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Abstract

We develop the theory of harmonic maps from a flat admissible
2-complex into a metric space of non-positive curvature. As an appli-
cation, we give a harmonic maps analysis of the Morgan-Shalen com-
pactification of SL(2,C) representations of a finitely generated group.

1 Introduction

Let Isom+(H3) denote the Lie group of orientation-preserving isometries of
H3 and Γ be a discrete group. Any discrete and faithful representation
ρ : Γ → Isom+(H3) gives rise to a hyperbolic manifold H3/ρ(Γ) and an
isomorphism Γ ≈ π1(H3/ρ(Γ)) that is well defined up to conjugation. The
space H3(Γ) of conjugacy classes of discrete and faithful representations ρ :
Γ → Isom+(H3) can be compactified by projective limits of length functions
associated to the representations where the length function lρk

: Γ → R+ of
ρk : Γ → Isom+(H3) is

lρk
(g) = inf

z∈H3
dH3(z, ρk(g)z).

These limits turn out to be projectively equivalent to the length functions
of isometric actions of Γ on R-trees. Called the Morgan-Shalen compactifi-
cation, this is the ”tree-theoretic” approach to Thurston’s Bounded Image
Theorem, a part of the Thurston hyperbolization program, developed in
[CuSh] [MoSh1] [Mo] [MoSh2] [MoSh3]. See also the expositions in [Ka]
and [Ot]. The analogous two dimensional theory is equivalent to Thurston’s
compactification of the Teichmüller space of a surface.

In [DDW1] and [DDW2], harmonic maps is used to study the Morgan-
Shalen compactification using equivariant harmonic maps from Riemannian
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manifolds into H3. In particular, for any unbounded sequence of irreducible
SL(2,C) representations of the fundamental group Γ of a compact Rieman-
nian manifold M without boundary, they produce an R-tree T along with
an equivariant harmonic map u : M̃ → T . The method in [DDW1] and
[DDW2] is based on the theory of harmonic maps from Riemannian mani-
folds into singular spaces of nonpositive curvature (NPC spaces) developed
by Gromov-Schoen [GS], Korevaar-Schoen [KS1] [KS2] [KS3] and Jost [Jo].
However, from the point of view of combinatorial group theory and three
dimensional topology, one would like to understand finitely generated group
from their actions on R-trees. In many cases, these actions are ”geometric”
which means that the corresponding trees are associated to leaf spaces of
measured foliations (or laminations) on two dimensional complexes. This
is a generalization of the familiar picture of measured foliations on surfaces
studied in the Thurston theory. For more details from the topological view-
point, we refer to [BesF], [Ka], [LePa] [Ot] for example. The motivation for
this paper and its sequel is to bring harmonic map theory and holomorphic
quadratic differentials into the study of finitely generated groups.

Let Γ be a finitely generated group acting on T , i.e. there is a homo-
morphism ρ : Γ → Isom(T ). We then consider a finite 2-complex X and a
normal covering p : X̄ → X with transformation group Γ. If Γ is finitely
presented, then we may take X so that π1(X) = Γ and p : X̃ → X the
universal cover, but in general, X̄ may fail to be simply connected. We
may assume that X is an admissible finite 2-complex without boundary (see
Section 2.2). Moreover, we assign Riemannian metrics on faces of X so
that X is a flat admissible finite 2-complex without boundary as in Section
3. (See Sections 2.1 and 2.2 for precise definitions.) We study the exis-
tence, regularity and compactness properties of equivariant harmonic map f
from a flat admissible finite 2-complex into R-trees. Here, equivariant means
that the map honors the action of Γ on Isom(T ), i.e f(γx) = ρ(γ)(f(x)). We
then apply this to study the Morgan-Shalen compactification of the SL(2,C)
character variety of any finitely generated group. More precisely, our main
results are as follows.

Theorem 1.1 (Regularity) Let f : X → Y be a harmonic map from a flat
admissible 2-complex without boundary to a NPC space. Then f is locally
Lipschitz continuous away from the vertices of X with Lipschitz constant
dependent only on the total energy of f and the distance away from the
vertices. Furthermore, f is globally Hölder continuous with Hölder constant
and exponent only dependent on the total energy of f .

2



Theorem 1.2 (Compactness) If fk : X → (Yk, dk) is a sequence of equiv-
ariant harmonic maps into NPC spaces with bounded energies, then there
exists a subsequence which converges to an equivariant harmonic map f∞ :
X → (Y∞, d∞) (in the sense of [KS1]).

The compactness theorem allows us to repeat the construction of [DDW1]
and [DDW2] in the case Γ is any finitely generated group. We obtain:

Theorem 1.3 (The Morgan-Shalen compactification) Let {ρk}k=1,2,...

be a sequence of unbounded irreducible SL(2,C) representations of Γ and
p : X̄ → X a covering of a flat admissible 2-complex X without boundary
with Γ as its transformation group. Let uk : X̄ → H3, k = 1, 2, ..., be a
sequence of ρk-equivariant harmonic maps and fk : X̄ → Yk be a sequence of
maps obtained by rescaling the target of uk so that the energy of fk is equal
to 1. Then there exists a subsequence of fk which converges (in the sense of
[KS1]) to a non-constant equivariant harmonic map f∞ : X̄ → T where T
is a minimal R-tree. The length function of the action is in the projective
class of the Morgan-Shalen limit of the sequence {ρk}.

We briefly outline our approach. For Theorem 1.1, we take advantage
of the fact that the domain of our harmonic map is of dimension 2. Since
the regularity of harmonic maps in the interior of a face (i.e. a 2-simplex)
is already known, it is enough to consider a neighborhood of an edge (i.e.
a 1-simplex) point away from the vertices (i.e. 0-simplices) of X. Thus,
without the loss of generality, we consider a harmonic map f from a union
of N upper half disks D+ with the x-axis identified to each other. We call
this space X1. Using the standard theory of harmonic maps from a surface,
we know that f defines a Hopf differential(∣∣∣∣∂f∂x

∣∣∣∣2 − ∣∣∣∣∂f∂y
∣∣∣∣2 − 2i

∂f

∂x
· ∂f
∂x

)
dz2

on the interior of each half disk. Here, the norm squared and the dot product
of the partial derivatives are interpreted in the sense of [KS1] since we allow
the target space Y to be non-smooth. Furthermore, it is crucial that we fix
the complex structure on each half disk so that each half disk induces the
same orientation on the x-axis that it shares with the other half disks. For
convenience, we will refer to the complex function(∣∣∣∣∂f∂x

∣∣∣∣2 − ∣∣∣∣∂f∂x
∣∣∣∣2 − 2i

∂f

∂x
· ∂f
∂x

)
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as the Hopf function.
To motivate the use of the Hopf functions in our paper, we will first

examine the simple case when N = 2 and the R-tree is the real number
line. Thus, we are considering the case of a harmonic function from the unit
disk. This defines the usual Hopf function φ on the unit disk. Now label the
upper half disk as D+

1 and the lower half disk as D+
2 and consider the Hopf

functions φ1 and φ2 with respect to the complex structures on D+
1 and D+

2

which induces the same orientation on the x-axis. In particular, this means
we use the complex coordinates (x, y) ∈ D+ 7→ (x,−y) ∈ D+

2 on the lower
half disk. Thus the Hopf functions are given by

φ1(z) = φ(z) and φ2(z) = φ̄(z̄).

Now note that this means

Im(φ1(x, 0) + φ2(x, 0)) = Im(φ(x, 0) + φ̄(x, 0)) = 0.

We will show that in general, the imaginary part of the Hopf functions sums
to 0 on the x-axis. Thus, by the reflection principle, the sum of the Hopf

functions extends to the whole disk D. From this, we will show that
∣∣∣∂f∂x ∣∣∣2

and
∣∣∣∂f∂y ∣∣∣2 are bounded with bounds only dependent on the total energy of f

and the distance to the boundary. Thus, if f : X → Y is a harmonic map,
then f is Lipschitz continuous away from the vertices of X with Lipschitz
constant dependent only on the total energy and the distance to the vertices.
Using this regularity result and some analysis near the vertices, it is not too
hard to prove the global Hölder regularity of f with the Hölder constant and
exponent dependent only on the total energy.

The corresponding compactness result of Theorem 1.2 for smooth do-
mains is shown in [KS1]. The main difficulty in extending their result to
our situation is, apriori, there is a possibility that the energies of fk will
concentrate at the vertices and the edges of Xk, and this can lead to the
limit map being a constant map (on the fundamental domain). The Lip-
schitz regularity of fk, allows us to eliminate this scenario away from the
vertices. To do likewise at a vertex, we use the Hölder continuity as well as
prove a monotone property of energy. More specifically, we show that Ek(r),
the energy of fk in a ball of radius r about a vertex, essentially decays like
r2α where α is the Hölder exponent. This allows us to prove the general
compactness result of Theorem 1.2.

The energies of the sequence of ρk-equivariant harmonic maps uk of The-
orem 1.2 go to infinity because the sequence ρk is unbounded. To prove
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Theorem 1.3, we apply Theorem 1.2 to the rescaled maps fk. The intuitive
idea of why the target of the limit map is a tree is that a large geodesic
triangle in a hyperbolic space looks like a tripod (three line segments joined
at a common origin). If one rescales a hyperbolic space by a large constant
(i.e. the energy of fk), we get a tree in the limit.

We would like to end this introduction by mentioning some closely related
work. Harmonic maps from polyhedral domains were first considered in
[Ch]. Under suitable assumptions on the metric, the Hölder continuity of
the map was obtained. Later [EF] proved the pointwise Hölder continuity
for a general polyhedral domain. Here, pointwise Hölder continuity indicates
that the Hölder constants and exponents depended on the each point of the
domain. [F] has improved [EF] to show that a harmonic map is locally
uniformly Hölder continuous, but did not give a dependence to the local
Hölder constant and exponent. In Theorem 1.1, we obtain a local Lipschitz
continuity as well as a global Hölder continuity with the Hölder constant
and exponent explicitly dependent only the energy of the map.

2 Definitions

2.1 Admissible Riemannian simplicial complex

A simplicial complex of dimension n is referred to as a n-complex. A con-
nected locally finite n-complex is called admissible (cf. [Ch] and [EF]) if the
following two conditions hold:

(i) X is dimensionally homogeneous, i.e., every simplex is contained in a
n-simplex, and
(ii) X is (n−1)-chainable, i.e., every two n-simplices A and B can be joined
by a sequence A = F0, e0, F1, e1, ..., Fk−1, ek−1, Fk = B where Fi is a n-
simplex and ei is a (n− 1)-simplex contained in Fi and Fi+1.

The boundary ∂X of X is the union of all simplices of dimension n− 1
which is contained in only one n dimensional simplex. Here and henceforth,
we use the convention that simplices are closed. A locally finite simplicial
complex is called a Riemannian simplicial complex if a smooth Riemannian
metric is defined on each top dimensional simplex. This set of Riemannian
metrics induces a distance function on X which we will denote by dX(·, ·).

For p0 ∈ X, we will denote the ball of radius σ centered around a point
p0 by Bσ(p0) = {q ∈ X : dX(p0, q) < σ} and the union of the simplices that
contain p0 as st(p0). Also let %(p0) = sup{r : Br(p0) ⊂ st(p0)}.
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2.2 The two dimensional case

For simplicity, we will refer to a two dimensional simplex as a face, a one
dimensional simplex as an edge, and a zero dimensional simplex as a vertex.
A point in the interior of a face (resp. an edge) is referred to as a face (resp.
edge) point. We will denote the set of vertices by V .

Lemma 2.1 Let X ′ be a connected finite 2-complex. There exists an admis-
sible finite 2-complex X with the property that ∂X = ∅ and π1(X) = π1(X ′).

Proof. We construct X from X(1) = X ′ following the steps below:
Step 1 (Dimensionally homogeneous). Let e1, e2, ..., ek be the edges of

X(1) not contained in a face. For each i, add a new face to X(1) and identify
one of its edges to ei. Call the new 2-complex X(2). By construction, X(2)

is a dimensionally homogeneous and π1(X(2)) = π1(X(1)) = π1(X ′).
Step 2 ((n − 1)-chainable). Let V be the set of vertices v with the

property that st(v) − {v} has more than one components. Let v1, v2, ..., vl
be the elements of V and for each i, let ei,1 and ei,2 be two of the edges of
X(2) containing vi, add a new face to X(2) and identify two edges of the new
face to ei,1 and ei,2 respectively. Call the new 2-complex X(3). Note that if
v is any vertex on a new face, then st(v) − {v} is connected since ei,1 and
ei,2 is contained in two different faces of X(3). Thus, X(3) is admissible and
π(X(3)) = π1(X(2)) = π1(X(1)) = π1(X ′).

Step 3 (Without boundary). Let e1, e2, ..., em be edges of X(3) that
is contained in only one face of X. For each i, add a 2-skeleton of a 3-
simplex to X(3) and identify an edge of the 2-skeleton to ei. Call this new
2-complex X. By construction, X is admissible, without boundary and
π1(X) = π1(X(3)) = π1(X(2)) = π1(X(1)) = π1(X ′). q.e.d.

Let 4 be an equilateral triangle with coordinates given by, say,

4 = {(x, y) ∈ R2 : y ≤
√

3x+
√

3, y ≤ −
√

3x+
√

3, y ≥ 0} (1)

and g0 = dx2 + dy2. We will say that a two dimensional Riemannian simpli-
cial complex X is flat if, for each face F of X and metric gF on F , (F, gF )
is isometric to (4, g0) and if F1 and F2 are adjacent faces sharing an edge
e, the metrics gF1 and gF2 induce the same distance function on e.

