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1 Introduction

Let D be an unit disk in R2 and (M, g) a smooth Riemannian manifold. If an immersed
surface u : D →M is minimal, i.e. stationary with respect to the area functional∫

D

√
det(τij)dx

where (τij)=u
∗g is the pull back metric on D, then b11 + b22 = 0 with bij the components

of the vector valued second fundamental form. The Gauss equation then gives,

KΣ = KM + b11b22 − b212 ≤ KM

where KΣ is the Gauss curvature of the surface and KM is the sectional curvature of the
tangent plane to the surface in the manifold. This shows that the curvature of a minimal
surface is less than or equal to that of the ambient space. In this paper, we will show that
this fundamental curvature property of minimal surfaces also holds in certain singular
spaces.

When a smooth surface Σ has a conformal metric with conformal factor λ, it is well
known that the Gaussian curvature KΣ is given by the formula

KΣ = − 1

2λ
4 log λ.

Hence, the condition that the curvature be bounded from above by κ reduces to the
inequality

4 log λ ≥ −2κλ.

Our main theorem states that this same type of inequality holds when we replace the
smooth Riemannian manifold with a complete metric space of curvature bounded from
above by κ. We will call a map from a surface a minimal surface if it is conformal and
locally energy minimizing. Recall that these conditions on a map are equivalent to mini-
mality in the smooth setting. Because our target space can be quite singular, we can only

1



expect the following weak inequality:

Main Theorem Let λ be a conformal factor of the pull back metric under a minimal
surface u : D → X where (X, d) is a complete metric space of curvature bounded from
above by κ. Then for all non-negative ϕ ∈ C∞c (D),∫

D
log λ4ϕ ≥ −2κ

∫
D
ϕλ.

The complete metric spaces considered are length spaces, i.e. any two points can be
joined by a distance realizing curve. Furthermore, we impose a curvature bound from
above; here, the curvature bound is defined in terms of comparing geodesic triangles
with comparison triangles in a constant curvature surface (see Section 3 for the precise
definition.) Sometimes called Alexandrov spaces with curvature bounded from above,
they were studied by A.D. Alexandrov [A] in the 1950’s and advanced by him and the
Russian school of mathematicians. They include smooth Riemannian manifolds with an
upper bound on the sectional curvature but allow singularities of a very general type.
In fact, no restriction is made on the singularities. If we consider a class of Riemannian
manifolds with upper bound κ on sectional curvature and a lower bound on the injectivity
radius, the completion by Gromov-Hausdorff metric turns out to be these metric spaces
of curvature bounded from above by ! κ.

The motivation of this paper is twofold. One, we wish to extend the study of mini-
mal surfaces in Riemannian manifolds to spaces with singularities. Second, we wish to
introduce analytical tools in the study of singular spaces.

Recently, there has been much interest in the study of harmonic map theory for spaces
with singularities. A general existence and regularity theories of harmonic maps into Rie-
mannian simplicial complexes of non-positive curvature was developed in [GS] to solve
certain rigidity problems. This theory was further generalized for maps into complete
metric spaces with non-positive curvature by [KS] and independently by [J]. The case of
curvature bounded from above by some constant is treated in [S]. Some examples of the
application of the harmonic maps into certain singular spaces are Wolf’s [W1],[W2],[W3]
investigations of Teichmüller spaces and the actions of fundamental groups of closed sur-
faces and Hardt and Lin’s [HL] study of neumatic liquid crystals. In light of the these
successful studies of the harmonic map theory in singular spaces, it is natural to consider
an extension of minimal surface theory to these settings.

