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1 Introduction

Let D be an unit disk in R? and (M, g) a smooth Riemannian manifold. If an immersed
surface u : D — M is minimal, i.e. stationary with respect to the area functional

/D \/det(7;5)dx

where (7;;)=u*g is the pull back metric on D, then by; + bgy = 0 with b;; the components
of the vector valued second fundamental form. The Gauss equation then gives,

Ks; = Kyp + biyby — b3y < Ky

where Ky is the Gauss curvature of the surface and K, is the sectional curvature of the
tangent plane to the surface in the manifold. This shows that the curvature of a minimal
surface is less than or equal to that of the ambient space. In this paper, we will show that
this fundamental curvature property of minimal surfaces also holds in certain singular
spaces.

When a smooth surface ¥ has a conformal metric with conformal factor A, it is well
known that the Gaussian curvature Ky is given by the formula

1
Ky = _ﬁA log A.
Hence, the condition that the curvature be bounded from above by x reduces to the
inequality
Alog A\ > —2kA.

Our main theorem states that this same type of inequality holds when we replace the
smooth Riemannian manifold with a complete metric space of curvature bounded from
above by k. We will call a map from a surface a minimal surface if it is conformal and
locally energy minimizing. Recall that these conditions on a map are equivalent to mini-
mality in the smooth setting. Because our target space can be quite singular, we can only
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expect the following weak inequality:

Main Theorem Let \ be a conformal factor of the pull back metric under a minimal
surface u : D — X where (X,d) is a complete metric space of curvature bounded from
above by k. Then for all non-negative p € C°(D),

/ log \Ap > —2/1/ O
D D

The complete metric spaces considered are length spaces, i.e. any two points can be
joined by a distance realizing curve. Furthermore, we impose a curvature bound from
above; here, the curvature bound is defined in terms of comparing geodesic triangles
with comparison triangles in a constant curvature surface (see Section 3 for the precise
definition.) Sometimes called Alexandrov spaces with curvature bounded from above,
they were studied by A.D. Alexandrov [A] in the 1950’s and advanced by him and the
Russian school of mathematicians. They include smooth Riemannian manifolds with an
upper bound on the sectional curvature but allow singularities of a very general type.
In fact, no restriction is made on the singularities. If we consider a class of Riemannian
manifolds with upper bound & on sectional curvature and a lower bound on the injectivity
radius, the completion by Gromov-Hausdorff metric turns out to be these metric spaces
of curvature bounded from above by ! k.

The motivation of this paper is twofold. One, we wish to extend the study of mini-
mal surfaces in Riemannian manifolds to spaces with singularities. Second, we wish to
introduce analytical tools in the study of singular spaces.

Recently, there has been much interest in the study of harmonic map theory for spaces
with singularities. A general existence and regularity theories of harmonic maps into Rie-
mannian simplicial complexes of non-positive curvature was developed in [GS] to solve
certain rigidity problems. This theory was further generalized for maps into complete
metric spaces with non-positive curvature by [KS] and independently by [J]. The case of
curvature bounded from above by some constant is treated in [S]. Some examples of the
application of the harmonic maps into certain singular spaces are Wolf’s [W1],[W2],[W3]
investigations of Teichmiiller spaces and the actions of fundamental groups of closed sur-
faces and Hardt and Lin’s [HL] study of neumatic liquid crystals. In light of the these
successful studies of the harmonic map theory in singular spaces, it is natural to consider
an extension of minimal surface theory to these settings.

This paper is organized as follows. In Section 2, we outline Sobolev space theory
for metric space targets due to [KS]. In Section 3, we recall the notion of metric spaces
with curvature bounds and derive some inequalities for the distance functions that will
be important in Section 4. Furthermore, we define area for maps into these spaces which
allows us to consider the Plateau Problem. We note that Nikolaev [N2] is the first to
consider the Plateau Problem; there he takes a defintion of area that is different from
ours. Our definition is a natural extension of the definition of area for maps into smooth



Riemannian manifolds and allows us to use a classical approach in the solution of the
Plateau Problem. In Section 4, we will prove an inequality satisfied by the energy density
function e(u) of an energy minimizing map by a careful consideration of the curvature
bound of the target. If uw : M — N is an energy minimizing ma! p between smooth
Riemannian manifolds, then the Bochner’s formula gives

1
iAe(u) = [Vdu]* =" < RN (useq, uses)useq, useg > + > Ricy(u6;, u*6;)
a,B i

where eq, ..., e, is an orthonormal basis for T'M and 64, ..., 0, is an orthonormal basis for
T*N. In particular, if M is flat and N has sectional curvature bounded from above by k,
then

Ne(u) > —2ke(u)?.

We will see that the energy density function of energy minimizing maps into metric
spaces of curvature bounded from above by k weakly satisfies the above inequality. This
inequality will be the starting point of the proof of the main theorem.

Section 5 is devoted to the proof of the main theorem. In Section 6, we make a geo-
metric interpretation of the analytical result of Section 5; namely, we consider the natural
distance function induced by the metric A(dz? + dy®) which defines a metric space of
curvature bounded from above by x. In the case when the map minimizes area, Professor
Nikolaev has pointed out that this result follows from the works of Reshetnayk [R1],[R2].
We thank him for communicating this observation.

Acknowledgment. This is a part of the author’s doctoral dissertation at Stanford
University. She would like to express deep gratitude to advisor Richard M. Schoen for his
support and encouragement. She also thanks the refees for their comments.

2 Sobolev Space Theory for Maps to Metric Spaces

Let €2 be a compact domain in R"™ and (X, d) any complete metric space. In [KS], Korevaar
and Schoen develop the space W12(Q, X). Here we define this space and collect some of
their results.

A Borel measurable map v :  — X is said to be in L?(Q, X) if for P € X,

/de(u(x), P)dz < 0.