If X is a flat admissible 2-complex, we can model Br(p0), r < %(p0) =
sup{r : Br(p0) ⊂ st(p0)}, by the three cases below:

(i) If p0 is a face point, we isometrically identify Br(p0) with a disk
Dr of radius r centered at the origin in R2 and let z(p) = (x, y) be this
identification.

6



(ii) If p0 is an edge point, we isometrically identify Br(p0) withXr defined
as follows: Let n be the number of faces contained in st(p0) and take n copies
of the upper half disk D+

r = {(x, y) ∈ R2|x2 + y2 < r, y ≥ 0}. We would
like to distinguish these copies so we label them D+

r,1, ..., D
+
r,n and use (xi, yi)

to denote the point corresponding to (x, y) ∈ D+
r on the ith copy D+

r,i. Let
Xr = ∪ni=1D

+
r,i/ ∼ where ∼ is defined by

(xi, 0) ∼ (xj , 0) for x ∈ R. (2)

In other words, ∼ identifies the x-axis ofD+
r,i to the x-axis ofD+

r,j for all i and
j so that Br(σ) is isometric to Xr. Let z(p) = (xi, yi) be this identification.
We will refer to Xr as an edge piece.

(iii) If p0 is a vertex, we isometrically identify Br(p0) with X ′
r defined

as follows: Let Wr = {(x, y) ∈ R2 : x2 + y2 ≤ r, 0 ≤ tan−1
( y
x

)
≤ π

3 , x, y ≥
0}. Let n be the number of faces contained in st(p0), take n copies of
Wr, label them Wr,1, ...,Wn,r to distinguish these copies and use (xi, yi) to
denote the point corresponding to (x, y) ∈ Wr on the ith copy Wr,i. Let
X ′
r = ∪ni=1Wi/ ∼ where ∼ is an equivalence relations defined so that X ′

r is
isometric to Br(p0). Let z(p) = (xi, yi) be this identification. We will refer
to X ′

r as a vertex piece.

2.3 Metric spaces of curvature bounded from above

A complete metric space (Y, d) is said to have curvature bounded from above
by κ if the following conditions are satisfied:

(i) The space (Y, d) is a length space. That is, for any two points P and Q
in Y , there exists a rectifiable curve γPQ so that the length of γPQ is equal
to d(P,Q) (which we will sometimes denote by dPQ for simplicity). We call
such distance realizing curves geodesics.
(ii) Let a =

√
|κ|. Every point P0 ∈ Y has a neighborhood U ⊂ Y so that

given P,Q,R ∈ U (assume dPQ + dQR + dRP < π√
κ

for κ > 0) with Qt
defined to be the point on the geodesic γQR satisfying dQQt = tdQR and
dQtR = (1− t)dQR, we have

cosh(adPQt) ≤
sinh((1− t)adQR)

sinh(adQR)
cosh adPQ +

sinh(tadQR)
sinh(adQR)

cosh adPR

for κ < 0,
d2
PQt

≤ (1− t)d2
PQ + td2

PR − t(1− t)d2
QR
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for κ = 0, and

cos(adPQt) ≥
sin((1− t)adQR)

sin(adQR)
cos adPQ +

sin(tadQR)
sin(adQR)

cos adPR

for κ > 0.

We will say that Y is NPC (non-positively curved) if it has curvature bounded
from above by 0. A simply connected space of curvature bounded from above
by κ < 0 is commonly referred to as a CAT (κ) space in literature. If a metric
space (T, d) is a CAT (κ) space for any κ, then (T, d) a CAT (∞) space.

A R-tree is a metric space (T, d) so that for any t, s ∈ T , there exists
a path γ : [a, b] → T joining t to s so that length(γ) = d(t, s) and γ is the
unique embedded path from x to y. Here,

length(γ) = inf
n∑
i=1

d(γ(τi−1), γ(τi)),

where inf is taken over all partitions a = τ0 < τ1 < ... < τn−1 < τn = b of
[a, b].

It is known that (T, d) is a R-tree if and only if (T, d) is a CAT(∞) space.

2.4 Harmonic maps

A map from X into Y is called harmonic if it is locally energy minimizing.
Recall that, when (Xm, g) and (Y n, h) are Riemannian manifolds, then the
energy of f : X → Y is

Ef :=
∫
X
|∇f |2dµ

where

|∇f |2(x) =
m∑

α,β=1

gαβ(x)hij(f(x))
∂f i

∂xα
∂f j

∂xβ

with (xα) and (f i) the local coordinate systems around x ∈ X and f(x) ∈ Y
respectively.

If X is a Riemannian manifold but Y is only assumed to be a metric
space, then we use the Korevaar-Schoen definition of energy: Ef is defined
as above with |∇f |2dµ the weak limit of ε-approximate energy density mea-
sures which are measures derived from the appropriate average difference
quotients. More specifically, define eε : X → R by

eε(x) =

{ ∫
y∈S(x,ε)

d2(f(x),f(y))
ε2

dσx,ε

εn−1 for x ∈ Xε

0 for x ∈ X −Xε
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where σx,ε is the induced measure on the ε-sphere S(x, ε) centered at x
and Xε = {x ∈ X : d(x, ∂X) > ε}. We define a family of functionals
Efε : Cc(X) → R by setting

Efε (ϕ) =
∫
X
ϕeεdµ.

We say f has finite energy (or that f ∈W 1,2(X,Y )) if

Ef := sup
ϕ∈Cc(X),0≤ϕ≤1

lim sup
ε→0

Efε (ϕ) <∞.

It can be shown that if f has finite energy, the measures eε(x)dx converge
weakly to a measure which is absolutely continuous with respect to the
Lebesgue measure. Therefore, there exists a function e(x), which we call the
energy density, so that eε(x)dµ ⇀ e(x)dµ. In analogy to the case of real
valued functions, we write |∇f |2(x) in place of e(x). In particular,

Ef =
∫
X
|∇f |2dµ.

For V ∈ ΓX where ΓX is the set of Lipschitz vector fields on X, |f∗(V )|2
is similarly defined. The real valued L1 function |f∗(V )|2 generalizes the
norm squared on the directional derivative of f . The generalization of the
pull-back metric is

πf (V,W ) = ΓX × ΓX → L1(X,R)

where
πf (V,W ) =

1
2
|f∗(V +W )|2 − 1

2
|f∗(V −W )|2.

We refer to [KS1] for more details.
Finally, the Korevaar-Schoen definition of energy (cf. [Ch] and [EF])

can be extended to the case when X is an admissible Riemannian simplicial
complex. Here, the energy Ef is∫

X
|∇f |2dµ :=

∫
∪k

i=1Fi

|∇f |2dµ

where {Fi}k=1,...,k are the top-dimensional simplices of X. The functions
|∇f |2 and |f∗(V )|2 are defined for almost every point in X.

For a flat admissible 2-complex X and coordinate functions x, y defined

on a face of X, we will write
∣∣∣∂f∂x ∣∣∣2 to denote

∣∣∣f∗( ∂∂x)
∣∣∣2 and ∂f

∂x ·
∂f
∂y to denote

πf ( ∂∂x ,
∂
∂y ).
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3 Regularity results

We derive some regularity results for a harmonic map f : X → Y assuming
that X is a flat admissible finite 2-complex without boundary and that
Y is a NPC space as defined in Section 2. We start by proving a series
of propositions which are the singular analogues of results in [GS]. These
results are crucial in our arguments later. The following is a restatement of
Proposition 2.2 in [GS].

Proposition 3.1 Let X and Y as above and Q ∈ Y . If f : X → Y is a
harmonic map, then 4d2(f(x), Q)− 2|∇f |2 ≥ 0 weakly, i.e.

−
∫
X
∇d2(f(x), Q) · ∇ϕ ≥ 2

∫
X
|∇f |2ϕ

for any ϕ ∈W 1,2
c (X,R).

Proof. The computation for the proof of this inequality can be found
in the proof of [EF] Lemma 10.2 which is based on the proof of [GS] Propo-
sition 2.2. q.e.d.

Choosing ϕ to approximate the characteristic function of a small geodesic
ball Bσ(p0), we get

2
∫
Bσ(p0)

|∇f |2dµ ≤
∫
∂Bσ(p0)

∂

∂r
d2(f,Q)ds. (3)

Proposition 3.2 Let X and Y as above and f : X → Y be a harmonic
map. For p0 ∈ X, define

E(r) =
∫
Br(p0)

|∇f |2dµ

and
I(r) =

∫
∂Br(p0)

d2(f, f(p0))ds.

Then
r 7→ Ord(p, r) =

rE(r)
I(r)

is a non-decreasing function for r < %(p0) = sup{r : Br(p0) ⊂ st(p0)} and
hence

α = lim
r→0

rE(r)
I(r)

exists.
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Remark. The difficulty in working with harmonic maps from a simplicial
complex is that the monotonicity property for r 7→ rE(r)

I(r) does not necessarily
hold for r > %. We illustrate this by the following example. Let X1 be
the space consisting of three upper half disks D+

1 , D
+
2 , and D+

3 identified
along the x-axis and consider the harmonic function f : X1 → R with
fj = f |D+

j
defined by f1(x, y) = y, f2(x, y) = y and f3(x, y) = 0. Fix

p0 = (x0, y0) ∈ D+
3 ⊂ X1. Now identify D+

j (for j = 1, 2) and D+
3 to the

upper and lower half disk of the unit disk D respectively by the embedding
defined by (x, y) ∈ D+

j 7→ (x, y) ∈ D and (x, y) ∈ D+
3 7→ (x,−y) ∈ D. We

let (r, γ) be the polar coordinates of D centered at (x0,−y0). (Note that
(x,−y0) is the image of p0 = (x0, y0) ∈ D+

j under the embedding.) The set
∂Br(p0) ∩D+

j (j = 1 or 2) can be parameterized by the angular coordinate
γ. More specifically, if we let θ = cos−1

(y0
r

)
, then γ 7→ (r, γ) for −θ ≤ γ ≤ θ

gives us the portion on ∂Br(p0) in D+
j . For (x, y) ∈ ∂Br(p0)∩D+

j (j = 1, 2),
y is given in terms of γ by

y = r cos γ − r cos θ

by elementary geometry. Since f is identically constant on D+
3 , we have

d2(f(x, y), f(x0, y0)) = y2

= (r cos γ − r cos θ)2

= r2(cos2 γ − 2 cos γ cos θ + cos2 θ)

= r2(
1
2

+
cos 2γ

2
− 2 cos γ cos θ + cos2 θ).

Therefore,

I(r) =
∫
∂Br(p0)

d2(f(x, y), f(x0, y0))ds

=
2∑
j=1

∫
∂Br(p0)∩D+

j

d2(f(x, y), f(x0, y0))ds

= 2r3
∫ θ

−θ

(
1
2

+
cos 2γ

2
− 2 cos γ cos θ + cos2 θ

)
dγ

= 2r3(2θ − 3
2

sin 2θ + (cos 2θ)θ).

Furthermore, |∇f |2 = 1 in D+
1 and D+

2 and |∇f |2 = 0 in D+
3 , so

E(r) =
∫
Br(p0)

|∇f |2
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=
2∑
j=1

∫
Br(p0)∩D+

j

|∇f |2

= Area(Br(p0) ∩D+
j )

= 2r2(θ − sin 2θ
2

).

Now note that

lim
r→y+0

rE(r)
I(r)

= lim
θ→0+

2r3(θ − sin 2θ
2 )

2r3(2θ − 3
2 sin 2θ + (cos 2θ)θ)

= ∞

and this shows that r 7→ rE(r)
I(r) is not a non-decreasing function for r > %(p0).

Proof.(Proposition 3.2) Let ζ : X → R+ ∪ {0} be a continuous func-
tion which is smooth on each face of X. For p0 ∈ X, r < %(p0) and
any p ∈ Br(p0), a geodesic from p0 to p can be uniquely extended be-
yond p to a geodesic of length r. Thus, for sufficiently small t so that
(1 + tζ(p))dX(p, p0) < %(p0), we can define (1 + tζ(p))p as the point on this
extension that is distance (1 + tζ(p))dX(p, p0) away from p0. For ζ with
spt(ζ) ⊂ Br(p0) and t sufficiently small, we define Ft : X → X as

Ft(p) =

{
(1 + tζ(p))p for p ∈ Br(p0)

identity for p ∈ X −Br(p0).

With that, we can now follow the usual calculation to prove Proposition 3.2.
In other words, the standard computation (see [GS], Section 2 for example)
done on each face of X gives

0 =
∫
Br(p0)

∂ζ

∂x
x

(
∂f

∂x

)2

+
∂ζ

∂y
y

(
∂f

∂y

)2

+ 2
∂ζ

∂x
y
∂f

∂x

∂f

∂y
+ 2

∂ζ

∂y
x
∂f

∂x

∂f

∂y
. (4)

Taking ζ to be an approximation of the characteristic function of the ball
Br(p0), we get

E′(r) = 2
∫
∂Br(p0)

∣∣∣∣∂f∂r
∣∣∣∣2 ds (5)

for a.e. r < %(p0) = sup{r : Br(p0) ⊂ st(p0)}. Again, for a.e. r < %(p0),
standard computation on each face of X gives,

I ′(r) =
∫
∂Br(p0)

∂

∂r
d2(f, f(p0))ds+

I(r)
r
.