This paper is organized as follows. In Section 2, we outline Sobolev space theory
for metric space targets due to [KS]. In Section 3, we recall the notion of metric spaces
with curvature bounds and derive some inequalities for the distance functions that will
be important in Section 4. Furthermore, we define area for maps into these spaces which
allows us to consider the Plateau Problem. We note that Nikolaev [N2] is the first to
consider the Plateau Problem; there he takes a defintion of area that is different from
ours. Our definition is a natural extension of the definition of area for maps into smooth
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Riemannian manifolds and allows us to use a classical approach in the solution of the
Plateau Problem. In Section 4, we will prove an inequality satisfied by the energy density
function e(u) of an energy minimizing map by a careful consideration of the curvature
bound of the target. If u : M → N is an energy minimizing ma! p between smooth
Riemannian manifolds, then the Bochner’s formula gives

1

2
4e(u) = |∇du|2 −

∑
α,β

< RN(u∗eα, u∗eβ)u∗eα, u∗eβ > +
∑
i

RicM(u∗θi, u
∗θi)

where e1, ..., en is an orthonormal basis for TM and θ1, ..., θk is an orthonormal basis for
T ∗N . In particular, if M is flat and N has sectional curvature bounded from above by κ,
then

4e(u) ≥ −2κe(u)2.

We will see that the energy density function of energy minimizing maps into metric
spaces of curvature bounded from above by κ weakly satisfies the above inequality. This
inequality will be the starting point of the proof of the main theorem.

Section 5 is devoted to the proof of the main theorem. In Section 6, we make a geo-
metric interpretation of the analytical result of Section 5; namely, we consider the natural
distance function induced by the metric λ(dx2 + dy2) which defines a metric space of
curvature bounded from above by κ. In the case when the map minimizes area, Professor
Nikolaev has pointed out that this result follows from the works of Reshetnayk [R1],[R2].
We thank him for communicating this observation.

Acknowledgment. This is a part of the author’s doctoral dissertation at Stanford
University. She would like to express deep gratitude to advisor Richard M. Schoen for his
support and encouragement. She also thanks the refees for their comments.

2 Sobolev Space Theory for Maps to Metric Spaces

Let Ω be a compact domain in Rn and (X, d) any complete metric space. In [KS], Korevaar
and Schoen develop the space W 1,2(Ω, X). Here we define this space and collect some of
their results.

A Borel measurable map u : Ω → X is said to be in L2(Ω, X) if for P ∈ X,∫
Ω
d2(u(x), P )dx <∞.

Note that by the triangle inequality, this definition is independent of P chosen. For
u ∈ L2(Ω, X), we can construct an ε approximate energy function eε : Ωε → R,

eε(x) = n|∂Bε(x)|−1
∫
∂Bε(x)

d2(u(x), u(y))

ε2
dΣ.
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Here Ωε is the set of points in Ω with distance from the boundary more than ε and Bε(x)
is a ball of radius ε centered at x. Letting eε(x) = 0 for Ω−Ωε, we have that eε(x) ∈ L1(Ω)
and by integrating against continuous functions with compact support, these functions
define linear functionals Eε : Cc(Ω) → R. We say u ∈ L2(Ω, X) has finite energy (or that
u ∈ W 1,2(Ω, X)) if

Eu ≡ sup
f∈Cc(Ω),0≤f≤1

lim sup
ε→0

Eε(f) <∞.

It can be shown that if u has finite energy, the measures eε(x)dx converge in the
weak* topology to a measure which is absolutely continuous with respect to the Lebesgue
measure. Hence, there exists a function e(x), which we call the energy density, so that
eε(x)dx ⇀ e(x)dx. In analogy to the case of real valued functions, we write |∇u|2(x) in
place of e(x). In particular,

Eu =
∫
Ω
|∇u|2dx.

Similarly, the directional energy measures |u∗(Z)|2dx for Z ∈ ΓΩ̄ can also be defined
as the weak* limit of measures Zeεdx, where

Zeε(x) =
d2(u(x), u(x+ εZ))

ε2
.

Furthermore, for Z ∈ T Ω̄,

|u∗(Z)|(x) = lim
ε→0

d(u(x), u(x+ εω)

ε
,

a.e. x ∈ Ω. Finally, we have

|∇u|2 =
∫
Sn−1

|u∗(Z)|2dσ(Z).