Note that by the triangle inequality, this definition is independent of P chosen. For
u € L*(Q, X), we can construct an € approximate energy function e, : 2. — R,

ew) = nloB.()] " | " dz(“(‘g’ uw) s,
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Here €, is the set of points in 2 with distance from the boundary more than € and B.(x)
is a ball of radius € centered at z. Letting e.(x) = 0 for Q— ., we have that e (z) € L'(2)
and by integrating against continuous functions with compact support, these functions
define linear functionals E, : C.(Q) — R. We say u € L?(Q, X) has finite energy (or that
ue Wh(Q, X)) if

E" = sup limsup E.(f) < oo.
feCe(Q),0<f<1  €—0

It can be shown that if u has finite energy, the measures e.(z)dr converge in the
weak™ topology to a measure which is absolutely continuous with respect to the Lebesgue
measure. Hence, there exists a function e(x), which we call the energy density, so that
e.(r)dr — e(x)dz. In analogy to the case of real valued functions, we write |Vu|?(x) in
place of e(x). In particular,

E“:/ |Vul*dz.
Q

Similarly, the directional energy measures |u,(Z)|*dz for Z € T'Q) can also be defined
as the weak* limit of measures #e.dx, where

e () = d (u(x),z;(x + eZ))‘

Furthermore, for Z € T,

s (2)][ () = Tim 2C02) ulw + ew)

e—0 €

a.e. x € (2. Finally, we have
Vul = [ [u(2)Pdo(2).

This definition of Sobolev space W12(Q, X) is consistent with the usual definition when X
is a Riemannian manifold. The following theorems allow us to use variational methods in
the setting where the target space of maps is a complete metric space. Note that u, — u
in L2(Q, X) will mean d(ug, u) converges to 0 in L*(Q), i.e.

lim /dQ(uk,u) — 0.

k—o0

Theorem 2.1 ([KS] Theorem 1.6.1) If {u,} C W'(Q, X) is a sequence with uni-
formly bounded W'2(Q, X) norms and uy, — u in L*(Q, X), then v € WH3(Q, X) and

E(u) = liminf E(uy).
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The following is a generalization of the W'? trace theory.

Theorem 2.2 ([KS] Theorem 1.12.2) Any u € W'2(Q, X) has a well-defined trace
map (denoted tr(u)), with tr(u) € L*(09Q, X). If {ux} C W(Q, X) is a sequence with
uniformly bounded energies and uy, — u in L*(, X), then tr(ug) converges to tr(u) in

L2909, X).
We also have the following Rellich type precompactness theorem.

Theorem 2.3 ([KS] Theorem 1.13) Let (X, d) be locally compact. If {up} C W12(Q, X)
satisfy

/Q & (up(z), Q)dr + E(uy) < C,

where Q is a fized point in X, then a subsequence of {uy} converges in L*(2, X) to a
finite energy map u.

Using these theorems, one can solve the following.

The Dirichlet Problem Let (X,d) be a complete locally compact metric space. Let
e WH2(Q, X). Define

W% ={ue Wh(Q,X) : tr(u) = tr(y)}.
Let By, =inf{E(v) : v € W$2} There exists u € T/quzlj’2 such that E(u) = Ey.

If we assume an upper curvature bound on the target (see Definition 3.1 in the next
section), we get nice regularity properties of the solution. In fact, [KS] shows that the
solution is Lipschitz when X is non-positively curved and [S1] shows that the same holds
in the case when curvature is bounded from above by some constant provided that the
boundary data lies in a small geodesic ball. In both cases, the map is Holder continuous
to the boundary.

3 Metric Spaces of Curvature Bounded from Above

In this section, we will recall the definition of curvature bounds in a metric space, give
some technical propositions and define the notion of area for maps into these singular
spaces.



3.1 The Definition

Definition 3.1 A complete metric space (X, d) is said to have curvature bounded from
above by k if the following conditions hold:

(i) (X,d) is a length space; that is, if P,QQ € X there exists a distance realizing curve
connecting P and Q). (We call such distance realizing curves geodesics.)

(ii) Let S, be a surface of constant curvature k. For any three points P,Q, R € X (with
dpg+dor+drs < 7= NG Zf/‘& > 0) and choices of geodesics ypg (of length 1), yor (of length

p) and vpr (of length q) connecting the respective points, call a triangle A(PQR) in Sy
with vertices P, Q, R and opposite side lengths p, q,r a comparison triangle in S,. For any
0 < A <1 write Qx for the point on yor so that d(Q, Q) = Ap and d(Qx, R) = (1 — \)p
and define Qx € S, analogously to Q», then

d(P,Qx) < ds, (P, Q).

Remark: These spaces are sometimes defined in terms of an angle excess (see [ABN]
for example). The upper angle between geodesics are defined as follows: if v and o are
geodesics having a common point P with R € 7,Q € ¢ and v = d(P,Q), ¢ = d(P, R),
we let aZ_(r,q) be the angle at P of the comparison triangle A(PQR) of S... The upper
angle between v and o is

a(y,0) = limsup af, (r, q).

r,q—0

This definition is independent of k. (X, d) is said to be a metric space of curvature bounded
from above by & if for every triangle A(PQR) in X (with dpg + dor + drp < %),

a+B+v <o+ B+

where «, 3,7 are the upper angles of A(P, @, R) and «, ., 7« are angles of the compar-
ison triangle in S,. This definition is equivalent to the above definition of a curvature

bound.

These spaces are referred to as CAT (k) spaces in literature. If k = 1, then S, is a
standard unit sphere S%. Note that if x > 0, we can make X into a CAT(1) space by
rescaling the distance function. If K = —1, then S, is the hyperbolic plane H2. Again, note
that if K < 0, then by rescaling the distance function, we can make X into a CAT(—1)
space.

3.2 Technical Propositions

This important result is given in [R1] and will be basis of the propositions that follow.
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Theorem 3.2 (Reshetnyak) Let (X,d) be a metric space of curvature bounded above
by k and T be a closed rectifiable curve in X (of length less than or equal to ﬁ if k>0).

Then there exists a convex domain V in S, and a map ¢ : V — X such that p(0V) =T,
the lengths of the corresponding arcs coincide, and dg, (z,y) > d(p(z), ¢(y)), forx,y € V.

Let X be a CAT (k) space and P,Q,R,S € X. If dpg,dgr < %, then there is a

unique geodesic between P and S (@ and R, resp.). We denote by P; (resp. @¢) the point
on this geodesic such that dpp, = tdps (resp. dgg, = tdor)-

Let (X,d) be a CAT'(1) space. Given ordered sequence {P, @, R, S} C X with dpg +
dgr+drs+dgp < m. Theorem 3.2 asserts that there is an ordered sequence {P, Q, R, g} -
S? such that the quadrilateral associated with it (i.e. the four ordered points, the geodesics
between consecutive points and its interior) is convex and

d(P,Q) = ds:(P,Q), d(Q,R)=ds(Q,R),
d(R,S) =ds(R,S), d(S,P)=ds(S,P),
d(Pt7 Qs) S d52 (Pta Qs)

We will call {P,Q,R,S} a spherical subembedding for {P,Q, R, S}. Similarly, when
(X,d) is a CAT(—1) space, we can define a hyperbolic subembedding

{P,Q,R,S} c H%.