12



The above two equations along with (3.1), the Schwarz inequality,(∫
Br(p0)

d(f, f(p0))
∂

∂r
d(f, f(0)))ds

)2

≤
(∫

Br(p0)
d2(f, f(p0))ds

)(∫
Br(p0)

(
∂

∂r
d(f, f(0))

)2

ds

)
, (6)

and the inequality,
∂

∂r
d(f, f(p0)) ≤

∣∣∣∣∂f∂r
∣∣∣∣ (7)

imply

d

dr
log

(
I(r)
rE(r)

)
=

I ′(r)
I(r)

− 1
r
− E′(r)
E(r)

≤ (E(r)I(r))−1

[
E(r)

∫
∂Br(p0)

∂

∂r
(d2(f, f(p0)))ds

− 2I(r)

(∫
∂Br(p0)

∣∣∣∣∂f∂r
∣∣∣∣2 ds

)]

≤ 2(E(r)I(r))−1

(∫
∂Br(p0)

d(f, f(p0))
∂

∂r
d(f, f(0))ds

)2

−
(∫

∂Br(p0)
d2(f, f(p0))ds

)(∫
∂Br(p0)

∣∣∣∣∂f∂r
∣∣∣∣2 ds

)]
≤ 0.

for a.e. r < %(p0). q.e.d.

Remark. For a general Riemannian simplicial complex X, the variation Ft
defined in the proof of Proposition 3.2 does not make sense. Specifically,
we must be able to uniquely extend a geodesic from p to p0 to a geodesic
emanating from point p0 of length (1+ tζ(p))d(p0, p). Therefore, a necessary
condition to define Ft is a positive injectivity radius at p0. A Riemannian
simplicial complex does not have this condition generally. For example, take
two copies of the (flat) unit disk and identify the upper half of the unit circle
of each disk to another. Then any two points of the upper half circle can be
connected by two geodesics, one contained in each copy of the disk. Thus,

13



the injectivity radius of those points is 0.

Corollary 3.3 If

α0 = lim
r→0

rE(r)
I(r)

and αr =
rE(r)
I(r)

for 0 < r < %(p0),

then
d

dσ

(
I(σ)
σ2αr+1

)
|σ=s ≥ 0

and
d

dσ

(
E(σ)
σ2αr

)
|σ=s ≥ 0

for r ≤ s < %(p0).

Proof. Proposition 3.2 implies that

αrI(σ) ≤ σE(σ) for r ≤ σ < %(p0).

Furthermore, inequality (3) implies that

2E(σ) ≤
∫
∂Bσ(p0)

∂

∂r
d2(f, f(v))ds = I ′(σ)− 1

σ
I(σ). (8)

Combining the two inequalities,

αrI(σ) ≤ 1
2
(σI ′(σ)− I(σ))

which implies
2αr + 1

σ
≤ I ′(σ)
I(σ)

and hence

0 ≤
(
I(σ)
σ2αr+1

)′
for r < σ < %(p0).

Again, by Proposition 3.2,

2α+ 1
σ

≤ I ′(σ)
I(σ)

≤ 1
σ

+
E′(σ)
E(σ)

which implies

0 ≤
(
E(σ)
σ2αr

)′
for r < σ < %(p0).

14



q.e.d.

Let p be an edge point or a vertex with st(p) containing n faces and
let σ < %(p) = sup{r : Br(p0) ⊂ st(p0)}. Then ∂Bσ(p) can be considered
a graph with n edges where, for each face F , ∂Bσ(p) ∩ F is an edge and,
for each edge e, ∂Bσ(p) ∩ e are two vertices. The metric on each edge is
inherited from the metric on the face of X containing that edge. Thus, each
edge has length πσ if p is an edge point or πσ

3 if p is a vertex. Let ds be the
corresponding volume form on the edges and let f̄σ ∈ Y be the point in Y
so that ∫

∂Bσ(p)
d2(f, f̄σ)ds = inf

Q∈Y

∫
∂Bσ(p)

d2(f,Q)ds.

The existence of f̄σ is guaranteed by Lemma 2.5.1 of [KS1].

Proposition 3.4 There exists a constant c depending only on n so that∫
∂Bσ(p)

d2(f, f̄σ)ds ≤ cσ2
∫
∂Bσ(p)

∣∣∣∣∂f∂s
∣∣∣∣2 ds. (9)

Proof. Assume p is a vertex. The case when p is an edge point follows
by an analogous argument. The universal covering space of ∂Bσ(p) is a
simplicial tree T̃ and we denote a fundamental domain in this universal
cover space by T . The finite tree T has n edges and its diameter D is ≤ πσn

3 .
Let f̃ : T̃ → Y be the lift of f |∂Bσ(p) to the universal cover.

For p0, p1 ∈ T , let t 7→ pt for t ∈ [0, 1] be the constant speed parametriza-
tion of the unique geodesic between p0 and p1. The tangent vector ṗt has
length ≤ D. For a.e. (p0, p1) ∈ T × T , we have

d2(f̃(p0), f̃(p1)) ≤
∫ 1

0
|f̃∗(ṗt)|2dt

≤ D2
∫ 1

0

∣∣∣∣∣∂f̃∂s
∣∣∣∣∣
2

(pt)dt.

For a fixed p0 and q ∈ T , there are at most n! points p1 so that d(p0, q) = t
and d(q, p1) = 1− t. It then follows that

∫
T

∣∣∣∣∣∂f̃∂s
∣∣∣∣∣
2

(pt)ds(p1) ≤ n!
∫
T

∣∣∣∣∣∂f̃∂s
∣∣∣∣∣
2

(q)ds(q)
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and ∫
T
d2(f̃(p1), f̄σ)ds(p1) ≤

∫
T
d2(f̃(p0), f̃(p1))ds(p1)

≤ D2
∫
T

∫ 1

0

∣∣∣∣∣∂f̃∂s
∣∣∣∣∣
2

(pt)dtds(p1)

= D2
∫ 1

0

∫
T

∣∣∣∣∣∂f̃∂s
∣∣∣∣∣
2

(pt)ds(p1)dt

≤ D2n!
∫ 1

0

∫
T

∣∣∣∣∣∂f̃∂s
∣∣∣∣∣
2

(q)ds(q)dt

=
π2n2n!σ2

32

∫
T

∣∣∣∣∣∂f̃∂s
∣∣∣∣∣
2

ds

and we have shown inequality (9). q.e.d.

The local Hölder continuity for a harmonic map f from an admissible
Riemannian simplicial complex to a NPC space has been claimed in [Ch]
and [EF]. We note the proof of [Ch] is disputed in [EF]. On the other hand,
the idea of [Ch] is valid as long as the following additional assumption is
imposed: for every p ∈ X and q ∈ Br0(p) where r0 = %(p), the geodesic
between p and q can be uniquely extended to a geodesic of length r0. This
is certainly true for X as above.

Our arguments above immediately yield a proof of the local Hölder con-
tinuity which we present for the sake of completeness.

Theorem 3.5 Let X and Y as above. If f : X → Y is a harmonic map,
then f is locally Hölder continuous. More specifically, for every p0 ∈ X,
there exist constants A and α depending only on r0 = %(p), Ef and n, the
number of faces intersection Br0(p0), so that

d(f(p), f(q)) ≤ AdαX(p, q) for all p, q ∈ Br0/2(p).

Proof. Let p ∈ Br0/2(p0) and E(σ) =
∫
Bσ(p) |∇f |2dµ for σ ≤ r0. By

inequality (3) and the fact that ∂
∂rd(f, f̄σ) ≤

∣∣∣∂f∂r ∣∣∣, we have

E(σ) ≤ 1
2

∫
∂Bσ(p)

∂

∂r
d2(f, f̄σ)ds

=
∫
∂Bσ(p)

d(f, f̄σ)
∂

∂r
d(f, f̄σ)ds
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≤
∫
∂Bσ(p)

d(f, f̄σ)
∣∣∣∣∂f∂r

∣∣∣∣ ds
≤

(∫
∂Bσ(p)

d2(f, f̄σ)ds

)1/2(∫
∂Bσ(p)

∣∣∣∣∂f∂r
∣∣∣∣2 ds

)1/2

Thus, by inequality (9),

E(σ) ≤
√
cσ

(∫
∂Bσ(p)

∣∣∣∣∂f∂s
∣∣∣∣2 ds

)1/2(∫
∂Bσ(p)

∣∣∣∣∂f∂r
∣∣∣∣2 ds

)1/2

. (10)

By equality (5),∫
∂Bσ(p)

∣∣∣∣∂f∂s
∣∣∣∣2 ds =

∫
∂Bσ(p)

|∇f |2ds−
∫
∂Bσ(p)

∣∣∣∣∂f∂r
∣∣∣∣2 ds

= E′(σ)−
∫
∂Bσ(p)

∣∣∣∣∂f∂r
∣∣∣∣2 ds

=
∫
∂Bσ(p)

∣∣∣∣∂f∂r
∣∣∣∣2 ds. (11)

Combining (10) and (11), we obtain

E(σ) ≤
√
cσ

∫
∂Bσ(p)

∣∣∣∣∂f∂r
∣∣∣∣2 ds ≤ √

cσE′(σ)

or
2α
σ
≤ E′(σ)
E(σ)

where 2α = 1√
c
. Integrating this inequality from r to r0, we have

E(r) ≤ E(r0)
r2α0

r2α ≤ Ef

r2α0
r2α. (12)

Now we apply Morrey’s energy decay argument to prove Hölder continu-
ity. Let p, q ∈ Br0/2(p) with d(p, q) = r and let p̄t, 0 ≤ t ≤ 1, be the point
which is fraction t along the geodesic from p to q. For any p′ ∈ B r

2
(p̄ 1

2
), let

pt, 0 ≤ t ≤ 1, be an arclength parameterized geodesic from p to p′. Since
d(p, p′) ≤ d(p, p̄ 1

2
) + d(p̄ 1

2
, p′) ≤ r, we have that the tangent vector ṗt has

length ≤ r. Therefore,

d(f(p), f(p′)) =
∫ 1

0
|f∗(ṗt)| (pt)dt

≤ r

∫ 1

0
|∇f |(pt)dt.
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Integrate this inequality over p′ ∈ B r
2
(p̄ 1

2
) and we obtain∫

B r
2
(p̄ 1

2
)
d(f(p), f(p′))dµ(p′)

≤
∫
B r

2
(p̄ 1

2
)

(
r

∫ 1

0
|∇f |(pt)dt

)
dµ(p′)

≤ r

∫ 1

0

1
t2

∫
B rt

2
(p̄ t

2
)
|∇f |dµ(w) dt

≤ r

∫ 1

0

1
t2

∫
Brt(p)

|∇f |dµ(w) dt

≤ r

∫ 1

0

1
t2

(Vol(Brt(p)))1/2 ·
(∫

Brt(p)
|∇f |2dµ

)1/2

dt

≤ r

∫ 1

0

1
t2
C(rt) ·

√
Ef

rα0
(rt)αdt

=
C
√
Efr2+α

rα0

∫ 1

0
tα−1dt

=
C
√
Ef

αrα0
r2+α,

where C is a constant dependent on n, by applying inequality (12). Similarly,∫
B r

2
(p̄ 1

2
)
d(f(p′), f(q))dµ(p′) =

C
√
Ef

αrα0
r2+α.

By the triangle inequality,∫
B r

2
(p̄ 1

2
)
d(f(p), f(q))dµ(p′)

≤
∫
B r

2
(p̄ 1

2
)
d(f(p), f(p′))dµ(p′) +

∫
B r

2
(p̄ 1

2
)
d(f(p′), f(q))dµ(p′)

≤ 2C
√
Ef

αrα0
r2+α

and thus

d(f(p), f(q)) ≤ 2C
√
Efr2

αrα0 Vol(B r
2
(p̄ 1

2
))
· rα
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and this is the desired result. q.e.d.

Because of the assumption onX, we can prove a much stronger regularity
result for harmonic maps than the local Hölder continuity derived above.
First, we prove that a harmonic map is locally Lipschitz away from the
vertices. Because this is a local theory, we restrict our attention to a local
model X1 defined in Section 2.2. Before we proceed with the proof of the
regularity result, we show the following mean value inequality and maximum
principle for a distance function between two harmonic maps.

Proposition 3.6 Let f, g : X → (Y, d) be harmonic maps into a NPC space.
For any 0 < r0 < r ≤ 1, there exists c > 0 (dependent only on r0 and r) so
that for any p0 ∈ X with r < %(p0) = sup{r : Br(p0) ⊂ st(p0)},

max
p∈Br0 (p0)

d2(f, g)(p) ≤ c

∫
Br(p0)

d2(f, g)dµ (13)

and
max

p∈Br0 (p0)
d2(f, g)(p) ≤ c

∫
∂Br(p0)

d2(f, g)dµ. (14)

Furthermore, for any p0 ∈ X, we have

max
Br(p0)

d(f, g) = max
∂Br(p0)

d(f, g). (15)

Proof. If p0 is a face point, then the existence of a sufficiently large c to
satisfy inequality (13) follows from [KS1] Lemma 2.4.2. We must also find a
sufficiently large c so that inequality (13) holds when p0 is a edge point or
when p0 is a vertex. It is sufficient to consider harmonic maps f, g : Xr →
(Y, d) (to handle the case when p0 is an edge point) or f, g : X ′

r → (Y, d) (to
handle the case when p0 is a vertex), 0 < r0 < r ≤ 1 and p0 = 0. (Refer to
Section 2.2 for the definitions of Xr and X ′

r.)
For the case when the domain of f and g is Xr = ∪ni=1D

+
r,i/ ∼, let

Ωr = ∪ni=1Dr,i/ ≈ where the equivalence relation ≈ identifies the x-axis
of one disk to that of another, i.e. (xi, 0) ≈ (xj , 0). (Here, we again use
the convention that the point with coordinates (x, y) on the ith disk Dr,i is
denoted by (xi, yi).) Define φi : Dr,i → D+

r,i by setting φi(xi, yi) = (xi, |yi|)
and let F,G : Ωr → (Y, d) be defined by F (xi, yi) = f ◦ φ(xi, yi), and
G(xi, yi) = g ◦ φ(xi, yi) respectively.