This definition of Sobolev space W 1,2(Ω, X) is consistent with the usual definition when X
is a Riemannian manifold. The following theorems allow us to use variational methods in
the setting where the target space of maps is a complete metric space. Note that uk → u
in L2(Ω, X) will mean d(uk, u) converges to 0 in L2(Ω), i.e.

lim
k→∞

∫
d2(uk, u) = 0.

Theorem 2.1 ([KS] Theorem 1.6.1) If {uk} ⊂ W 1,2(Ω, X) is a sequence with uni-
formly bounded W 1,2(Ω, X) norms and uk → u in L2(Ω, X), then u ∈ W 1,2(Ω, X) and

E(u) = lim inf
k→∞

E(uk).
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The following is a generalization of the W 1,2 trace theory.

Theorem 2.2 ([KS] Theorem 1.12.2) Any u ∈ W 1,2(Ω, X) has a well-defined trace
map (denoted tr(u)), with tr(u) ∈ L2(∂Ω, X). If {uk} ⊂ W 1,2(Ω, X) is a sequence with
uniformly bounded energies and uk → u in L2(Ω, X), then tr(uk) converges to tr(u) in
L2(∂Ω, X).

We also have the following Rellich type precompactness theorem.

Theorem 2.3 ([KS] Theorem 1.13) Let (X, d) be locally compact. If {uk} ⊂ W 1,2(Ω, X)
satisfy ∫

Ω
d2(uk(x), Q)dx+ E(uk) ≤ C,

where Q is a fixed point in X, then a subsequence of {uk} converges in L2(Ω, X) to a
finite energy map u.

Using these theorems, one can solve the following.

The Dirichlet Problem Let (X, d) be a complete locally compact metric space. Let
ψ ∈ W 1,2(Ω, X). Define

W 1,2
ψ = {u ∈ W 1,2(Ω, X) : tr(u) = tr(ψ)}.

Let Eψ = inf{E(v) : v ∈ W 1,2
ψ }. There exists u ∈ W 1,2

ψ such that E(u) = Eψ.

If we assume an upper curvature bound on the target (see Definition 3.1 in the next
section), we get nice regularity properties of the solution. In fact, [KS] shows that the
solution is Lipschitz when X is non-positively curved and [S1] shows that the same holds
in the case when curvature is bounded from above by some constant provided that the
boundary data lies in a small geodesic ball. In both cases, the map is Hölder continuous
to the boundary.

3 Metric Spaces of Curvature Bounded from Above

In this section, we will recall the definition of curvature bounds in a metric space, give
some technical propositions and define the notion of area for maps into these singular
spaces.
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3.1 The Definition

Definition 3.1 A complete metric space (X, d) is said to have curvature bounded from
above by κ if the following conditions hold:

(i) (X, d) is a length space; that is, if P,Q ∈ X there exists a distance realizing curve
connecting P and Q. (We call such distance realizing curves geodesics.)

(ii) Let Sκ be a surface of constant curvature κ. For any three points P,Q,R ∈ X (with
dPQ+dQR+dRS <

π√
κ

if κ > 0) and choices of geodesics γPQ (of length r), γQR (of length

p) and γPR (of length q) connecting the respective points, call a triangle 4(P̃ Q̃R̃) in Sκ
with vertices P̃ , Q̃, R̃ and opposite side lengths p, q, r a comparison triangle in Sκ. For any
0 < λ < 1 write Qλ for the point on γQR so that d(Q,Qλ) = λp and d(Qλ, R) = (1− λ)p
and define Q̃λ ∈ Sκ analogously to Qλ, then

d(P,Qλ) ≤ dSκ(P̃ , Q̃λ).

Remark: These spaces are sometimes defined in terms of an angle excess (see [ABN]
for example). The upper angle between geodesics are defined as follows: if γ and σ are
geodesics having a common point P with R ∈ γ,Q ∈ σ and r = d(P,Q), q = d(P,R),
we let ακγσ(r, q) be the angle at P̃ of the comparison triangle 4(P̃ Q̃R̃) of Sκ. The upper
angle between γ and σ is

α(γ, σ) = lim sup
r,q→0

ακγσ(r, q).