In the propositions below, 0"(-) denotes terms that are nth order in the specified
variables.

Proposition 3.3 Let (X,d) be a metric space of curvature bounded from above by k with
k=1 or—1. Then for {P,Q,R,S} C X (withdpg+dgr+ drs+dsp <7 ifx=1), the
following inequalities hold:

Forx =1,

cosdpg, + cosdrg, , > cosdpgcostdgr + sindpgsintdgr cosa +
cos dpg costdgr + sin drg sin tdgg cos 3 (1)

sin(1 — t)dps

cosdp,q, > Sndrs (cosdpg costdgr + sindpg sintdgr cos a) +
sintd
—— (cosdprs costdgr + sin dgg sin tdgg cos 3) (2)
sSin dps

where « = /PQR and 8 = /SRQ and {IS,Q,E’, S} is a spherical subembedding for
{P,Q,R,S}.



Forx = -1,

coshdpg, + coshdrg, , < coshdpgcoshtdgr — sinhdpg sinhtdggr cosa +
cosh drg coshtdgr — sinh drg sinh tdgr cos 3

smh(l — t)dps
sinh dpg
sinh tdpg

sinh dpg

cosh dp,q, (cosh dpg coshtdgr — sinh dpg sinh tdgg cos o) +

(cosh dpg coshtdgr — sinh drg sinh tdgg cos ()

where o = ZPin and 3 = ZSY?Q and {P,Q,fi, S*} 15 a hyperbolic subembedding for
{P,Q,R,S}.

Proof:  'We will only prove the case when x = 1 by comparing the distance function
d to the distance function dg= of the sphere. The proof of the case when x = —1 follows
analogously by considering the distance function of the hyperbolic plane instead of the
sphere.

Let {X,Y,Z} € 5% such that dxy + dyz + dzx < ®. We let Y; be the point on
the geodesic between Y and Z such that dy,y = tdyy and 0 = /s2:Y XZ. We have the
following equalities:

cosdyyz = cosdyy cosdyyz + sindxy sindyz cos

sin(1 —t)d sin td
cosdxy, = Mcosdxy+ - Yz cosdxyz.
sindy z sindy z
Hence we have,
cosdpg, +cosdps, , = cosdppcostdap +sindpasintdsp cosa +

cosdpg costdyp + sindpg sintdgg cos 3,

and

Sin(l — t)dpsv

cosdp,a, sindpg (cosdpg costdyp + sindpg sintdgp cos )
sintdpg
, dfjig(cosdég costdyp + sindpg sintdgp cos 3). (3)
sindpg

The result follows immediately from Theorem 3.2. O



Proposition 3.4 Let (X,d) be a metric space of curvature bounded from above by k
with kK = 1 or —1 and {P,Q, R, S} C X (with dpg + dor + drs +dsp < mif Kk = 1).
Furthermore, let o, 3 as in Proposition 3.3. Then

dpg cos o + dggs cos 3
= dQR—dpS+02<dpQ,dRS> (4)

and for k =1, we have
dpg cos o + dpgs cos 3

1
> dgr —dps — §dPQddeéR

+0%(dpq, drs)0*(dgr) (5)
and for k = —1, we have
dpg cosa + dgg cos 3
> dor —dps + ;dPQdRSdéR
+0*(dpg, drs)0®(dgr)- (6)
Proof: Once again, we will only prove the case when x = 1 since the case k = —1 fol-

lows analogously. Again, let {pj Q. R, S} be the spherical subembedding of {P,Q, R, S}.
Assume w.l.o.g., Q = (1,0,0), R = (cosf,sin0,0) € S? C R3. Note for any X,Y € S? C
R3, we have that cosdg:(X,Y) = X - Y. (Here - denotes the usual dot product in R3.)

In particular, we see that dgp = 6. Let v (resp. o) be a unit speed parameterization of
a geodesic on 52 emanating from Q (resp. ]:2) such that, for ¢ > 0, Zgz”y(t)QR = « (resp.
/s20(t)RQ = ). If ¢(t) = (cost,sint,0), then v and o must satisfy:
7 (0) - ¢'(0) = cosa, [y (0)] =1
a'(0) - ¢'(0) = cos(m — B), |o’(0)| =1.
Hence, we have that
7(0) = (17070>

(0, cos av, sin v)
’7”(0) = (_17 0, 0)

\2\

—~
@)

~—
I

and that

o(0) = (cosf,cosb,0)
o'(0) = (cossinf, — cos [ cosb,sin )
d"(0) = (—cosf,—sinb,0).
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Using the Taylor series expansion,

1) - o(s) =

t?2 4 52
cosf +tcosasinf + scosFsinf — i

cos 6

—tscosacos Bcost + tssinasin 3 + 0°(t, s).
Let f(t,s) =~(t) - o(s). Then again using Taylor series expansion,

ds2(7(t), 0(s))

0 9]

= arccos f(0,0) + ta(arccos oo + sa—(arccos Nloo)
s

t? 02 2 92

5 gz arceos floo) + %@ (arccos )] (0.0

2

(arccos f)](0.0) + 0%(t, s)

_|_

t
+83t83
= #—tcosa— scos(3

2

t2cos@ — cos®> acosl s cosf — cos? B cosl

2 sin 6 + 2 sin 6
sin asin 3
—ts——— 2 4+ 03(¢, s).
" sing +0°(t:5)

This shows
dpgcosa + dpg cos 3
dop — dps + 0%(dpg, ds)-
Hence equation 4 follows the above equality. By Cauchy-Schwartz inequality,

t?sina s?sin?

tssinasin 0 <
B<— —,

and thus we obtain

t2 2
5(005 0 — cos® acos ) + %(cos 6 — cos® B cos )

—tssinasin 3
t2 2

§(cos 6 — cos® acos ) + %(COS 6 — cos® Bcosd)

—tssinasin fcosf — ts(1 — cos ) sinasin 5
> —ts(1 — cosf)sinasin
> —ts(1 —cos?).
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Since, 1 — cosf = % +0%(0) and = = +(1+ 0%(#)), we obtain
ds2(7(t),0(s))