For η ∈ C∞c (Dr), define Fη, F1−η : Ωr → (Y, d) by setting

Fη(xi, yi) = (1− η(xi, yi))F (xi, yi) + η(xi, yi)G(xi, yi)
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and
F1−η(xi, yi) = η(xi, yi)F (xi, yi) + (1− η(xi, yi))G(xi, yi).

where (1 − t)P + tQ denotes the point which is fraction t of the way along
the geodesic from P to Q in Y . These maps are well-defined with respect to
the equivalence relation ≈ since

Fη(xi, 0) = (1− η(xi, 0))F (xi, 0) + η(xi, 0)G(xi, 0)
= (1− η(xi, 0))f ◦ Φ(xi, 0) + η(xi, 0)g ◦ Φ(xi, 0)
= (1− η(xj , 0))f ◦ Φ(xj , 0) + η(xj , 0)g ◦ Φ(xj , 0)
= (1− η(xj , 0))F (xj , 0) + η(xj , 0)G(xj , 0)
= Fη(xj , 0).

By Lemma 2.4.1 of [KS1] and by Lemma 2.4.2 of [KS1] applied to the re-
striction of Fη and F1−η toD+

r,i for each i, we see that Fη, F1−η ∈W 1,2(Ωr, Y )
and∫

Ωr

|∇Fη|2 +
∫
Ωr

|∇F1−η|2

≤
∫
Ωr

|∇F |2 +
∫
Ωr

|∇G|2 − 2
∫
Ωr

∇η · ∇d2(F,G) +
∫
Ωr

Q(η,∇η),

where Q(η,∇η) consists of integrable terms which are quadratic in η and
∇η. Let fη, f1−η be defined by Fη ◦ Φ−1, F1−η ◦ Φ−1 respectively, where
Φ−1 : Xr → Ωr is defined (xi, yi) 7→ (xi, yi). Since Φ−1 is a really just the
identify map,∫

Ωr

|∇F |2 = 2
∫
Xr

|∇f |2 ≤ 2
∫
Xr

|∇fη|2 =
∫
Ωr

|∇Fη|2

and ∫
Ωr

|∇G|2 = 2
∫
Xr

|∇g|2 ≤ 2
∫
Xr

|∇f1−η|2 =
∫
Ωr

|∇F1−η|2.

Therefore,

−2
∫
Ωr

∇η · ∇d2(F,G) +
∫
Ωr

Q(η,∇η) ≥ 0

and replacing η by tη, dividing by t and letting t→ 0, we get

−
∫
Dr

∇η · ∇δ ≥ 0

for any η ∈ C∞c (Dr) and where

δ(x, y) =
n∑
i=1

d2(F (xi, yi), G(xi, yi)).
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By the mean value inequality for subharmonic functions,

δ(x, y) ≤ 1
πρ2

∫
Dρ(x,y)

δ (16)

for any ρ ≤ r −
√
x2 + y2 where Dρ(x, y) is the disk of radius ρ centered at

(x, y). (As before, Dr is the disk of radius r centered at the origin.)
Recall that r0 < r ≤ 1. Let (xi, yi) ∈ Xr0 and ρ = r − r0.

d2(f(xi, yi), g(xi, yi)) = d2(F (xi, yi), G(xi, yi))
≤ δ(x, y)

≤ 1
πρ2

∫
Dρ(x,y)

δ

≤ 1
πρ2

∫
Dr

δ

=
1
πρ2

∫
Ωr

d2(F,G)

=
2
πρ2

∫
Xr

d2(f, g).

This proves inequality (13).
For the case when the domain of f and g is X ′

r = ∪ni=1Wi/ ∼, let ψi :
D+
r3,i → Wi be defined by z 7→ z

1
3 . Let Ωr3 = ∪ni=1Dr3,i/ ≈ where ≈ is

defined as before. Let φi : Dr3,i → D+
r3,i be the map φi(xi, yi) = (xi, |yi|)

and define Ψ : Ωr3 → X ′
r by setting Ψ(xi, yi) = ψi ◦ φi(xi, yi) and let F,G :

Ωr3 → (Y, d) be defined by f ◦Ψ, and g◦Ψ respectively. Arguing analogously
as above, we also get inequality (16). Here, we note that∫

Ωr3

|∇F |2 = 2
∫
X′

r

|∇f |2 ≤ 2
∫
X′

r

|∇fη|2 =
∫
Ωr3

|∇Fη|2

and ∫
Ωr3

|∇G|2 = 2
∫
X′

r

|∇g|2 ≤ 2
∫
Xr

|∇f1−η|2 =
∫
Ωr3

|∇F1−η|2

follows from the conformal invariance of energy.
Again suppose r0 < θ0 ≤ r ≤ 1. Let (xi, yi) ∈ Xr0 and ρ = θ3

0 − r30.
Using the notation z = x+ iy and z3 = ξ + iη,

d2(f(xi, yi), g(xi, yi)) = d2(F (ξi, ηi), G(ξi, ηi))
≤ δ(ξ, η)
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≤ 1
πρ2

∫
Dρ(ξ,η)

δ

=
1
πρ2

∫
Dr3

δ

=
1
πρ2

∫
Ωr3

d2(F,G).

=
2
πρ2

∫
{(xi,yi)∈Ωr3 :yi≥0}

d2(F,G).

By a change of variables R = r3 and Θ = 3θ (i.e. z = reiθ 7→ z3 = ReiΘ),∫
D+

r3,i

d2(F,G) =
∫ π

0

∫ r3

0
d2(F,G)RdRdΘ

= 9
∫ π

3

0

∫ r

0
d2(f, g)r5drdθ

≤ 9
∫ π

3

0

∫ r

0
d2(f, g)rdrdθ

= 9
∫
Wi

d2(f, g)

and hence
d2(f(xi, yi), g(xi, yi)) ≤

18
πρ2

∫
X′

r

d2(f, g)

for any (xi, yi) ∈ Xr0 . This proves inequality (13). Inequality (14) follows
from a similar argument.

To prove the maximum principle (equality (15)), suppose the maximum
of d(f, g) in Xr or X ′

r is achieved at 0. Since δ(0) = nd(f(0), g(0)), then the
maximum of δ in Dr is also achieved at 0. Inequality 16, implies that δ is
identically equal to δ(0) and this is impossible unless d(f, g) is identically
constant on Xr. q.e.d.

To prove the Lipschitz regularity, we will use the following property of
harmonic maps along the edges. The example of when the domain was a
disk was examined in the introduction.

Theorem 3.7 Let f : X1 → Y be a harmonic map where X1 is an edge
piece (defined in Section 2.2) with N half disks labelled D+

1 , ..., D
+
N and Y is

an NPC space. Let f j = f |D+
j

and fix a conformal structure on each D+
j so
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that the orientation induced on the x-axis is the same for each j = 1, ..., N .
With this conformal structure, define

ϕj =

∣∣∣∣∣∂f j∂x

∣∣∣∣∣
2

−
∣∣∣∣∣∂f j∂y

∣∣∣∣∣
2

− 2i

〈
∂f j

∂x
· ∂f

j

∂y

〉
.

Then

Im
N∑
j=1

ϕj(x, 0) = 0

for all −1 < x < 1.

Proof. Let Φt : D+ → D+ be a diffeomorphism so that Φ0 =identity
and Φt = identity near ∂D∩D+. Set ∂Φt

∂t = (νt, ωt) and ν = ν0 and ω = ω0.
For Φt with compact support in D+, the standard variational computation
for E(f j ◦ Φt) using the fact that f j is minimizing in D+ gives

0 =
d

dt
E(f i ◦ Φt)|t=0

=
∫
D

∣∣∣∣∣∂f j∂x

∣∣∣∣∣
2

−
∣∣∣∣∣∂f j∂y

∣∣∣∣∣
2
(∂ν

∂x
− ∂ω

∂y

)

+2

〈
∂f j

∂x
· ∂f

j

∂y

〉(
∂ν

∂y
− ∂ω

∂x

)
dxdy (17)

and we conclude ϕj is holomorphic in the interior of D+.
Now consider Φt with ωt ≡ 0 near Γ = {(x, y)|y = 0,−1 < x < 1}. Let

Φ̄t : X1 → X1 be defined by Φ̄t(xi, yi) = Φt(x, y). Using the fact that f is
energy minimizing and that f ◦ Φ̄t is a competitor of f , we obtain

0 =
d

dt
E(f ◦ Φ̄t)|t=0

=
n∑
j=1

∫
D

∣∣∣∣∣∂f j∂x

∣∣∣∣∣
2

−
∣∣∣∣∣∂f j∂y

∣∣∣∣∣
2
(∂ν

∂x
− ∂ω

∂y

)

+2

〈
∂f j

∂x
· ∂f

j

∂y

〉(
∂ν

∂y
− ∂ω

∂x

)
dxdy.

We now assume that ωt ≡ 0 and νt a smooth function with support in
(−x0, x0)× [0, y0) ⊂ D+. Let

U =
n∑
j=1

∣∣∣∣∣∂f j∂x

∣∣∣∣∣
2

−
∣∣∣∣∣∂f j∂y

∣∣∣∣∣
2
 and V = 2

n∑
i=1

〈
∂f j

∂x
· ∂f

j

∂y

〉
.
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Then, from the fact that ωt ≡ 0 and by integration by parts,

0 = lim
δ→0

∫ y0

δ

∫ x0

−x0

U
∂ν

∂x
dxdy −

∫ x0

−x0

∫ y0

δ
V
∂ν

∂y
dydx

= lim
δ→0

∫ y0

δ

(
Uν(x0, y)− Uν(−x0, y)−

∫ x0

−x0

∂U

∂x
νdx

)
dy

− lim
δ→0

∫ x0

−x0

(
V ν(x, y0)− V ν(x, δ)−

∫ y0

δ

∂V

∂y
νdy

)
dx.

Using that spt ν ⊂ (−x0, x0) × [0, y0) and the Cauchy-Riemann equation
(∂U∂x = ∂V

∂y ), we obtain

0 = lim
δ→0

∫ x0

−x0

V ν(x, δ)dx.

Let ψ be a holomorphic function in D+ so that dψ
dz = ϕ = U + iV . Then

V = Im ϕ = Im dψ
dz = Im dψ

dx . Hence

0 = lim
δ→0

Im
∫ x0

−x0

∂ψ

∂x
ν(x, δ)dx = lim

δ→0
Im
∫ x0

−x0

ψ
∂ν

∂x
(x, δ)dx.

Since dψ
dz = ϕ ∈ L1(D+), ψ ∈ H1,1(D+) and ψ has boundary values in L1.

Thus,

0 = Im
∫ x0

−x0

ψ
∂ν

∂x
(x, 0)dx.

Since ν is an arbitrary function of Γ, we conclude Im ψ = 0 on Γ. By
the reflection principle, ψ can be extended to a holomorphic function in the
interior of D, and in particular, ψ is smooth across Γ. Thus,

0 = Im
∫ x0

−x0

dψ

dz
ν(x, 0)dx = Im

∫ x0

−x0

ϕν(x, 0)dx.

q.e.d.

With this, we are ready to prove the main regularity theorem.

Theorem 3.8 If f : X1 → Y is a harmonic map into a NPC space, then∣∣∣∣∂f∂x
∣∣∣∣2 ≤ 2

πr2
Ef and

∣∣∣∣∂f∂y
∣∣∣∣2 ≤ 2N + 2

πr2
Ef

at (x̄i, ȳi) ∈ X1 where 2r is the distance of (x̄i, ȳi) to ∂X1 and N is the
number of faces of X1. (Here, X1 is the edge piece of diameter 1 as defined
in Section 2.2.)
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Proof. We first prove an upper bound for
∣∣∣∂f∂x ∣∣∣2. We will use the

notation f i(x, y) = f(xi, yi). For ε > 0 sufficiently small, let g : Xr → Y be
defined by g(xi, yi) = f i(x+ ε, y). By inequality (16) applied to f restricted
to Xr and g, we see that

n∑
j=1

d2(f j(x̄, ȳ), f j(x̄+ ε, ȳ)) ≤ 1
πr2

∫
Dr(x̄,ȳ)

n∑
j=1

d2(f j(x, y), f j(x+ ε, y))dxdy.

Thus,

∣∣∣∣∂f∂x
∣∣∣∣2 (x̄i, ȳi) = lim

ε→0

d2(f i(x̄, ȳ), f i(x̄+ ε, ȳ)
ε2

≤ lim
ε→0

n∑
j=1

d2(f j(x̄, ȳ), f j(x̄+ ε, ȳ)
ε2

≤ 1
πr2

n∑
j=1

lim
ε→0

1
ε2

∫
Dr(x̄,ȳ)

d2(f j(x, y), f j(x+ ε, y))dxdy

≤ 1
πr2

n∑
j=1

∫
Dr(x̄,ȳ)

|∇f j |2dxdy

≤ 2
πr2

∫
X1

|∇f |2dµ.

Next, we prove an upper bound for
∣∣∣∂f∂y ∣∣∣2. Let ϕ =

∑N
j=1 ϕj where ϕj is

as in Theorem 3.7. By Theorem 3.7 Im ϕ = 0 on Γ and ϕ can be extended
to a holomorphic function in the interior of D. Because Re ϕ is harmonic,
the mean value inequality gives

Re ϕ(x̄, ȳ) =
1
πr2

∫
Dr(x̄,ȳ)

Re ϕ dxdy

for (x̄, ȳ) ∈ D and 2r = 1−
√
x̄2 + ȳ2. Thus,

|Re ϕ|(x̄, ȳ) ≤ 1
πr2

∫
Dr(x̄,ȳ)

|Re ϕ| dxdy

≤ 1
πr2

∫
D
|Re ϕ|dxdy

=
2
πr2

∫
D+

|Re ϕ|dxdy.
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Using the fact that

|Re ϕ| = |U | ≤
n∑
i=1

|∇f j |2,

we have

|Re ϕ|(x̄, ȳ) ≤ 2
πr2

n∑
i=1

∫
D+

|∇f i|2 =
2
πr2

∫
X1

|∇f |2.