This definition is independent of κ. (X, d) is said to be a metric space of curvature bounded
from above by κ if for every triangle 4(PQR) in X (with dPQ + dQR + dRP <

π√
κ
),

α+ β + γ ≤ ακ + βκ + γκ

where α, β, γ are the upper angles of 4(P,Q,R) and ακ, βκ, γκ are angles of the compar-
ison triangle in Sκ. This definition is equivalent to the above definition of a curvature
bound.

These spaces are referred to as CAT (κ) spaces in literature. If κ = 1, then Sκ is a
standard unit sphere S2. Note that if κ > 0, we can make X into a CAT (1) space by
rescaling the distance function. If κ = −1, then Sκ is the hyperbolic plane H2. Again, note
that if κ < 0, then by rescaling the distance function, we can make X into a CAT (−1)
space.

3.2 Technical Propositions

This important result is given in [R1] and will be basis of the propositions that follow.
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Theorem 3.2 (Reshetnyak) Let (X, d) be a metric space of curvature bounded above
by κ and Γ be a closed rectifiable curve in X (of length less than or equal to π√

κ
if κ > 0).

Then there exists a convex domain V in Sκ and a map ϕ : V → X such that ϕ(∂V ) = Γ,
the lengths of the corresponding arcs coincide, and dSκ(x, y) ≥ d(ϕ(x), ϕ(y)), for x, y ∈ V .

Let X be a CAT (κ) space and P,Q,R, S ∈ X. If dPS, dQR < π√
κ
, then there is a

unique geodesic between P and S (Q and R, resp.). We denote by Pt (resp. Qt) the point
on this geodesic such that dPPt = tdPS (resp. dQQt = tdQR).

Let (X, d) be a CAT (1) space. Given ordered sequence {P,Q,R, S} ⊂ X with dPQ +
dQR+dRS+dSP < π. Theorem 3.2 asserts that there is an ordered sequence {P̃ , Q̃, R̃, S̃} ⊂
S2 such that the quadrilateral associated with it (i.e. the four ordered points, the geodesics
between consecutive points and its interior) is convex and

d(P,Q) = dS2(P̃ , Q̃), d(Q,R) = dS2(Q̃, R̃),
d(R,S) = dS2(R̃, S̃), d(S, P ) = dS2(S̃, P̃ ),

d(Pt, Qs) ≤ dS2(P̃t, Q̃s).

We will call {P̃ , Q̃, R̃, S̃} a spherical subembedding for {P,Q,R, S}. Similarly, when
(X, d) is a CAT (−1) space, we can define a hyperbolic subembedding

{P̂ , Q̂, R̂, Ŝ} ⊂ H2.

In the propositions below, 0n(·) denotes terms that are nth order in the specified
variables.

Proposition 3.3 Let (X, d) be a metric space of curvature bounded from above by κ with
κ = 1 or −1. Then for {P,Q,R, S} ⊂ X (with dPQ + dQR + dRS + dSP < π if κ = 1), the
following inequalities hold:

For κ = 1,

cos dPQt + cos dRQ1−t ≥ cos dPQ cos tdQR + sin dPQ sin tdQR cosα+

cos dRS cos tdQR + sin dRS sin tdQR cos β (1)

cos dPtQt ≥ sin(1− t)dPS
sin dPS

(cos dPQ cos tdQR + sin dPQ sin tdQR cosα) +

sin tdPS
sin dPS

(cos dRS cos tdQR + sin dRS sin tdQR cos β) (2)

where α = 6 P̃ Q̃R̃ and β = 6 S̃R̃Q̃ and {P̃ , Q̃, R̃, S̃} is a spherical subembedding for
{P,Q,R, S}.
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For κ = −1,

cosh dPQt + cosh dRQ1−t ≤ cosh dPQ cosh tdQR − sinh dPQ sinh tdQR cosα+

cosh dRS cosh tdQR − sinh dRS sinh tdQR cos β

cosh dPtQt ≤ sinh(1− t)dPS
sinh dPS

(cosh dPQ cosh tdQR − sinh dPQ sinh tdQR cosα) +

sinh tdPS
sinh dPS

(cosh dRS cosh tdQR − sinh dRS sinh tdQR cos β)

where α = 6 P̂ Q̂R̂ and β = 6 ŜR̂Q̂ and {P̂ , Q̂, R̂, Ŝ} is a hyperbolic subembedding for
{P,Q,R, S}.