> 60 —tcosa—scosf—

ts(1 — cosf)
sin 0
tsf
> 0 —tcosa— scos 3 — % + ts0%(0).
Hence we obtain,
dpg cosa + dpgcos 3

1
> dor — dps — 50padrsdon
+0%(dpg, d3)0%(dgp)-

Now inequality 5 follows immediately. O

Proposition 3.5 Let (X,d) be a metric space of curvature bounded from above by rk with
k=1o0r—1and {P,Q,R,S} C X (with dpg + dgr + drs +dsp < m if Kk = 1). Let
dy = dggr, di = dpg, and l; = dp,g, where, P, (resp. Q) is the point on the unique
geodesic between P and S (resp. Q and R) such that dpp, = tdps (resp. dog, = tdgr).
Then for k = 1, we have

P4, < B4+ 2lhd + 0%(t)0*(lo, )
0*(lo, 11) + t0%(lo, 1,)0(do, dy) + t03(lo, 11) (7)

and for k = —1, we have

P+, < B+12—2lld+ 0*1)0%(l, 1)
0%(lo, 11) + t0%(lo, 1) 0 (do, dy) + t0°(lo, 11).

Proof: Again, we will only prove the case when x = 1. Inequality 7 follows imme-
diately from Theorem 3.2 if we can prove the same inequality in the sphere. Hence, let
{P,Q, R, S} be four points in the sphere with dp5+dgp+dpg+dsp < mand let dy = dgp,
diy = dpg, and l; = dp,5, where, P; (resp. @¢) is the point on the unique geodesic between
P and S (resp.  and R) such that dpp, = tdpg (vesp. dgg, = tdgp). (From equation 3,

cosly +cosli_; =

sintd sin(1 —t)d
( <in dll cos(1 —t)do + (smdl)l cos tdy)(cosly 4 cosly)
in td in(1—t)d
+(212 tdi sin(1 — t)dy + Sul(smdl)l sintdy)(sin lp cos o + sin l; cos [3).
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By expanding sin dy and sin d; using Taylor series and then using inequality 5, we have

sin [y cos a + sin [y cos 3
= lpcosa + 1y cos B+ 03(ly, 11)

lolyd?
> do—dy — 0+ 02(l, 11)0%(do) + 0*(lo, 1)
Also note that 2 p
cosly +cosli_y =2 — é — % + 0%y, Ih).
Hence
BB
Ty g PO
oz, sin td, sin(1 — t)d,
= - — = lo, [ 1 —1t)dy + ———— costd
( 2 2 + 0o, 1))(sind1 cos( Jdo + sin d; cos tdo)
lolyd intd in(1—t)d
(do — dy — 00D 20 1303 (de) + 0 (. 1) i1 — g + SO .
sin dq sin d;
We now use,
sin td, sin(1 — t)dy 5
1—1t)d —_— tdg =1 t
sin d; cos( Jdo + sin d; costdo +0°(t)
and in ¢d in(1— £)d
sintd; | sin(l —¢)dy . 9
1—1t)d —_— tdy = 2t t
sin dl Sln( ) 0+ sin dl S tdo +0 ( )
to obtain
—2+§+l%—‘f+04(z l)
9 9 0,01
intd in(1 —t)d
= —2(81_n Lcos(1 — t)dy + M cos tdp)
SN aq sin aq
B0 2 "
+§+§A4mwo%Jg+oamm
Sil’ltdl . Sil’l(]_ —t)dl .
—(dn — 1— it Sl At
(do — dy)( snds sin(1 — t)dy + s ds sin tdy)
+tlolydg + 02(t)0% (Lo, 1) + 0% (Lo, 11)0° (do, dy) + 0 (o, 1y).
Hence,

—4+12+17,

—2
= [2(sin tdy cos(1 — t)dy + sin(1 — t)d; costdy)
sin dy

+(do — dy)(sintdy sin(1 — t)dy + sin(1 — t)d; sin tdp)]
13+ 12+ 2tlol, d20%(1)0% (lo, 1)
+0*(lo, 1) + t0*(lo, 11)0?(do, dy) + t0°(lo, I).
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If we let

F(x) = 2[sintd; cos(l —t)(x + dy) + sin(1l — t)dy cost(z + dy)]

+x(sintdy sin(l — t)(z + dy) + sin(1 — ¢)d; sint(z + dy)),

then the lemma will follow from the following claim with x = dy — d;.

Claim: There exists o > 0 such that for |z| < o, then F'(z) > 2sind,.

Proof of claim:

F//(O)

It is easy to check that F'(0) = 2sind;, F’(0) = 0. Furthermore,

= —2(1 —t)?sintd; cos(1 — t)d; — 2t*sin(1 — t)d; costd,
+2(1 — t)sintd; cos(1 — t)d; + 2t sin(1 — t)d, costd;
2t(1 — t)sintd, cos(1 — t)dy + sin(1 — t)d; costd,

= 2t(1 —t)sind,

0.

v

Since F'is a C*° function, the claim follows. O

3.3 The Pull-back Inner Product and the Area

We make sense of the notion of area for maps u € W'?(D, X) when X has an upper
curvature bound. We do this by defining an inner product structure on D which general-
izes the pull-back metric for a smooth map between smooth Riemannian manifolds. The
proof of the existence of such an inner product structure is an easy generalization of the

proof in [KS] for maps into NPC space using the following technical lemma.

Lemma 3.6 Let (X,d) be a CAT(1) space. Let P,Q,R,S € X. Then

dpp+ dog < dpg + do + dis + dpg + 0(0),

where 0 = max{dp), dj g, dgg, dpg}.

We use inequality 3 to obtain

1
cosdppr + cosdgs > i(cos dpg cosdgr + cosdpg cos drg

+ cos dpg cos dpg + cos dgr cos dps)
+sindpg sin dgr cos /@) + sindpg sin drg cos /S
+sindpg sin dpg cos P + sindgg sin drs cos LR).
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Expanding terms, we obtain,

dpp+dor < dpg+ dor + dis + dps
—dpodgrcos LQ — dpgdprs cos LS
—dpgdps cos /P — dgordrs cos LR+ o(0).