Thus, ∣∣∣∣∂f∂y
∣∣∣∣2 (x̄i, ȳi) =

∣∣∣∣∣∂f i∂y

∣∣∣∣∣
2

(x̄, ȳ)

≤
n∑
j=1

∣∣∣∣∣∂f j∂y

∣∣∣∣∣
2

(x̄, ȳ)

=
n∑
j=1

∣∣∣∣∣∂f j∂x

∣∣∣∣∣
2

(x̄, ȳ)− Re ϕ(x̄, ȳ)

≤
n∑
j=1

∣∣∣∣∣∂f j∂x

∣∣∣∣∣
2

(x̄, ȳ) + |Re ϕ|(x̄, ȳ)

≤ 2n+ 2
πr2

∫
X1

|∇f |2.

q.e.d.

As a consequence of Theorem 3.8, we have the following.

Theorem 3.9 Let X and Y as above and V be the set of vertices of X. If
f : X → Y is a harmonic map, then for every p ∈ X−V , there is a constant
c independent of p so that

|∇f |2(p) ≤ c

δ2

∫
Bδ(p)

|∇f |2dµ

where δ = minv∈V dX(p, v) and f is locally Lipschitz continuous with the
Lipschitz constant at p ∈ X dependent only on Ef and δ.

Proof. For p ∈ X − V , let v be a vertex so that δ = dX(p, v). Fur-
thermore, let q be an edge point closest to p and let ρ = dX(q, v). If θ is
the angle between the edge containing q and the line segment from p to v,
then ρ = δ cos θ ≥ δ√

2
since θ ≤ π

6 by the assumption that the faces of X are
isometric to an equilateral triangle. Furthermore, the distance from q to an
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edge not containing q is equal to ρ sin π
3 ≥

δ
2 . Therefore, B δ

2
(q) is isometric

to the edge piece X1 modulo a dilation. Now restricting f to B δ
2
(q), noting

that the energy of f is independent of a conformal change of variables on
each face and applying Theorem 3.8, we have

|∇f |2(p) =
∣∣∣∣∂f∂x

∣∣∣∣2 (p) +
∣∣∣∣∂f∂x

∣∣∣∣2 (p)

≤ 4
π( δ2)2

∫
B δ

2
(q)
|∇f |2dµ

≤ c

δ2

∫
Bδ(p)

|∇f |2dµ.

The Lipschitz regularity of f follows immediately. q.e.d.

We now improve the local Hölder continuity result of Theorem 3.5 to
prove the uniform Hölder continuity of harmonic maps. [F] has claimed that
harmonic map f : X → Y is locally uniformly Hölder continuous; that is,
there exists constants A,α, δ so that

d(f(p), f(q)) ≤ AdαX(p, q) whenever dX(p, q) < δ

with A,α, δ independent of p locally. We note that [F] considers more general
metrics that we are considering in this paper. On the other hand, we prove
a slightly stronger statement.

Theorem 3.10 Let X and Y as above. If f : X → Y is a harmonic map,
then f is globally Hölder continuous. More specifically, there exist constants
A and α depending only on Ef and X so that

d(f(p), f(q)) ≤ AdαX(p, q) whenever dX(p, q) ≤ 1.

If Br = Dr, Br = Xr or Br = X ′
r as in section 2.2 and f : B → Y is a

harmonic map, then for ρ < r, σ < r − ρ and p ∈ Bρ,

d(f(p), f(q)) ≤ AdαX(p, q) whenever dX(p, q) ≤ σ

where the constant A and α depends only on Ef , Br, ρ and σ.

Proof. Note that by definition of X, %(v) =
√

3 for all v ∈ V . By
Theorem 3.5, we know that for each v ∈ V , there exists Av and αv depending
on Ef and v so that

d(f(p), f(v)) ≤ Avd
αv
X (p, v)
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for all p ∈ B√3(v). Let

A0 = max
v∈V

Av and α0 = min
v∈V

αv.

Let p, q ∈ X with dX(p, q) ≤ 1, t 7→ pt for t ∈ [0, 1], be a constant speed
geodesic from p to q in X and r = d(p, q).

CASE I: {pt : t ∈ [0, 1]} ∩Br(v) = ∅ for all v ∈ V .

Fix t ∈ [0, 1], let v0 ∈ V be so that dX(pt, v0) = minv∈V dX(pt, V ) and
σ = d(pt, v0). By Theorem 3.9,

|∇f |2(pt) ≤ c

σ2

∫
Bσ(pt)

|∇f |2 (18)

≤ c

σ2

∫
B2σ(v0)

|∇f |2 (19)

=
4c

(2σ)2

∫
B2σ(v0)

|∇f |2. (20)

If σ >
√
r then by inequality (18),

|∇f |2(pt) ≤
c

r

∫
Bσ(pt)

|∇f |2 ≤ c

r
Ef . (21)

Now assume σ ≤
√
r and let E(r) =

∫
Br(v0) |∇f |2dµ and I(r) =

∫
∂Br(v0) d

2(f, f(v))ds.
We consider the following two possibilities:

(i)
2σE(2σ)
I(2σ)

≥ 1.

Then by Corollary 3.3,

E(2σ)
(2σ)2

≤ E(1)
1

≤ Ef

and thus by inequality (20)

|∇f |2(pt) ≤ 4cEf . (22)

(ii)
2σE(2σ)
I(2σ)

< 1.

Since d2(f(p), f(v0)) ≤ A2
0(2σ)2α0 for p ∈ ∂B2σ(v0),

E(2σ) ≤ I(2σ)
2σ

≤ A2
0(2σ)2α0+1

2σ
≤ A2

04
α0σ2α0 .
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Thus, inequality (19) and the fact that r ≤ σ ≤
√
r,

|∇f |2(pt) ≤ cA2
04
α0σ2α0−2

≤ cA2
04
α0rα0−1. (23)

From inequalities (21), (22) and (23),

|∇f |2(pt) ≤ C1r
−1 + C2 + C3r

α0−1

where C1, C2, C3 depends only on Ef , A0 and α0. Therefore,

d2(f(p), f(q)) ≤ r2
∫ 1

0
|∇f |2(pt)dt

≤ C1r + C2r
2 + C3r

α0+1.

CASE II: pt ∈ Br(v) for some t ∈ [0, 1] and v ∈ V .

By repeated use of the triangle inequality, we have

d(f(p), f(q)) ≤ d(f(p), f(v)) + d(f(v), f(q))
≤ A0d

α0
X (p, v) +A0d

α0
X (v, q)

≤ A0(dX(p, pt) + dX(pt, v))α0 +A0(dX(v, pt) + dX(pt, q))α0

≤ A0(2r)α0 +A0(2r)α0

≤ 21+α0A0r
α0

Choosing A = C1 + C2 + C3 + 21+α0A0 and α = min{1
2 , α0}, we have the

desired result. The proof when the domain is Br follows from a similar ar-
gument. q.e.d.

4 Existence Results

We first start with the existence of the Dirichlet solution.

Proposition 4.1 Fix B1 = D1 or B1 = X1 or B1 = X ′
1 (cf. Section 2.2)

and let (Y, d) be a NPC space. Given φ : W 1,2(B1, Y ), define

W 1,2
φ = {u ∈W 1,2(B, Y )|tr(u) = tr(φ)}.

Then there exists a unique harmonic map f ∈W 1,2
φ and
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Ef = inf
u∈W 1,2

φ

Eu.

Here tr(u) ∈ L2(∂B, Y ) is the trace of the map u as defined in [KS1].

Proof. Follows exactly as in [KS1] Theorem 2.2. q.e.d.

We prove the following boundary regularity for the Dirichlet solution.

Lemma 4.2 Let Bτ = {z = (xi, yi) ∈ B1 : |z| =
√
x2
i + y2

i ≤ τ} and (Y, d)
be a NPC space. Given φ : Bτ → Y which is uniformly continuous up to
the boundary, the Dirichlet solution u : Bτ → Y with u|∂Bτ = φ|∂Bτ is also
uniformly continuous up to the boundary.

Proof. For z ∈ Bτ , a straight forward modification of the proof of the
Courant-Lebesgue lemma implies that for all σ < 1, there exist r ∈ (σ,

√
σ)

and a constant C > 0 so that

d(u(z1), u(z2)) ≤ C log
(

1
σ

)−1/2

for all z1, z2 ∈ ∂Br(z) ∩ Bτ . This combined with the uniform continuity of
φ implies that for all ε > 0, there exists δ > 0 sufficiently small so that

u((∂Bδ(z) ∩Bτ ) ∪ (∂Bτ ∩Bδ(z))) ⊂ Bε(u(z)).

Since the image of a harmonic map is always contained in a convex hull of
its boundary, this implies

u(Bδ(z) ∩Bτ ) ⊂ Bε(u(z))

and this shows the uniform continuity of u. q.e.d.

Let Γ be a finitely generated group. Then there exists a finite 2-complex
X and a normal covering p : X̄ → X with transformation group Γ. If Γ is
finitely presented, then we may take X so that π1(X) = Γ and p : X̃ → X
the universal cover, but in general, X̄ may fail to be simply connected. By
the construction in Lemma 2.1, we may assume that X is an admissible finite
2-complex without boundary. Moreover, we assign metrics on faces of X so
that X is a flat admissible finite 2-complex without boundary as in Section
3.
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Let γ1, ..., γN be the generators of Γ. An isometric action on Y by Γ is a
homomorphism ρ : Γ → Isom(Y ) (sometimes also called a representation of
Γ). A map f : X̄ → Y is called ρ-equivariant if

f(γp) = ρ(γ)f(p) for all p ∈ X̄ and for all γ ∈ Γ.

Here, and subsequently, we write ρ(γ)f(p) for ρ(γ)(f(p)). The energy of a
ρ-equivariant map f : X̄ → Y is given by

Ef :=
∫
X
|∇f |2dµ

where X is identified with a fundamental domain of X̄. A map f : X̄ → Y
is said to be in the space L2

ρ(X̄, Y ) if f is a ρ-equivariant map satisfying∫
X
d2(f,Q)dµ <∞

for any Q ∈ Y . Define a distance function d2 on L2
ρ(X̄, Y ) by

d2(f, g) =
∫
X
d2(f(p), g(p))dµ(p).

It is known (see [KS2] Lemma 2.1.2) that the curve t 7→ ut ∈ L2
ρ(X̄, Y ) for

t ∈ [0, 1], where ut(p) = (1−t)u0(p)+tu1(p), is a geodesic and (L2
ρ(X̄, Y ), d2)

is a NPC space. We will refer to {ut}0≤t≤1 as the geodesic homotopy of u0

and u1. The set W 1,2
ρ (X̄, Y ) is defined to be the subset L2

ρ(X̄, Y ) with finite
energy.

Proposition 4.3 Let X,Γ, ρ and Y as above. There exists a ρ-equivariant
globally Lipschitz map. Therefore, W 1,2

ρ (X̄, Y ) is non-empty.

Proof. The proof of Proposition 2.6.1 of [KS1] can be followed almost
verbatim to prove Proposition 4.3. q.e.d.

Proposition 4.4 Let X,Γ, ρ and Y as above. There exists a sequence {ui}i=1,2,... ⊂
W 1,2
ρ (X̄, Y ) and constants A, α and δ so that Eui → E0 := inf{Ef : f ∈

W 1,2
ρ (X̄, Y )} and

d(ui(p), ui(q)) ≤ AdαX(p, q) whenever dαX(p, q) < δ

for all i.
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Proof. We follow the argument of Theorem 2.6.4 of [KS1] making the
necessary modification to account for the fact that X is not a Riemannian
manifold. By Proposition 4.3, we know that W 1,2

ρ (X̄, Y ) is nonempty and E0

is finite. Let {vi} ⊂W 1,2
ρ (X̄, Y ) be a minimizing sequence, i.e. Evi → E0.

Choose a finite cover of X by balls {B1, ..., BN} of radius r < 1 and let
(1+ρ)Bj denote ball of radius (1+ρ)r with the same center asBj . Choose r, ρ
small enough so that (1 + ρ)Bj ’s are contained in the star of its center. Lift
the functions ηj and the sets Bj to functions η̄j and sets B̄j on X̄ invariant
under Γ. In each (1 + ρ)B̄j , let uji be the Dirichlet solution with boundary
values equal to that of vi. Extend uji outside of (1 + ρ)B̄j by defining uji
equal to vi there. Thus, Eu

j
i ≤ Evi . Furthermore, by Theorem 3.10, there

exist A and α independent of i so that

d(uji (p), u
j
i (q)) ≤ AdαX(p, q) whenever p ∈ spt (η̄j) ⊂ B̄j and d(p, q) ≤ ρr

2
(24)

Consider a measure ν on the set of natural numbers N defined by ν(j) =
η̄j(p). Define a function φ : (N, ν) → Y by setting φ(j) = uji (p). Let ui(p)
be the center of mass of φ, i.e.∫

N
d(φ(j), ui(p))dν(j) = inf

Q∈Y

∫
N
d(φ(j), Q)dν(j).

By following the proof of Theorem 2.6.4 of [KS1], we can see that for
sufficiently large i,

d2(ui(p), ui(q)) ≤ 2
n∑
j=1

η̄j(p)d2(uji (p), u
j
i (q)).

Thus, the regularity of uij follows from inequality (24). To show that {ui} is
a minimizing sequence, we refer again to [KS1]. q.e.d.

