ|∇r|2 (7)

Let rε = r + ε. Since r ∈ H1
loc(D), we have that log rε ∈ H1

loc(D). Furthermore, since
∇r = ∇rε whenever ∇r exists,

−
∫

D
∇ϕ · ∇r2

ε ≥ 4
∫

D
ϕ|∇rε|2.

Noting that ϕ
r2
ε
∈ H1

loc(D) and hence is a admissible function for ϕ in inequality 7, we have

−
∫

D
∇ϕ · ∇ log r2

ε = −
∫

D
∇ϕ · ∇r

2
ε

r2
ε

≥ −
∫

D
∇
(
ϕ

r2
ε

)
· ∇r2

ε − 2
∫

D

ϕ

r3
ε

∇rε · ∇r2
ε

≥ 4
∫

D

ϕ

r2
ε

|∇rε|2 − 4
∫

D

ϕ

r2
ε

|∇rε|2

= 0.
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Since r is a continuous weakly subharmonic function, r(x) 6= 0 for a.e. x. Furthermore,
r(x) ≤ L for some L by the convex hull property (Lemma 3.1). Hence Theorem 3.2 follows
from the following claim:

Claim: Let fn : D → R be a decreasing sequence of functions converging to a non-negative
f not identically equal to 0 is any open set. Assume fn ≤M for n = 1, 2, ... If∫

D
log fn4ϕ ≥ 0

for every non-negative ϕ ∈ C∞c (D) then∫
D

log f4ϕ ≥ 0.

Proof: W.l.o.g. assume f(0) 6= 0. Then

−∞ < log f(0)

≤ log fn(0)

≤ 1

π

∫
D

log fn

≤ logM.

Let Fn = logM− log fn and F = logM− log f . Fn is an increasing sequence of non-negative
functions. By the Monotone Convergence Theorem,

lim
n→∞

∫
D
Fn =

∫
D
F,

in other words,

lim
n→∞

∫
D

log fn =
∫

D
log f.

In particular, log f ∈ L1(D). Thus for a non-negative ϕ ∈ C∞c (D), we have that log fn4ϕ→
log f4ϕ a.e. Since | log fn4ϕ| ≤ |4ϕ|∞| log fn|, by the the Dominated Convergence Theo-
rem, we have the desired result. 2(claim).

This allows us to prove:

Theorem 3.3 Let M be a smooth compact Riemann surface with boundary and u : M → X
be a weakly conformal harmonic map. Then u does not map any boundary arc of M to a
single point.
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Proof: Suppose there is an open set I ⊂ ∂M so that u(I) = Q. By the invariance
of harmonicity by conformal change of coordinates, we can construct a weakly conformal
harmonic map u : D+ → X where D+ is the upper half of the unit disk and u(x, 0) = Q.
Thus if r(x, y) = d(u(x, y), Q) then r(x, 0) = 0 for −1 < x < 1. By Lemma 3.2, log r is
weakly subharmonic in D+. We extend r to all of D = {(x, y) ∈ R2 : x2 + y2 < 1} by
reflection, i.e. r(−x, y) = r(x, y). We check that log r : D → R is subharmonic (in the sense
of Riesz): clearly −∞ ≤ log r < ∞ and, additionally, log r upper semicontinous since it is
a decreasing limit of continuous functions log(r + εi), εi → 0. At a point (x, y) with y 6= 0,
(iii) of Definition 2.7 follows immediately from equation 5. If y = 0, this is also trivially
true since log r(x, 0) = −∞. But this contradicts Theorem 2.8 since we shown that log r is
a subharmonic function with log r(x, 0) = −∞ for −1 < x < 1. 2

4 Isoperimetric Inequality

Let (M, g) be a compact Riemann surface with boundary and u : M → X be a weakly
conformal harmonic map with conformal factor λ. λ is a locally defined function and if
x, y are local conformal coordinates, λdxdy is the volume form pulled back by the map u
(well-defined because of the conformal invariance of the energy). The area of the minimal
surface u(M) is defined as

A =
∫

M
λdxdy.