Now consider ordered points {_P, Q, R,S} C f_{2 such that, Q, the quadrilateral associated
with it is convex and dpg = |P—Q|,dgor = |Q — R|,drs = |R—S|,dps = |P—S|. Letting

/P = /SPQ, /Q = (PQR,

/R=/QRS, /S = /RSP
in RZ,_we have /P + /Q + /R + /S = 4x. Furthermore, /P < /P,/Q < /Q,/R < /R,
and 25 < /S. By the Gauss-Bonnet Theorem,

1P+1Q+1R+15—®n:LdA

Hence, /Q — /Q = 0*(dpq, dor, drs, dps). We can rewrite equation 3.6:

dpp +dgr —0(0) < dpg + dhp + dis + dps
—dpgodgr cos /Q — dpgdgs cos /S
—dpgdps cos /P — dgrdprs cos /R.

Letting A, B,C, D be the oriented vectors pointing to the consecutive vertices of the
Euclidean quadrilateral Q, i.e.

A=Q—-P, B=R—-Q
C=S—-R, B=P-2F5,
we have that,
—|P—-Q||Q— R|cosQ — |P— S| |R— S|cos S
—|P—Q| |P—S|cosP—|Q — R| |[R— S|cosR

= A-B+B-C+C-D+D-A
= (A+C)-(B+C)
- —|A+ C]2
Here, we have used the fact that A+ B + C' + D = 0. Hence,
O

As a result of the above, the directional energy functions satisfy a parallelogram law:
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Lemma 3.7 Let Q C R™ and let X be a CAT(1) space. If u € W'?(Q, X), then for any
Z,W e T'(TQ), the parallelogram identity

w(Z + W)+ [ulZ = W) = 2un(Z)* + 2|u.(W)?
holds for a.e. x € ().

Proof: Use Lemma 3.6 with P = u(z), @ = u(x + €Z), R = u(x + eW), S =
u(x + e(Z + W)). Divide by ¢* and let ¢ — 0 to obtain

[ (Z + W)+ [u(Z = WP < 20un(2) + 2|u (W)

for a.e. x € ). Repeat using Z + W and Z — W in place of Z and W to get the opposite
inequality. O

For Z,W € T(T), we define
R(ZW) = {JunlZ + WP = (2 — WP,
Proposition 3.8 The operator m defined above,
7 :D(TQ) x T(TQ) — L', R)
1 continuous, symmetric, bilinear, non-negative and tensorial.
Proof: The proof is the same as the one given in [KS] (Theorem 2.3.2).

Definition 3.9 7 as above is the pull back inner product under the map u.

We can now define the area functional A : W'?(D, X) — R by

Alu) = / det 7 dx'dx?
D

_ /D VE) 1 (m)es — (m,)3da’ do?

where (71')1']' = Wu(al’, 3])
Thus, we can formulate:

The Plateau Problem Let D be a disk and I' be a closed Jordan curve in X and let

Cr = {u € W"*(D, X) : ulap parametrizes T monotonically}.
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There exists u € Cr so that A(u) = inf{A(v) | v € Cr}. Moreover, u is weakly conformal,
i.€. T = TMog and w2 = 0 = may, and Lipschitz in the interior of D.

We can solve the Plateau Problem for a locally compact C AT (k) space. Since the argu-
ments are essentially the same as the classical approach (see for example [M]), we omit
the proof here. Because conformal energy minimizing maps into smooth Riemannian
manifolds are minimal, it is natural to define:

Definition 3.10 Let X be a complete metric space of curvature bounded from above by
k. Wesayu: D — X is a minimal surface if u is a weakly conformal energy minimizing
map. \ = Ty = Moo 1S called the conformal factor of the pull back metric under u.

4 The Energy Density Inequality

Before we can prove our main inequality, we will need to prove another inequality which is
of interest in itself. As mentioned in the introduction, this can be seen as a generalization
of the Bochner’s inequality for harmonic maps between smooth Riemannanian manifolds.

[KS] proves the weak subharmonicity for the energy density of a harmonic map when
the target is an NPC space. We generalize their result by proving the following inequality
when the target is a space of curvature bounded from above.

Theorem 4.1 Letu: D — X be an energy minimizing map into a CAT (k) space (i.e. a
metric space of curvature bounded from above by ). Then for any n € C*(D) withn > 0,

[ IvuPan = =2n [ ol (8)

If w is minimal (i.e. also weakly conformal) with conformal factor X\, then

/ AAn > —2%/ nAZ.
D D

Proof: The case k = 0 is the result of [KS]. We will first prove the above for the case
when xk = 1. Note that the result for x > 0 follows immediately from rescaling the target
distance function. The case k = —1 is proven analogously.

In the proof below, we prove equation 8 for n € C?(D) with 0 < n <
n, we see that equation 8 holds for any non-negative C? function 7.

For two given points x, y, define

1 .
- By rescaling

n- = min{n(z),n(y)}

Let ug and u; be energy minimizing maps such that

sup  d(ug,uy) < T
z€supp(n) 2

16



We let Ly, Ly be the Lipschitz constants of uy and u; in supp(n) and let L = max{Lg, L, }.
If |o —y| < o, then d(uo(z), uo(y)), d(ui(x), u1(y)) < 5. Let u, € Wh?*(D, X) be defined
by taking the geometric interpolation of ug and ;. In other words, let u,(x) be the point

on the (unique) geodesic between ug(z) and u;(z) such that

d(uo(x), un(z))
d(uo (), ur ()

If n_ =n(y), we consider the ordered sequence

q Awm@w@)

=n(z) an d(up(x), us(x))

{Un_ (y)7 Un_ (ZU), UL—n_ (33), Ul —n_ (y)}

and let ¢ = T’ﬁ);n ’(7?5‘1)’) and apply Proposition 3.3. If n_ = n(z), we interchange the roles of

x and y and apply Proposition 3.3. Using the shorthand notation,

b= d(u(z), w(y))

Ly = duy(z),uy(y))
hey = d(ur—y(x),u1(y))
d, = d(up(z),ui(x))
dy = d(uo(y),ur(y)
n = nlz)=ny),

we deduce in both cases,

cosl, +cosly_, > [cosl, + cosli_, |cos(nd,)
+[sinl, cosa +sinl;_, cos 3] sin(7d,) 9)
where o = /PQR and § = /SRQ and {P,Q, R, S} is a spherical subembedding for
{w, (v),u, (z),u1_, (x),u1_, (y)}. By expanding the above, we obtain,

1,2] + l%,n + 04(177, Loy < 1,2]_ + lin_ —2(l,_cosa+ 1, cosB)nd,
+0%(fdy) + 0*(L, 11—y )

Applying Proposition 3.5 to {uo(y), uo(x), u1(z),ui(y)} and t = n_, we obtain,

o405, < I+ +2n lohd? 4+ 0%(n-)0°(lo, ly)
‘|‘04(l0, 11) + 77_02(l0, 11)03(dx, dy) + 77_03(l0, ll)

Applying Proposition 3.4 to {u, (y),w, (z),u1—,_ (z),u1_, (y)}, we obtain,
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—(l, cosa+1_, cosfB) < (1—2n_)(d, —d)+ 0*(l, ,li_y )0*(ds,d,)
Thus, the Cauchy-Schwartz inequality gives,

—(l,_cosa+ 1, cosB)nd,
< 5 =2n)n(d — d2) + 70*(L,_, lh—,_)0*(dy, d.)