We are now ready to prove the existence theorem of ρ-equivariant har-
monic maps. We follow the proof of [KS2] taking into account that X is not
a Riemannian manifold.

Theorem 4.5 Let X,Γ, ρ and Y as above with (Y, d) a metric space of cur-
vature bounded from above by κ < 0. If ρ does not fix an equivalent class of
rays, then there exists a ρ−equivariant harmonic map.

Proof. Let Cε ⊂ L2
ρ(X̄, Y ) be the set of uniformly Hölder continuous

maps whose energy is bounded by E0 + ε, where E0 denotes the infimum of
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energies of maps in L2
ρ(X̄, Y ), and satisfies

d(f(q), f(q)) ≤ AdαX(p, q) whenever dX(p, q) ≤ δ

for some constants A, α, and δ. By Proposition 4.4, Cε is nonempty for every
ε > 0 if A is chosen large enough and α, δ are chosen small enough. We
check that Cε is a closed convex set. For u0, u1 ∈ Cε, let ut be the geodesic
homotopy of u0 and u1. Then by the property of NPC space

d(ut(p), ut(q)) ≤ (1− t)d(u0(p), u0(q)) + td(u1(p), u1(q))

for any t ∈ [0, 1] and p, q ∈ X̄ with dX̄(p, q) ≤ 1. This shows that the
energy is a convex functional in L2

ρ(X̄, Y ) and that the Hölder estimates are
preserved along geodesics in L2

ρ(X̄, Y ). Thus Cε is a convex set. The set Cε is
closed since the energy is lower semicontinuous and so is the Hölder estimate
since L2 convergence is equivalent to uniform convergence in the presence of
a uniform modulus of continuity.

Let p0 ∈ X, Q ∈ Y and Cε = {u(p0) : u ∈ Cε}. If there exists R > 0,
Cε ∩BR(Q) 6= ∅ for all ε > 0, then we can find a minimizing sequence which
is bounded in L2

ρ(X̄, Y ) and we can find a harmonic equivariant map (see the
proof of [KS2] Theorem 2.1.3 to verify that a bounded minimizing sequence
yields a minimizing equivariant map). If for any R > 0, there exists ε0 > 0
so that Cε lies outside of BR(Q) for all ε < ε0, then we show that there
exists an equivalence class of rays fixed by Γ. Let ui ∈ C2−i and consider the
triangle with vertices Q, ui(p0) and uj(p0) for i < j. Let ut be the geodesic
homotopy of ui and uj . Then ut ∈ C2−i and hence ut(p0) ∈ C2−i which
implies that ut(p0)∩BR(Q) = ∅, i.e. the geodesic between ui(p0) and uj(p0)
does not intersect BR(Q). By the CAT(κ) condition, the segments Qui(p0)
and Quj(p0) are uniformly close on bounded subsets of X. Therefore, this
sequence of segments is Cauchy in the topology of uniform convergence, and
converges to a ray σ. Then for each k = 1, ..., N

d(ρ(γk)ui(p0), ui(p0)) = d(ui(γk(p0)), ui(p0)) ≤ C.

independently of i using the uniform Hölder continuity of ui. If we let
δ(p) = maxk=1,...,N d(ρ(γk)p, p) then this means that δ(·) is bounded along
segment Qui(p0) for each i. Therefore, δ(·) is bounded along σ, and thus
the equivalence class of σ is invariant under Γ. q.e.d.

We also have the following uniqueness theorem:
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Theorem 4.6 Let X,Γ, ρ and Y as above with curv(Y ) < κ < 0. If f0, f1 :
X̄ → Y are ρ-equivariant energy minimizing maps, then f0 ≡ f1 unless
f0(M) is contained in a geodesic.

Proof. The uniqueness theorem of harmonic maps when the target has
strictly negative curvature is proven in [Me]. It is not too hard to extend
the proof there to cover the situation when the target is a admissible Rie-
mannian simplicial complex. q.e.d.

5 The Korevaar-Schoen compactness theorem

In this section, we consider compactness theorems for a family of harmonic
maps. The compactness of harmonic maps with a Riemannian domain was
obtained by Korevaar and Schoen [KS2]. The main difficulty in allowing
the domain X to be a simplicial complex is to control the energy near non-
manifold points.

Theorem 5.1 Let (Yk, dk) be a sequence of NPC spaces, ρk : Γ → Isom(Yk)
a sequence of isometric actions and fk : X̄ → (Yk, dk) a sequence of ρk-
equivariant harmonic maps so that Efk = 1. Then (1) there exists a NPC
space (Y∞, d∞), an isometric action ρ∞ : Γ → Isom(Y∞), a nonconstant
ρ∞-equivariant map f∞ : X̄ → (Y∞, d∞) and a subsequence fk′ so that fk′
converges locally uniformly to f∞ (see definition 3.3 of [KS2]); in particular,
dk′(fk′(·), fk′(·)) converges uniformly to d∞(f∞(·), f∞(·)) on any compact
subset K of X̄ and fk′ and f∞ satisfies the same modulus of continuity
estimates, (2) the energy density functions of fk′ converges a.e. to that of
f∞ and (3) f∞ is harmonic.

Proof.(of (1) and (2)) Since Efk = 1, {fk} has a uniform modulus of
continuity by Theorem 3.10. Following the proof of [KS2] Proposition 3.7,
we can show there exists a subsequence of {fk} (which we will still denote
by fk for simplicity) which converges locally uniformly in the pullback sense
to a limit map f∞ : X̄ → (Y∞, d∞).

We now show that f∞ is a non-constant map.
Fix k and v ∈ V and let

Ek(r) =
∫
Br(v)

|∇fk|2 and Ik(r) =
∫
∂Br(v)

d2
k(fk, fk(v))ds

for 0 < r ≤ 1. Now fix r and we treat the following two cases:

CASE 1 :
rEk(r)
Ik(r)

≥ 1.
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By Corollary 3.3,
Ek(r)
r2

≤ Ek(1)
12

which implies Ek(r) ≤ r2Ek(1) ≤ r2Efk = r2.

CASE 2 :
rEk(r)
Ik(r)

< 1.

By Theorem 3.10, Ik(r) ≤ CvrA
2r2α where Cvr = vol(∂Br(v)). Thus,

Ek(r) <
Ik(v)
r

≤ CvA
2r2α ≤ CA2r2α

where C = maxv∈V Cv.
Thus, CASE 1 and CASE 2 imply that for any k, v ∈ V and 0 < r < 1,

Ek(r) ≤ r2 + CA2r2α

and for any k and 0 < r < 1,

1 = Efk

=
∫
X−∪v∈V Br(v)

|∇fk|2dµ+
∫
∪v∈V Br(v)

|∇fk|2dµ

≤
∫
X−∪v∈V Br(v)

|∇fk|2dµ+ (#V )
(
r2 + CA2r2α

)
where #V is the number of vertices of X. Thus,

1− (#V )
(
r2 + CA2r2α

)
≤
∫
X−∪v∈V Br(v)

|∇fk|2dµ.

Let F be a face with vertices v1, v2, v3 and edges e1, e2, e3. Denote the ε-
neighborhood of ei by ei,ε. For 0 < ε < r, let Ω be smooth domain compactly
contained in F so that F − Ω ⊂ ∪3

i=1ei,ε. By [KS2] Theorem 3.11,

lim
k→∞

∫
Ω
|∇fk|2 =

∫
Ω
|∇f∞|2. (25)

By Theorem 3.9, the Lipschitz constant of fk in X−∪v∈VBr(v) is uniformly
bounded independent of k, say by L. Therefore,

lim sup
k→∞

∫
F−∪3

i=1Br(v)
|∇fk|2 ≤ lim sup

k→∞

∫
Ω−∪3

i=1Br(v)
|∇fk|2 + 3Lε

≤ lim
k→∞

∫
Ω
|∇fk|2 + 3Lε

=
∫
Ω
|∇f∞|2 + 3Lε

≤
∫
F
|∇f∞|2 + 3Lε.
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Since ε can be chosen arbitrarily small, we see that

lim sup
k→∞

∫
X−∪v∈V Br(v)

|∇fk|2 ≤
∫
X
|∇f∞|2.

Combined with (25), we obtain

1− (#V )(r2 + CA2r2α) ≤
∫
X
|∇f∞|2dµ.

Letting r → 0 and using lower semicontinuity of energy (cf. [KS1] Theorem
1.6.1), we conclude Ef∞ = 1. This shows f∞ is a nonconstant map and
finishes the proof of (1). The assertion of (2) follows immediately by the
fact that there is no loss of energy and the lower semicontinuity of energy.
We defer the proof of (3) to Section 7. q.e.d.

We also have a compactness theorem of harmonic maps in the case of
compact domains.

Theorem 5.2 Fix B1 = D1 or B1 = X1 or B1 = X ′
1 (cf. Section 2.2). Let

Bτ = {z = (xi, yi) ∈ B1 : |z| =
√
x2
i + y2

i ≤ τ}. Let (Yk, dk) be a sequence of
NPC spaces, fk : B1 → (Yk, dk) a sequence of harmonic maps with

Ik(1) =
∫
∂B1

d2
k(fk(x), fk(0))ds = 1

and Efk ≤ C. Then (1) there exists an NPC space (Y∞, d∞), a non-constant
map f∞ : B1 → Y∞ and a subsequence fk′ so that fk′ converges locally
uniformly to f∞ (see definition 3.3 of [KS2]), (2) for 0 < τ < 1, the energy
density functions of fk′ |Bτ converges a.e. to that of f∞ and (3) for 0 < τ < 1,
f∞ : Bτ → Y∞ is harmonic.

Proof.(of (1) and (2)) For the case when B1 = D1, the statement was
proved by [Su]. For any τ < 1, the Lipschitz constant of uk in uniformly
bounded in Bτ by Theorem 3.9. Therefore there exists a subsequence of fk
which converges locally uniformly in the pullback sense in Bτ to a harmonic
map by applying the argument of [KS2] Proposition 3.7. By choosing a
sequence τk → 1 and by a diagonalization procedure, we can pick a subse-
quence fk′ of fk which converges locally uniformly to a map f∞. We now
show that f∞ is non-constant. Let

Ik(r) =
∫
∂Br(0)

d2
k(fk, fk(0))ds
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and
Ek(r) =

∫
Br(0)

|∇fk|2dµ.

For θ ∈ (0, 1) and r0 ∈ (θ, 1], we have

Ik(r0)− Ik(θ) =
∫ r0

θ

d

dσ
Ik(σ)dσ

=
∫ r0

θ

d

dσ

∫
∂Bσ(0)

d2(fk, fk(0))dsdσ

=
∫ r0

θ

∫
∂Bσ(0)

2d(fk, fk(0))
d

dσ
d(fk, fk(0))dsdσ

+
1
σ

∫ r0

θ

∫
∂Bσ(0)

d2(fk, fk(0))ds.

By the Cauchy-Schwartz inequality and d
dσd(fk, fk(0)) ≤ |∇fk|2, we have

Ik(r0)− Ik(θ) ≤ εEk(r0) +
(

1
ε

+
1
θ

)∫ r0

θ
Ik(r)dr

for 0 < θ < r < 1 and any ε > 0. By Proposition 3.2,

r0Ek(r0)
Ik(r0)

≤ Ek(1)
Ik(1)

= C

and hence

Ik(r0)− Ik(θ) ≤
εCIk(r0)

r0
+
(

1
ε

+
1
θ

)∫ r0

θ
Ik(r)dr.

For any θ ∈ [12 , 1), pick r0 ∈ (θ, 1]. Then r0 ≥ θ ≥ 1
2 and by choosing ε = 1

4C ,

1
2
Ik(r0)− Ik(θ) ≤ (4C +

1
θ
)
∫ r0

θ
Ik(r)dr

≤ (4C + 2)
∫ 1

θ
Ik(r)dr

≤ (4C + 2)(1− θ) sup
r∈[θ,σ]

Ik(r).

Since r0 is an arbitrary point in (θ, 1], we have

1
2

sup
r∈[θ,1]

Ik(r)− Ik(θ) ≤ (4C + 2)(1− θ) sup
r∈[θ,σ]

Ik(r).
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Now choose θ sufficiently close to 1 so that (4C + 2)(1− θ) ≤ 1
6 . Then

Ik(θ) ≥
1
3

sup
r∈[θ,1]

Ik(r) ≥
1
3
I(1) =

1
3
.

By the uniform convergence of dk(fk(·), fk(·)) to d∞(f∞(·), f∞(·)), we then
have

I∞(θ) ≥ 1
3
,

and this shows that f∞ is not constant.
Next, we prove the convergence of the energies. We consider the case

when 0 is a vertex since the proof is simpler if 0 is not a vertex. For any 0 <
τ < 1 and 0 < r < τ , fk is uniformly Lipschitz continuous in Bτ −Br. Thus,
following the proof of Theorem 5.1, we can show that the Sobolev energy
and directional energy densities of fk converge to that of f∞ in Bτ − Br.
Using the energy estimate near a vertex of Theorem 5.1, we see that

E∞(τ) ≤ lim inf
k→∞

Ek(τ)

≤ lim inf
k→∞

Ek(τ)− Ek(r) + (r2 + CA2r2α)

= E∞(τ)− E∞(r) + (r2 + CA2r2α).

Since r can be chosen arbitrarily small, we see that Efk(τ) → Ef∞(τ). Since
there is no loss of total energy in B1−ε, the convergence of the energy density
functions follows by the lower semicontinuity of energy. We defer the proof
of (3) to Section 7 q.e.d.

6 Tangent maps

The tangent map of f is defined to be a limit of the blow up maps defined
below.