It is shown in [Me1] that the distance function dλ on M induced by the conformal factor λ
makes (M,dλ) into an NPC space. The following proof of the isoperimetric inequality is an
adaptation of an argument due to Michael and Simon [MS]. In [MS], the ambient space is
Rn and the submanifold has arbitrary dimension m, m < n. Here we consider m = 2 and
the ambience space X is a NPC space. The technical modification we must make to carry
through the proof of [MS] is that (instead of working directly on the submanifold) we must
work in the domain space M with the induced volume form λdxdy.

Lemma 4.1 Let
Sρ(x0) = {x ∈M |d(u(x), u(x0)) < ρ}

and
A(ρ) =

∫
Sρ(x0)

λdxdy

Then
A(ρ)

ρ2
≥ π.

for sufficiently small ρ.
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Proof: Let Bρ(x0) be a geodesic ball of radius ρ around x0 in distance function dλ. We
let

Aλ(ρ) =
∫

Bρ(x0)
λdxdy.

By choosing ρ sufficiently small, we can work in a conformal coordinate patch U . For any
piecewise C1 curve σ : [0, 1] →M from x to x0, equation (1.9xvi) of [KS1] gives∫ 1

0

√
λ(σ(t))|σ′(t)|dt = lim

|4|→0
Σd(u(ti), u(ti+1)).

By the triangle inequality, we see that d(u(x0), u(x)) ≤ dλ(x0, x). Hence, Bρ(x0) ⊂ Sρ(x0)

and Aλ(ρ) ≤ A(ρ). Thus, it suffices to prove Aλ(ρ)
ρ2 ≥ π.

Let ε > 0 be given. There exists smooth functions λσ so that λσ ≥ λ,
√
λσ →

√
λ in

H1
loc(M) and λσ(dx2 + dy2) defines a non-positively curved metric away from the boundary

of M . (The functions λσ is obtained by mollifying log λ by a symmetric mollifying function
to obtain (log λ)σ and setting λσ = e(log λ)σ . See [Me1]). Thus, there exists σ1 > 0 such that
for all σ < σ1 and any K ⊂ U ,

0 ≤
∫

K
λσ −

∫
K
λ < ε.

Furthermore, since λ ∈ L1(M), there exists δ > 0 such that for any set A ⊂M with measure
less than δ, ∫

A
λ ≤ ε.

Let Bσ
ρ (x0) be the geodesic ball of radius ρ with respect to metric λσ(dx2 + dy2). Noting

that Bσ
ρ (x0) ⊂ Bρ(x0), there exists σ2 > 0 such that for all σ < σ2,

0 ≤
∫

Bρ(x0)−Bσ
ρ (x0)

λ < ε.

Therefore, for σ < min{σ1, σ2}

|
∫

Bσ
ρ (x0)

λσ −
∫

Bρ(x0)
λ| ≤ |

∫
Bσ

ρ (x0)
λσ −

∫
Bσ

ρ (x0)
λ|+ |

∫
Bσ

ρ (x0)
λ−

∫
Bρ(x0)

λ|

< 2ε

Since λσ(dx2 + dy2) defines a smooth surface of non-positive curvature,∫
Bσ

ρ (x0)
λσ ≤ πρ2,

and hence ∫
Bρ(x0)

λ ≤ πρ2 + 2ε.
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Since ε is arbitrary, ∫
Bρ(x0)

λ ≤ πρ2.

Since A(ρ) ≥ Aλ(ρ), we have proved the lemma. 2

Lemma 4.2 Suppose ξ ∈ C1(−∞,∞) is a non-decreasing function such that ξ(t) = 0 for
t ≤ 0 and h ∈ C1

0(M) is a non-negative function. For x0 ∈M , define

ϕx0(ρ) =
∫

M
h(x)ξ(ρ− r(x))λ(x)dxdy

and
φx0(ρ) =

∫
M
|∇h|(x)ξ(ρ− r(x))λ1/2(x)dxdy

where r(x) = d(u(x), u(x0)). Then

− d

dρ

(
ϕx0(ρ)

ρ2

)
≤ φx0(ρ)

ρ2
. (8)

Proof: We can follow the proof of Lemma 2.2 of [MS] with some technical modification
in the beginning. In our setting we use equation 6 to see that for any Ψ ∈ C1(M),