Hence, inequality 9 implies
e N (S )
< g+ 2n-lolidy + (1 — 20 )i(dy — d3)
+0%(n-)0*(lo, 1) + 0% (Lo, 1) + (n- +7)0%(lo, 11)0%(d., )
+1-0(lo, ) + 0*(77d..) + 0°(lo, 1)

Let Z € T(TQ) be a vector field. By taking y = x + ¢Z, dividing by €2, and letting ¢ — 0,
we deduce that for a.e. x € Q,

[(un)«(2)]* + |(w1-)+(£)]*
< (o)« (2) P + [(w)(2)1* + 0(1(u0)«(Z)* + |(u2)+(Z)*)d? (ug, ua)
—(1 = 2n)n.(Z)d* (o, ur)+(Z) + 0*()0%(| (o) (Z)], | (ur)(£)1)
+(n 4 0.(2))0%(|(u0)«(Z)], [(u1)«(Z) 0% (d(ui0, u1)) + 0*(1.(Z) )

In the above, substitute n by tn, divide by ¢ and let ¢ — 0 to obtain,

[(un)«(Z2)]* + (1)« (Z)]”
< (o)« (Z)* + [(w2)(Z)* + 0(|(u0)«(Z)* + |(u1)+(Z)*)d? (ug, ua)
=0 (Z)d?(uo, ur)(Z) + (0 + 1:(2))0%(|(u0)« (Z)], [(ua)+(Z)])0°(d(uo, u1))  (10)

Adding the above equation with Z = 0, to the above with Z = J,, we obtain for a.e.
x €€,

Vg |* + [Vury [P < [Vuol® + [V [* + n([Vuo* + [V [2)d® (o, un)
—Vn - Vd?* (ug, uy) + (7 + Vn)0*(Vug, Vuy )0?(d(uo, 1))

If ug and wy are energy minimizers, then integrating over D gives,
0 < [ duou) s+ [ (1 Fuol? + V)2 (o, )

ot Vales [ 0(Fuol, [V )0%(d oo, )

supp(n
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Let u be an energy minimizing map and u,(x) = u(z + 6W), with |W| < 1. Then,
dividing by 4% and letting § — 0, we obtain,

=2 [0l FuPu (W) < [ Ju (W) 20,

Adding the above equation with W = 0, to the above with W = 0,, we obtain

—2/7)|Vu|4 S/]VUPAU.
Now if u is conformal, then inequality 10 implies

/\,7 + )\1_77 S /\0 + /\1 + 77(/\0 + Al)dQ(u(], Ul)
—1(Z)d* (ug, 1)« (Z) + (1 + 1:(Z))0% (Ao, A)0%(d(ug, ur)).

Substituting Z = ~L if Vi # 0 and following the same procedure as above we obtain

[V
—2/-4;/ nA? g/ AAD.
D D

5 The Curvature Inequality

In this section, we prove our main result. As mentioned in the introduction, if X is
a smooth Riemannian manifold of sectional curvature bounded from above by k, then
the inequality in the following theorem implies that the curvature of the surface is also
bounded from above by k.

Theorem 5.1 Let u : D — X be a minimal surface (i.e. a weakly conformal energy
minimizing map) with conformal factor \ where (X,d) is a metric space of curvature
bounded from above by k. Then for all non-negative p € C°(D),

/ log A\ > —2/{/ OA. (11)
D D

Proof: We will prove this for the case of kK = 1. The result s arbitrary is obtained in
the same manner as below. Before we proceed with the proof of Theorem 5.1, we need
the following preliminary lemmas:

Lemma 5.2 Let \ be a conformal factor of a minimal surface v : D — X where X is a
CAT(1) space. Then \ € H} (D).
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Proof. Let K CC D. Since A is bounded locally, we let A be such that A < A in K.
Choose g € C*°(D), non-negative such that Ag > A%. Then, by Theorem 8 we have

JO+gn0=[o(-X+ng) =0

for any ¢ € C°(K). Hence, and A + g is weakly subharmonic in K and is a non-negative
function. Thus A +g € H'(K) and X\ € H. (D). O

loc

Lemma 5.3 Let )\ be a conformal factor of a minimal surface uw: D — X where X is a
CAT(1) space. Then for any harmonic function h: D — R,

/ Ap(Ae™) > —2/ oAZel,
D D

Proof. Let w(z) : D — D be a conformal change of coordinates. Then v = uow is
harmonic. Let A = |[Vv|* be the conformal factor for the pull-back metric on D under the
map v. By Theorem 4.1,

/ AN pdz = —2/ o\2dz
D D
for all non-negative ¢ € C°(D). Note that

A - |d |Aw7
dw = |92 |dz,
A= V(wow)| = [Vul| g = A2

Hence,
dw dw, dw dw dw
&e 01w > 2/ 2)2| %Y -1g
[N NS R,

and we get the desired result by Choosmg w such that |‘fi—‘5| = ¢ Hence, let w = [e¥
where ¢ is an analytic function such that Reiy = h. O

Lemma 5.4 Let A be a conformal factor of a minimal surface map u: D — X where X
is a CAT(1) space. Assume X > N9 > 0. Then for any harmonic function h: D — R,

/D Aplog\ > — /D P(2\ + [V (log A+ A)[?)
Proof. Since A is bounded away from zero and locally bounded above, we can assume

that log A\ € H} (D). Let h be any harmonic function. By Lemma 5.3 and by the fact
that C* functions are dense in H', for any non-negative ¢ € H} (D),

/DAw()\eh) > —2/D¢A2eh.
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Let ¢ € C°(D) be a non-negative function, then
/Aaplog)\ = /Acp(log)\—l—logeh)

= / Aplog \e"