Definition Suppose f : X → Y is a map from a flat admissible locally
finite 2-complex X to a NPC space (Y, d). For p0 ∈ X and σ < inj(p0), let

Efp0(σ) =
∫
Bσ(p0)

|∇f |2dµ

Ifp0(σ) =
∫
∂Bσ(p0)

d2(f, f(p))ds
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and
µfp0(σ) = (Ifp0(σ)σ−1)−

1
2 .

If p0 is a face point, let B1 be the unit disk D1. If p0 is an edge point, let B1

be an edge piece X1 isometric to Bσ(p0). If p0 is a vertex point, let B1 be
an vertex piece X ′

1 isometric to Bσ(p0). Let dσ,p0 be the distance function
on Y defined by dσ,p0(·, ·) = µfp0(σ)d(·, ·). We define the σ-blow up map of f
at p0 as the map

σf : B1 → (Y, dσ,p0)

defined by

σf(z) = f(
z

σ
)

where Bσ(p0) is identified with Dσ, Xσ or X ′
σ via z = z(p) defined in Section

2.

Proposition 6.1 Let f : X → (Y, d) be a harmonic map from a flat admis-
sible 2-complex into a NPC space (Y, d). For each p0 ∈ X, let B1 = D1 if p0

is a face point, B1 = X1 if p0 is an edge point and B1 = X ′
1 if p0 is a vertex

point and let

α = lim
σ→0

σEfp0(σ)

Ifp0(σ)
.

There exists a sequence σi → 0 so that the σi-blow up maps σif : B1 →
(Y, dσ,p0) of f at p0 converge in the sense of Theorem 5.2 to a map f∗ :
B1 → (Y∗, d∗) into a NPC space. The map f∗ is Lipschitz continuous except
possibly at the vertex and is homogeneous of order α, i.e.

d∗(f∗(z), f∗(0)) = |z|αd∗(f∗(
z

|z|
), f∗(0))

for every z ∈ B1. We call f∗ a tangent map of f at p0.

Proof. We have

I
σf
0 (1) = (µfp0(σ))2

∫
∂B1(p0)

d2(f(σx), f(0))ds

= (µfp0(σ))2
∫
∂Bσ(p0)

d2(f(x), f(0))σ−1ds = 1
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and, by Proposition 3.2,

E
σf
0 (1) = (µfp0(σ))2

∫
B1

σ2|∇f |2(σx)dx

= (µfp0(σ))2
∫
Bσ

|∇f |2(x)dx

=
σEf0 (σ)

If0 (σ)
≤ Ef0 (1)

If0 (1)
≤ E0

for any σ < 1. Therefore, Theorem 5.2 implies that there exists σi → 0, so
that σif : B1 → (T, dσi) converges locally uniformly in the pull back sense
to a limit map f∗ : B1 → (T∗, d∗). The map f∗ is Lipschitz continuous in a
small neighborhood U of a non-vertex point since the Lipschitz constant of
σif in U is independent of i.

To see that f∗ is homogeneous, we will follow the argument of [GS]
Lemma 3.2. But we need to work with the fact that we have not yet shown
the harmonicity of f∗. First, observe

τEf∗0 (τ)

If
∗

0 (τ)
= lim

σi→0

τE
σif
0 (τ)

I
σif
0 (τ)

= lim
σi→0

τ(µfp0(σi))
−2Efp0(τσi)

(µfp0(σi))−2σ−1
i Ifp0(τσi)

= lim
σi→0

τσiE
f
p0(τσi)

Ifp0(τσi)
= α. (26)

Using equality (4) with σif replaced with f and the convergence of the energy
density functions, we see that

0 =
∫
Br(p0)

∂ζ

∂x
x

(
∂f∗
∂x

)2

+
∂ζ

∂y
y

(
∂f∗
∂y

)2

+ 2
∂ζ

∂x
y
∂f∗
∂x

∂f∗
∂y

+ 2
∂ζ

∂y
x
∂f∗
∂x

∂f∗
∂y

.

Taking ζ to be an approximation of the characteristic function of the ball
Br(p0), we get

d

dr
(Ef∗0 (r))) = 2

∫
∂Br(0)

∣∣∣∣∂f∗∂r
∣∣∣∣2 ds.

Additionally, Proposition 3.1 with f replaced by σif and ϕ a radial function
which is equal to 0 outside Br(0) and equal to 1 near 0 implies that

−
∫
Br(0)

∂

∂r
d(f∗, f∗(0))

∂ϕ

∂r
dµ
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=
∫
Br(0)

d(f∗, f∗(0))
∂2ϕ

∂r2
dµ

= lim
σ→0

∫
Br(0)

d(σif,σi f(0))
∂2ϕ

∂r2
dµ

= − lim
σ→0

∫
Br(0)

∂

∂r
d(σif,σi f(0))

∂ϕ

∂r
dµ

= −
∫
Br(0)

∇d(σif,σi f(0)) · ∇ϕ

≥ 2
∫
Br(0)

|∇σif |2ϕdµ

= 2
∫
Br(0)

|∇f∗|2ϕdµ.

Letting ϕ approximate the characteristic function of Bσ(0), we obtain∫
Br(0)

|∇f∗|2dµ ≤
∫
∂Br(0)

d(f∗, f∗(0))
∂

∂r
d(f∗, f∗(0))ds. (27)

Thus, following the proof of Proposition 3.2, we conclude that

d

dr
log

(
If∗0 (r)

rEf∗0 (r)

)

≤ 2(Ef∗0 (r)If∗0 (r))−1

(∫
∂Br(0)

d(f∗, f∗(0))
∂

∂r
d(f∗, f∗(0))ds

)2

−
(∫

∂Br(0)
d2(f∗, f∗(0))ds

)(∫
∂Br(0)

∣∣∣∣∂f∗∂r
∣∣∣∣2 ds

)]
≤ 0.

Therefore, by (26),(∫
∂Br(0)

d(f∗, f∗(0))
∂

∂r
d(f∗, f∗(0))ds

)2

=

(∫
∂Br(0)

d2(f∗, f∗(0))ds

)(∫
∂Br(0)

∣∣∣∣∂f∗∂r
∣∣∣∣2 ds

)
. (28)

Combined with (6) and (7) with f replaced by f∗, we have that

∂

∂r
d(f∗, f∗(0))ds =

∣∣∣∣∂f∗∂r
∣∣∣∣ (29)
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almost everywhere. For a ray γ(r) = rξ, ξ ∈ ∂B1(0) and r0 ≤ r ≤ 1,

length(f∗(γ)) =
∫ 1

r0

∣∣∣∣∂f∗∂r
∣∣∣∣ ds

=
∫ 1

r0

∂

∂r
d(f∗, f∗(0))ds

= d(f∗(ξ), f∗(0))− d(f∗(r0ξ), f∗(0))
≤ d(f∗(ξ), f∗(r0ξ)),

which implies that f∗(γ) is a geodesic path in Y∗. Additionally, (28) and (6)
with f replaced by f∗ implies that there exists a constant h(r) so that∣∣∣∣∂f∗∂r

∣∣∣∣ = h(r)d(f∗, f∗(0)).

Combined with the equality in (27), we obtain

Ef∗0 (r) =
∫
∂Br(0)

d(f∗, f∗(0))
∣∣∣∣∂f∗∂r

∣∣∣∣ ds = h(r)If∗0 (r).

On the other hand, we have that Ef∗0 (r) = αr−1If∗0 (r) so we conclude h(r) =
αr−1. Integration of

∂
∂rd(f∗, f∗(0))
d(f∗, f∗(0))

= h(r) =
α

r

along a ray from z to z
|z| implies the homogeneity. q.e.d.

With the help of the order function and tangent map, we can make the
following regularity estimate of a harmonic map f : X → Y on a face F of
X̃. This gives the explicit dependency of the Lipschitz constant in terms of
the distance to a vertex.

Theorem 6.2 For a vertex v of F , let

α = lim
r→0

rEv(r)
Iv(r)

where Ev(r) =
∫
Br(v) |∇f |2dµ and Iv(r) =

∫
∂Br(v) d

2(f, f(v))dµ. Then

|∇f |2(z) ≤ Cr2α−2

for all z ∈ B 1
2
(v) where C depends on Ef and r = dX(v, z).
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Proof. It will be sufficient to estimate the gradient bound in X ′
1
2

⊂ X ′
1

for a harmonic map f : X ′
1 → T dependent only on Ef and the distance to

the vertex v = (0, 0). For any point (xi, yi) ∈ X ′
1 − {v}, let α(xi, yi) be the

order of f at (xi, yi), i.e.

α(xi, yi) = lim
r→0

rE(xi,yi)(r)
I(xi,yi)(r)

.

Since f∗ is a homogeneous map of order α(xi, yi), the Lipschitz continuity
of f∗ implies that α(xi, yi) ≥ 1. In particular, Corollary 3.3 implies that for
any point (xi, yi) ∈ X ′

1 − {v},(
E(xi,yi)(r)

r2

)′
≥ 0, (30)

(
I(xi,yi)(r)

r3

)′
≥ 0 (31)

and
I(xi,yi)(r)

r
≤ E(xi,yi)(r). (32)

Let z0 = (xi, yi) ∈ X ′
1
2

be a face point and r0 = |z0|. We may assume without

the loss of generality that tan−1
(
yi
xi

)
≤ π

6 (otherwise, we can reparametrize
Wi ⊂ X ′

1 so that the line tan−1
( y
x

)
= π

3 is the x-axis and vice versa). Thus,
yi ≤ xi√

3
. Let δ = xi sin π

3 = 2xi√
3

and note that Bδ(xi, 0) ⊂ st(xi, yi) and

2yi ≤ 2xi√
3

= δ. Let σ < yi and ζ ∈ Bσ
2
(z0). By Proposition 3.6,

d2(f(ζ), f(xi, yi)) ≤
c

σ

∫
∂Bσ(zi,yi)

d2(f, f(xi, yi))ds = c
I(xi,yi)(σ)

σ
.

Furthermore,

I(xi,yi)(σ)
σ

≤
I(xi,yi)(yi)

y3
i

σ2 (by inequality (31))

≤
E(xi,yi)(yi)

y2
i

σ2 (by inequality (32))

≤ 4
E(xi,0)(2yi)

(2yi)2
σ2 (since Byi(xi, yi) ⊂ B2yi(xi, 0))
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≤ 4
E(xi,0)(δ)

δ2
σ2 (by inequality (30))

≤ 12
E(0,0)(2xi)

(2xi)2
σ2 (since Bδ(xi, 0) ⊂ B2xi(0, 0)).

By Proposition 3.2 and the assumption that α(0, 0) ≥ α, we have

E(0,0)(2xi)
(2xi)2α

≤
E(0,0)(1)

12α
= Ef

which implies
d2(f(ζ), f(xi, yi))

σ2
≤ 12cEf (2xi)2α−2

for all ζ ∈ Bσ
2
(xi, yi). Since (2xi)2 = 4x2

i ≥ 3x2
i + 3y2

i = 3r20,

|∇f |2(z0) ≤ Cr2α−2
0

where C depends on Ef . q.e.d.

7 Completion of the proof of Theorem 5.1 and 5.2

In this section, we will prove assertion (3) of Theorem 5.1 and Theorem 5.2;
i.e. we show that the limit map f∞ is harmonic in each of the compact-
ness theorems. In order to do this, we essentially repeat the arguments of
Theorem 3.9 and Theorem 3.11 resp. of [KS2]. But because we consider a
singular domain X̄, we must be careful with the mollification estimates used
in their proof.

Proof.(of Theorem 5.1 (3)) Let η be a smooth, non-increasing function
defined on the interval [0, 1] which is equal to 0 in the neighborhood of 1
and so that ∫

R2
η(|x|) = 1.

Let ηε(t) = 1
ε2
η
(
t
ε

)
. For a fixed ε > 0 and z ∈ X̄, define

ηz : X̄ → R+ ∩ {0}

by setting
ηz(x) = ηε(|x− z|).
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Note that for z ∈ X̄, we can only guarantee that the total integral of ηz is
equal to 1 if z is a interior point of a some face F and the distance from z
to ∂F is at least ε. For z, w ∈ X̄,

|ηz(x)− ηw(x)| = |ηε(|x− z|)− ηε(|x− w|)|

=

∣∣∣∣∣
∫ |x−w|

|x−z|
η′ε(t)dt

∣∣∣∣∣
≤ M

ε3
||x− w| − |x− z||

≤ M

ε3
|z − w|

where M = supt∈[0,1] η
′(t). Additionally, there exists constant M ′ so that∣∣∣∣∫

X
ηzdµ−

∫
X
ηwdµ

∣∣∣∣ ≤ M

ε3
|z − w| · µ(spt(ηz − ηw))

≤ M ′

ε3
|z − w| · (ε+ |z − w|)2

≤ M ′

ε
|z − w|

for |z − w| < ε. Thus, for |z − w| < ε,∣∣∣∣∣
(

ηz∫
X ηzdµ

)
−
(

ηw∫
X ηwdµ

)∣∣∣∣∣
=

1
(
∫
X ηzdµ) (

∫
X ηwdµ)

×
(
|ηz − ηw|

(∫
X
ηwdµ

)
+ ηw

∣∣∣∣∫
X
ηwdµ−

∫
X
ηzdµ

∣∣∣∣)
≤ 1

(
∫
X ηzdµ) (

∫
X ηwdµ)

× M
∫
X ηwdµ+ η(0)M ′

ε3
|z − w|

≤ M ′′

ε3
|z − w| (33)

where M ′′ only depends on M and M ′ and the number of faces of X.
With (Y, d) an NPC space, let h : X → Y satisfy

d(h(x1), h(x2)) ≤ Ctα0−1ε (34)

for |x1 − x2| < ε < t
3 with t the distance from x1 to V and

d(h(x1), h(x2)) ≤ Cε2α0 (35)
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for |x1 − x2| < ε. Let h̄(z) be the center of mass of the map h with respect
to the measure

dνz =

(
ηz∫

X ηzdµ

)
dµ.