4
∫

Ψ(x)λ(x)dxdy ≤ −
∫
∇Ψ(x) · ∇(r2(x))dxdu

= −2
∫
r(x)∇Ψ(x) · ∇r(x)dxdy

Letting Ψ(x) = h(x)ξ(ρ− r(x)), we have

∇Ψ(x) = −h(x)ξ′(ρ− r(x))∇r(x) + ξ(ρ− r(x))∇h(x)

whenever ∇r exists (recall that it exists a.e. since r is a Lipschitz map). Consequently,

2
∫
h(x)ξ(ρ− r(x))λ(x)dxdy ≤

∫
r(x)h(x)ξ′(ρ− r(x))|∇r(x)|2dxdy

−
∫
r(x)ξ(ρ− r(x))∇h(x) · ∇r(x)dxdy

≤
∫
r(x)h(x)ξ′(ρ− r(x))λdxdy

+
∫
r(x)ξ(ρ− r(x))|∇h|λ

1
2 (x)dxdy.

We are done since we have shown 2ϕx0(ρ)− ρϕ′x0
(ρ) ≤ ρφx0(ρ).
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Lemma 4.3 Let h ∈ C1
0(M) be such that h(x0) ≥ 1. Define

ϕ̄x0(ρ) =
∫

Sρ(x0)
h(x)λ(x)dxdy

and
φ̄x0(ρ) =

∫
Sρ(x0)

|∇h|(x)λ1/2(x)d.

Then there exists ρ > 0 such that

ρ < 2
(

1

π

∫
M
h(x)λ(x)dxdy

)1/2

and

ϕ̄x0(4ρ) ≤ 16
(

1

π

∫
M
h(x)λ(x)dxdy

)1/2

ψ̄x0(ρ).

Proof: We can follow the proof of [MS] Lemma 2.3 replacing dµ by λdxdy. 2

We are now ready to prove

Theorem 4.4 Let X be a NPC space. There exists an universal constant C > 0 so that
L2 ≥ CA for any weakly conformal harmonic map u : M → X from a compact Riemann
surface with boundary. Here, L is the length of u(∂M) and A is the area of the minimal
surface, i.e. A =

∫
M λdxdy where λ is the conformal factor of u.

Proof: We can follow the covering argument of [MS] Theorem 2.1 to show(∫
M
h2λdxdy

) 1
2

≤ 32√
π

∫
M
|∇h|λ

1
2dxdy

for any h ∈ C1(M).
Let Γ be a set of curves close to ∂M so that M − Γ consists of a connected component

M ′ disjoint from ∂M and a set of annuli, each annulus forming a neigborhood around a
component of ∂M . Fix ε > 0. Since u is uniformally continuous and λ is integrable, we can
choose Γ so that

|length(u(Γ))− L| <
√
π

32
ε

and (∫
M
λdxdy

)1/2

−
(∫

M ′
λdxdy

)1/2

< ε.

By equation (1.9xvi) of [KS1], we can assume that

length(u(Γ)) =
∫
Γ
λ1/2.
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Let λσ as in proof of Lemma 4.1 and recall that λσ ≥ λ. Thus, for any h ∈ C∞c (M) and
sufficiently small σ, ∫

M
|∇h|λ1/2dxdy ≤

∫
M
|∇h|(λσ)1/2dxdy

and ∫
M
h2λσdxdy ≤

∫
M
h2λdxdy + |h|2∞

∫
M

(λσ − λ)dxdy.

Consequently, for any h ∈ C∞c (M) with |h|∞ ≤ 1, we have(∫
M
h2λσdxdy

)1/2

≤ 32√
π

∫
M
|∇h|(λσ)1/2dxdy +O(σ)

where O(σ) → 0 as σ → 0. For a fixed σ > 0 sufficiently small and δ sufficiently small, let
Aδ ⊂ M be a δ-neighborhood of Γ where the distance is measured in the (smooth) metric
λσ(dx2 +dy2). Letting h approximate a function which is identically 1 in M ′−Aδ and which
slopes down to zero in Aδ and letting δ → 0, we have(∫

M ′
λσdxdy

)1/2

≤ 32√
π

∫
Γ
(λσ)1/2 +O(σ).

Now letting σ → 0 and using the fact that
√
λσ →

√
λ in H1

loc, we have(∫
M ′
λdxdy

)1/2

≤ 32√
π

∫
Γ
λ1/2.

Hence,

A1/2 ≤ 32√
π
L+ 2ε.

Since ε is arbitrary, we are done. 2
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