= —/V@-Vlog/\eh

- —/Z;:-V(Aeh)

B o V)2
= [ VG VO - e
> 2 [ Zontet [V (log A+ b

- _2/<p>\—/<p|V(log>\+h)!2-

Now we proceed with the proof of Theorem 5.1 in the special case that A > \g > 0.
Let § > 0 be given. Since Vlog A € L?, by the Lebesque Point Lemma,

1
F={zeD|ln —2/ ooy |V 108A) = Viog A(w) diy) = 0}
yeEBs (T

o—0 71O

is of full measure in D. For x € F, let o, be such that
1
0<o, < gdist(:c, 0oD)

and
/ IV 1og A(y) — Vlog M(z)[*dy < 256702,
y€B5gx (ar:)

Note that {B,,(x)}.cr is a collection of closed balls such that U,cp By, (z) is of full
measure in D. By the Five Times Covering Lemma, we can choose a disjoint subcollection
{B..,, (7:)}2, such that

U BUI(I.) C Ej BU5a:i (xz)

zeF i=1

Let ¢ € C° be a non-negative function. Since |log A\Ap|, |pA| € L'(D), there exists
e such that

/A]log)\Ago\ <9,

/AW|<5
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whenever m(A) < e. On the other hand, since 322, m(B,, (7;)) < m, there exists N such
that

m( fj Bs,, (i) < e.

i=N+1

Set A = U2 v 41 Bso,, (2i). Let {x;}/L, be a partition of unity subordinate to { Bs,,, (:)}/L .
Then

/Agplog)\ = /—I—/ log A\Ap
D A —A
N

> s / log AA i
> + | log (Z;sfﬁx)
N
- s / log AA (0
+; 108 AL (ex))
N
> =6-3 [ (ex)@\+|VlogA+ Vhif)
=1 -
o 2
> —5—2/ A= [0l / Viog A+ Vh;
> Pl ;BMI og A+ Vhil

N
> —2(5—2/ A — \4,0|OOZ/B IV log A + Vh|?.
D i=1 " Bsou,

where {h;} is any collection of harmonic functions in D. For each i, we choose h; to be a
linear function, bounded uniformly away from 0, such that Vh; = —V log A(x;). Thus,

N
Z/ IV log A + Vh|?
=1 Bs"'wi
N
- Z/ IV log A — Vlog A(z,)]
i=1 BSin ()
N
< 250w Z O'ii.
i=1
But since {B,, (;)} is a disjoint set, >N 02 <1 and thus,

/ Aplog A > —26 — 256]p|er — 2/ 5
D D

Since the choice of § was arbitrary,
/ Aplog A > —2/ VA
D D
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Finally, since the choice of ¢ € C°(D) was also arbitrary, we have the desired result. The
general case can be handled using the following lemma.

Lemma 5.5 Let f, : D — R be a decreasing sequence of functions converging to a non-
negative function f such that f, < M for alln =1,2,... If

/ loganSO Z _2/ Sofnv
D D

for all non-negative p € C°(D), we also have that

/ﬁbgfﬂwzz—2/wwﬁ
D D
for all non-negative p € C*(D).
Proof: We will show:
,gg/wﬁ/z /wf
Jlrgo/log falp = /log fAe.

The first equality follows immediately from the Lebesgue Convergence Theorem. To prove
the second equality, let g € C°°(D) such that Ag > 2M. Then

[ogfu+9)50 > [o(=2f,+ 8g) > 0.

Hence log f,, + ¢ is subharmonic. By the mean value inequality (and assuming w.l.o.g.

that f(0) # 0),

log f(0) + g(0)
log f(0) + ¢(0)

1

*/ 10gfn+g
mJD
log M + g.

|
8
IA A

IA

IA

In particular, [log f, in uniformly bounded. Let F,, = log M — log f,,, and F' = log M —
log f. Then F;, is an increasing sequence of non-negative functions. Hence by the Mono-

tone Convergence Theorem,
lim / F, = / F.
n—oo D
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In other words, we have that

lim / logfn:/ log f.

In particular, log f € L'(D). For non-negative ¢ € C°(D), we have that log f,Ap —
log fAp a.e. and |log f,Ap| < |Ap|s|log fu]. Hence by the Dominated Convergence
Theorem, we have the desired result as we take 6 — 0. O

Now consider the space X x D endowed with the distance function ds defined by
d((P,2), (Q,w)) = d*(P,Q) + |z — w|?,

for P,QQ € X and z,w € D. It can be easily checked that (X x D,ds) is a CAT(1) space
and us : D — (X x D, ds) defined by

us(2) = (u(z), 2).

is a ugs is a minimal surface if u is. We let A5 be the conformal factor of the pull back
metric. Note that \s is a decreasing sequence of functions converging to A and Ay > 9.
By the special case above, we have that

/ Aplog A\s > —2/ OAs,
D D

for all 6. Hence by Lemma 5.5, we get the desired result when we take 6 — 0. O

6 Surfaces with Conformal Factor )\

As mentioned in the introduction, when X is a smooth Riemannian manifold of sectional
curvature bounded from above by k, the inequality of Theorem 5.1 implies that the
curvature of the minimal surface is also bounded from above by . In this section, we will
see that this interpretation of Theorem 5.1 also makes sense in the setting where X is a
metric space of curvature bounded from above by k; we show that the conformal factor
A induces a metric space on D which has upper curvature bound of k.

Theorem 6.1 Let (X,d) be a complete metric space of curvature bounded from above by
Kk and let u : D — X be a minimal surface (i.e. a weakly conformal energy minimizing
map) with conformal factor \. Let v : [0,1] — D be a piecewise C' curve and let I(y) =

T3 JAF )Y (t)|dt. For x,y € D, we define the distance between x and y as

dy(x,y) = inf{l(7) : v piecewise C* and v(0) = z,v(1) = y}.

Then (D, dy) is a metric space with curvature bounded from above by r (locally if k > 0).
The metric topology is equivalent to the surface topology.
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Remark: The fact that vA € H} (D) follows from the inequality of Theorem 5.1. Hence
the definition of [(y) makes sense. The statement that a space has curvature bounded
from above by x locally means that each point is contained in a neighborhood which has
an upper curvature bound of k.