The existence and uniqueness of h̄(z) follows, for example, from Lemma 2.5.1
of [KS1]. Set vt = (1−t)h̄(w)+th̄(z) where we use the notation (1−t)P+tQ
to denote the unique point in X which is distance td(P,Q) away from P and
(1− t)d(P,Q) away from Q. Then for any x ∈ X,

d(h(x), h̄(w)) + d(h(x), vt)

≤ d(h(x), h̄(w)) +
√

(1− t)d2(h(x), h̄(z)) + td2(h(x), h̄(w))

≤ 2d(h(x), h̄(w)) + d(h(x), h̄(z))
≤ 3d(h(x), h̄(z)) + d(h̄(z), h̄(w)). (36)

By Proposition 1.5.1 of [KS2], we have

d2(h̄(z), h̄(w))

≤ 1
2

lim sup
t→0

∫
B1(z)

d2(h(x), h̄(w))− d2(h(x), vt)
t

|dνz − dνw|

≤ 1
2

lim sup
t→0

∫
B1(z)

d(h(x), h̄(w)) + d(h(x), vt)td(h̄(z), h̄(w))
t

|dνz − dνw|,

where the triangle inequality was used to derive the second inequality. Di-
viding both sides by d(h̄(z), h̄(w)) and applying (36) for the first inequality
below and (33) for the second, we obtain

d(h̄(z), h̄(w))

≤ 1
2

∫
B1(z)

(3d(h(x), h̄(z)) + d(h̄(z), h̄(w))) |dνz − dνw|

≤ 1
2

∫
B2ε(z)

(3d(h(x), h̄(z)) + d(h̄(z), h̄(w)))
M ′′

ε3
|z − w|dµ (37)

for |z − w| < ε. Here, note that the domain of integration B2ε(z) in the
second integral above comes from the fact that spt(νz − νw) ⊂ B2ε(z). By
(34), if z is a point at a distance at least 3ε from V , then for x ∈ B2ε(z),
there exists a constant Ĉ so that

d(h(x), h̄(z)) ≤ sup
y∈Bε(z)

d(h(x), h(y)) ≤ Ĉtα0−1 · 2ε,
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where t is the distance of z from V . Hence, by (33) and (37),

d(h̄(z), h̄(w)) ≤ 1
2

∫
B2ε(z)

(6Ĉtα0−1ε+ d(h̄(z), h̄(w)))
M ′′

ε3
|z − w|dµ (38)

for z ∈ X − ∪v∈VB3ε(v) and w ∈ Bε(z), which implies

d(h̄(z), h̄(w))
|z − w|

≤ M̂

(
6Ĉtα0−1 +

d(h̄(z), h̄(w))
ε

)

where M̂ is dependent on M ′′ and the number of faces of X. Furthermore,
by (35),

d(h(x), h̄(z)) ≤ sup
y∈Bε(z)

d(h(x), h(y)) ≤ C(2ε)α0

for any z ∈ X and x ∈ B2ε(z). Hence, by (37),

d(h̄(z), h̄(w)) ≤ 1
2

∫
B2ε(z)

(
3C(2ε)α0 + d(h̄(z), h̄(w))

)M ′′

ε3
|z − w|dµ

for any z ∈ X and w ∈ Bε(z). Thus,

d(h̄(z), h̄(w))
|z − w|

≤ 1
2

∫
B2ε(z)

M ′′

ε3
(
3C(2ε)α0 + d(h̄(z), h̄(w))

)
dµ

≤ M̃

(
3C(2ε)α0−1 +

d(h̄(z), h̄(w))
ε

)

where M̃ is dependent on M ′′ and the number of faces of X. Therefore,
denoting h̄(z) by h ∗ ηε(z), we obtain

|∇(h ∗ ηε)|2(z) ≤
{
C ′t2α0−2, ∀z ∈ X − ∪v∈VB3ε(v)
C ′ε2α0−2, ∀z ∈ ∪v∈VB3ε(v)

where t is the distance of z to the nearest vertex and the constant C ′ is
independent of ε. Now consider a ε-neighborhood eε of an edge e inside
B3/4(v0) − B3ε(v0) for some vertex v0. We can cover this set by a finite
number of strips [2ε, 3

4 ]× [0, ε]. Thus, the energy of h ∗ ηε in eε ∩ (B3/4(v0)−
B3ε(v0)) is bounded by

C ′′
∫ ε

0

∫ 3/4

2ε
t2α0−2dtdτ = C ′′

1
2α0 − 1

(
(3/4)2α0−1 − (2ε)2α0−1

)
ε
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where C ′′ is a constant dependent C ′ and on the number of faces incident to
e. Additionally, the energy in Bv0(3ε) for v0 ∈ V is bounded by

C ′′′ε2α0−2 · ε2 = C ′′′ε2α0

where C ′′′ is a constant dependent on C ′ and on the number of faces in-
cident to v0. This implies that, we can bound the energy of h ∗ ηε in the
ε-neighborhood X(1)

ε of the 1-skeleton of X by C̄(ε+ ε2α0) for some constant
C̄ independent of ε. By Theorem 1.5.2 of [KS2], the energy of h ∗ ηε in
X −X

(1)
ε is bounded by

(1 + C̃ε) νE
h
ε

for some constant C̃. Here, νEhε is the ε-approximate energy of h as defined
in [KS1], [KS2]. In summary, the energy of h ∗ ηε has a bound of

Eh∗ηε ≤ (1 + C̃ε) νE
h
ε + C̄(ε+ ε2α0). (39)

Let h∞ : X̄ → (Y∞, d∞) be a ρ∞-equivariant harmonic map. Then h∞ is
globally Hölder continuous and the Lipschitz constant of h∞ in a neighbor-
hood at a distance t away from V is Ltα0−1 for some constant L and α0 by
Theorem 3.10 and Theorem 6.2. Thus, for any δ > 0 and k sufficiently large,
we can construct a piecewise constant map hk : X → Yk so that

νE
hk
ε < Eh∞ + δ (40)

and so that inequalities (34) and (35) are true with h replaced by hk by
following the proof of Theorem 3.9 [KS2]. By (39) and (40) and using the
fact that hk ∗ ηε is a competitor of fk, we get

Efk ≤ Ehk∗ηε ≤ (1 + C̃ε)(Eh∞ + δ) + C̄(ε+ ε2α0). (41)

Combining this with the lower semicontinuity of energy and noting that ε
and δ can be made arbitrarily small, we obtain

Ef∞ ≤ lim inf
k→∞

Efk ≤ lim sup
k→∞

Efk ≤ Eh∞

which implies that f∞ is minimizing. Taking h∞ = f∞ above, we conclude
that Efk → Ef∞ . The convergence of the energy density measures follows
from the lower semicontinuity of energy. This completes the proof of Theo-
rem 5.1. q.e.d.
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Proof.(of Theorem 5.2 (3)) Let wt be the Dirichlet solution in Bt, t ≤ τ ,
with boundary value equal to that of f∞|Bt . By following the argument of
[KS2] Theorem 3.11,

lim
t→τ

Ewt = Ewτ ≤ Ef∞ . (42)

Let

vt(z) =

{
wt(z), z ∈ Bt
f∞(z), z ∈ Bτ −Bt.

By the Lipschitz continuity of f∞ in Bτ −Bt and Lemma 4.2, vt is uniformly
continuous in Bτ . Furthermore, (42) implies that

lim
t→τ

Evt ≤ Ef∞ .

Fix δ > 0 and let t sufficiently close to τ so that

Ev = Evt < Ef∞ + δ

where v = vt. For 0 < ε < (τ − t)/2 sufficiently small,

νE
v
ε < Ef∞ + δ

where νE
v
ε is the ε-approximate energy in B t+τ

2
and ν as in the proof of

Theorem 5.1 (3). Since v is uniformly continuous, we can approximate it
closely enough in the C∞ norm to obtain a map ṽ : Bτ → Y∞ which is
piecewise constant in Bt, is equal to f∞ in Bτ −Bt and

νE
ṽ
ε < Ef∞ + δ.

For k sufficiently large, we follow [KS2] to construct a map ṽk : Bτ → Yk so
that ṽk is piecewise constant in Bt, equal to fk in Bτ −Bt and

νE
ṽk
ε < Efk + δ.

The mollification estimate in the proof of Theorem 5.1 (3) implies

E ṽk ∗ ηε ≤ (1 + C̃ε)(E∞ + δ) + C̄(ε+ ε2α0)

where the mollified map is defined in Bτ−ε. We apply [KS2] Lemma 3.12
(which can be readily modified to our setting) and follow the rest of the proof
of [KS2] Theorem 3.11 to bridge the gap between fk and ṽk ∗ ηε somewhere
in the strip Bτ − B τ+t

2
. The resulting map vk is a competitor for the fk

Dirichlet problem and thus

Efk ≤ Evk ≤ (1 + C̃ε)(E∞ + δ) + C̄(ε+ ε2α0) + 2δ +
∫
Bτ−Bt

|∇fk|2.
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This inequality, which is analogous to (41), shows

lim sup
k→∞

Efk ≤ E∞

which combined with the lower semicontinuity of energy implies that f∞ is
harmonic. This completes the proof of Theorem 5.2. q.e.d.

8 The convergence of equivariant harmonic maps

Let Γ be a finitely generated group, X a flat admissible finite 2-complex with
normal cover p : X̄ → X and Γ as its transformation group. A homomor-
phism ρ : Γ → SL(2,C) is called a SL(2,C)-representation of Γ. Let R(Γ)
be the set of SL(2,C)-representations of Γ. An element ρ ∈ R(Γ) defines a
character χρ : Γ → C by χρ(g) = Trace(ρ(g)). The character variety of Γ is
the set of equivalence classes of representations in R(Γ) where ρ1, ρ2 ∈ R(Γ)
are equivalent if χρ1 = χρ2 . We note that two irreducible representations are
equivalent if and only if they are conjugate (cf. [CuSh]). A sequence {ρk}
is said to converge to infinity in the character variety if χρk

(g) converges
to infinity for some g ∈ Γ. If we interpret SL(2,C) as the isometry group
of H3, then Theorem 4.5 assures the existence of a ρ−equivariant harmonic
map uρ from X̄ to H3 for each ρ ∈ R(Γ).

For a map u : X̄ → H3, let f : X̄ → (H3, 1√
Euk

dH3) be the map that is
pointwise equal to u but with the distance function on the target space H3

rescaled by a factor of 1√
Euk

. We will refer to f as the rescaled map of u.

Lemma 8.1 Suppose that {ρk} is a sequence of irreducible representations
converging to infinity in the character variety of Γ. If uk = uρk

: X̄ → H3

is the associated ρk-equivariant harmonic map, then Euk →∞.

Proof. Choose a compact set K ⊂ X̄ containing x and γx for some
x ∈ X̄. Suppose Euk ≤ C for all k and let fk be the rescaled map of uk.
Then, by Theorem 5.1, there exists a subsequence fk′ and a harmonic map
f∞ : X̄ → (Y∞, d∞) so that fk′ converges locally uniformly in the pull back
sense to a limit map f∞. In particular, for any x ∈ X̄ and any γ ∈ Γ,

inf
z∈H3

dH3(ρk(γ)z, z) ≤ dH3(ρk(γ)uk(x), u(x))

= dH3(uk(γx), uk(x))

≤
√
C · 1√

Euk
dH3(fk(γx), fk(x))

→
√
Cd∞(f∞(γx), f∞(x))
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On the other hand, if ρk converges to infinity, then

inf
z∈H3

d(ρk(γ)z, z) →∞

for some γ ∈ Γ (cf. [Ka] 10.2). This shows Euk →∞. q.e.d.

Theorem 8.2 Let {ρk}k=1,2,... be a sequence of unbounded irreducible SL(2,C)
representations of a finitely generated group Γ and uk : X̄ → H3, k = 1, 2, ...,
be ρk-equivariant harmonic maps. Let fk : X̃ → Yk be the rescaled maps
where Yk = (H3, 1√

Euk
dH3). Then there is a subsequence of fk which con-

verges locally uniformly in the pullback sense to a equivariant harmonic map
f∞ : X̃ → (T, d) into a R-tree. The tree T is minimal, i.e. it does not
contain any proper subtree invariant under the action of Γ, and the length
function of the action of Γ on T is in the projective class of the Morgan-
Shalen limit of the sequence {ρk}.

Proof. We apply Theorem 5.1 to show the convergence of the subse-
quence of fk to f∞. That fact that the limit space is a tree (T, d), that T
is minimal, and the length function is in the projective class of the Morgan-
Shalen limit follows readily from [DDW1]. q.e.d.

References

[BesF] M. Bestvina and M. Feighn Stable actions of groups on real trees.
Invent. Math. 121 (1995), 287-321.

[Ch] J. Chen. On energy minimizing mappings between and into singular
spaces. Duke Math. J. 79 (1995), 77-99.

[CuSh] M. Culler and P. Shalen. Varieties of group representations and
splittings of 3-manifolds. Ann. of Math. Soc. 350 (1998) 809-849.

[DDW1] G. Daskalopoulos, S. Dostoglou and R. Wentworth. Character va-
rieties and harmonic maps to R-trees. Math. Research Letters 5
(1998), 523-533.

[DDW2] G. Daskalopoulos, S. Dostoglou and R. Wentworth. On the Morgan-
Shalen Compactification of the SL(2,C) character varieties of sur-
face groups.

51



[EF] J. Eells and B. Fuglede. Harmonic maps between Riemannian poly-
hedra. Cambridge Tracts in Mathematics 142, Cambridge Univer-
sity Press, Cambridge 2001.
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