Proof: The fact that d) defines a length space and the statement about the equivalence
of the topologies follow from the work of Reshetnyak [R3] and the weak inequality of
Theorem 5.1. (Reshetnyak considers a metric A(dz? + dy?) where log A is a difference of
two subharmonic functions.) We need to show the curvature bound. It is sufficient to
consider the cases kK = —1, Kk = 0 and kK = 1. The general case then follows by simply
scaling the distance function d of X so that the curvature is either k = —1,0 or 1.

We let A,, (log)), be symmetric mollifications (i.e. mollification by a symmetric
mollifier) of A, log A and let \7 = e°8Ms. Also let D7 = {z € D : || < 1 —0c}. By
applying Theorem 5.1 with ¢ the mollifier, we have

Nlog X = A(logA,)

> =28\,
A
= 2|2\ 12
(%) (12)
for every z € D?. By Jensen’s inequality, A, > \?. Hence, for k = —1 or kK = 0,
-1
WA 10g A S K.
Thus for kK = —1 and k = 0, (D7, \°(dz? + dy?)) is a smooth Riemannian surface with

curvature bounded from above by 1 and 0, respectively. Furthermore, since \ is subhar-
monic, A > A. This implies that d” > d, where d” is the distance function induced by
A\ (dx? + dy?). Combining this with the fact that A — X in H', it is easy to check that
d° — d)\.

JFrom the above discussion, the curvature bound for the case k = —1 and kK = 0
follows easily: Let x,y,z € D and let y; (resp. y7) be the point on the geodesic from y
to z with respect to the distance function dy (resp. d?) so that dy(y,v:) = tdx(y, z) (resp.

d7(y,y7) = td7(y, 2)).
Claim: For y, and y{ defined above, we have dy(y;,y) — 0 as o — 0.

Proof: Assume xk = —1. Consider the geodesic triangle A(y;, y, z) with respect to d°.
By using the curvature bound of (D?,d?) we have
sinh(1 — t)d°(y, 2)
sinh d?(y, z)

sinh td?(y, )

hd (e, y°) < sinh d° (y, z)
coshd”(yi,y7)) < sinh d(y, 2)

coshd’(y,y) + cosh d’ (y, z).
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Aso —0,d7(y, 2) — da(y, 2), d° (s, y) = dx(ye, y) = tdx(y, 2) and d” (ye, 2) — da(ye, 2) =
(1 —1t)dx(y, z). Hence the right hand side of the above inequality converges to 1 and since
da(ye, y7) < d°(yt, y7 ), this proves the claim. The case k = 0 is proved analogously. O.

For kK = —1, we want to show that

sinh(1 — t)dy(z,y)
sinh dy(x,y)

sinh(1 — t)dy(z, 2)
sinh dy(z, 2)

cosh dy(z,y;) < coshdy(z,y) +

coshd(x, z)

which is equivalent to showing the triangle comparison property of Definition 3.1. Since

(D?,d") has curvature bounded from above by —1, we have

sinh(1 — ¢)d°(x,y) sinh(1 — ¢)d°(x, 2)
sinh d?(z, y) sinh d?(z, z)

coshd’(x,y]) < coshd’(x,y) + coshd’(x, 2)
and the desired inequality follows by taking ¢ — 0 and using the claim. The proof for
r = 0 follows analogously.

Now we treat the case k = 1. First we show (D, d,) has curvature bounded from
above by 2. Let D,(z9) = {z: |z — 20| <7} C D. Since (D?,d?) is a smooth Riemannian
surface, by the isoperimetric inequality of [Hu],

2
( / \/X’dg) > (47— / (Alogv)wxdy) / A dzdy
Dy (20) Dy (z0) Dy (z0)

> (471'—2 / /\dedy> / N ddy
D, (z0) Dy(z0)

where (Alog A7)t = max{—Alog A\?,0}. By taking o — 0, we have

2 2
( \/de> > 4 / Adady — 2 < / Adxdy) .
Dy (20) Dy (z0) Dr(20)

[R2] says that if a surface with a metric A(dz? + dy?®) has an isoperimetric inequality for
disks D,(zg) of the form
L? > 47 A — kA®

where L is the length of 0D, (z) and A is area of D,(z), then the surface has an upper
curvature bound of x. This implies (D, d)) has an upper curvature bound of 2.

Let us call k the best curvature bound of (D, d,) if for every geodesic triangle 7" with
diam(7T) < % and angles «, 3, v,

a+B4+v<ar+ B+

where ay, Ok, v, are angles of a comparison triangle in Si. By the above, we know that
k < 2. We wish to show k& < 1. Suppose not, i.e. 1 < k < 2. We need the following claim
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to obtain a contradiction.

Claim: Suppose 1 < k' < k. There exists a constant Cyy > 1 such that for any
geodesic triangles Ty, C Sy and Ty C Sy with same side lengths and the sum of side
lengths less than %, we have area(T),) < Cyparea(l}). Furthermore, Cyp — 1 as
K — k.

Proof:  Let a,b,c be the side lengths of geodesic triangle T' C S,. From spherical
geometry, as a — 0, b — 0 or ¢ — 0, area(T’) approaches the area of a Euclidean triangle
with side lengths a, b, c. Thus if Ty, ; C Sy and T}y ; C Sy are geodesic triangles with side
lengths a;, b;, ¢; and if they form a maximizing sequence of the ratio

area(Ty.;)
area(Ty ;)

then we can extract a subsequence so that a; — a > 0, by — b > 0, ¢;; — ¢ > 0. Thus,

area(T})

Crp = ——=+
ok area (T} )

where T}, C S, Ty C Si are geodesic triangles with side lengths a, b, c. The last assertion
is obvious. O

Let T" be any geodesic triangle and let «, (3, be the angles of T. By Gauss-Bonnet
(see [R3], Theorem 8.1.7), we have

1
a+pB+y < —i/AlogAdxdy—i-W
T

< / Aady + 7
T
= area(T) +

Let T} be a the comparison triangle in Sy. Clearly,
area(T) < area(Tk).
By claim, for 1 < k&’ < k and comparison triangle Ty, in Sy,
area(1y) < Cj prarea(Ty ).

We note that Cj s is independently of T' chosen. We choose k' sufficiently close to k so
that Cyx < k’. Applying Gauss-Bonnet on 7}, C Sy, we obtain,

area(T},) < Karea(Ty) < apr + B+ — 7
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where oy, By, v are angles of Ty,. Thus,

a+ B+ <o+ B+ Y.

Since T' can be chosen arbitrarily, this implies that the best curvature bound for (D, d))
is k’. This contradiction implies that the best curvature bound is not greater than 1. O
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