Proof: We will only prove the case when κ = 1 by comparing the distance function
d to the distance function dS2 of the sphere. The proof of the case when κ = −1 follows
analogously by considering the distance function of the hyperbolic plane instead of the
sphere.

Let {X,Y, Z} ∈ S2 such that dXY + dY Z + dZX < π. We let Yt be the point on
the geodesic between Y and Z such that dYtZ = tdY Z and θ = 6 S2Y XZ. We have the
following equalities:

cos dY Z = cos dXY cos dXZ + sin dXY sin dXZ cos θ

cos dXYt =
sin(1− t)dY Z

sin dY Z
cos dXY +

sin tdY Z
sin dY Z

cos dXZ .

Hence we have,

cos dP̃ Q̃t
+ cos dR̃Q̃1−t

= cos dP̃ Q̃ cos tdQ̃R̃ + sin dP̃ Q̃ sin tdQ̃R̃ cosα+

cos dR̃S̃ cos tdQ̃R̃ + sin dR̃S̃ sin tdQ̃R̃ cos β,

and

cos dP̃tQ̃t
=

sin(1− t)dP̃ S̃
sin dP̃ S̃

(cos dP̃ Q̃ cos tdQ̃R̃ + sin dP̃ Q̃ sin tdQ̃R̃ cosα)

+
sin tdP̃ S̃
sin dP̃ S̃

(cos dR̃S̃ cos tdQ̃R̃ + sin dR̃S̃ sin tdQ̃R̃ cos β). (3)

The result follows immediately from Theorem 3.2. 2
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Proposition 3.4 Let (X, d) be a metric space of curvature bounded from above by κ
with κ = 1 or −1 and {P,Q,R, S} ⊂ X (with dPQ + dQR + dRS + dSP < π if κ = 1).
Furthermore, let α, β as in Proposition 3.3. Then

dPQ cosα+ dRS cos β

= dQR − dPS + 02(dPQ, dRS) (4)

and for κ = 1, we have

dPQ cosα+ dRS cos β

≥ dQR − dPS −
1

2
dPQdRSd

2
QR

+02(dPQ, dRS)0
3(dQR) (5)

and for κ = −1, we have

dPQ cosα+ dRS cos β

≥ dQR − dPS +
1

2
dPQdRSd

2
QR

+02(dPQ, dRS)0
3(dQR). (6)

Proof: Once again, we will only prove the case when κ = 1 since the case κ = −1 fol-
lows analogously. Again, let {P̃ , Q̃, R̃, S̃} be the spherical subembedding of {P,Q,R, S}.
Assume w.l.o.g., Q̃ = (1, 0, 0), R̃ = (cos θ, sin θ, 0) ∈ S2 ⊂ R3. Note for any X, Y ∈ S2 ⊂
R3, we have that cos dS2(X, Y ) = X · Y . (Here · denotes the usual dot product in R3.)
In particular, we see that dQ̃R̃ = θ. Let γ (resp. σ) be a unit speed parameterization of

a geodesic on S2 emanating from Q̃ (resp. R̃) such that, for t > 0, 6 S2γ(t)Q̃R̃ = α (resp.
6 S2σ(t)R̃Q̃ = β). If ϕ(t) = (cos t, sin t, 0), then γ and σ must satisfy:

γ′(0) · ϕ′(0) = cosα, |γ′(0)| = 1

σ′(0) · ϕ′(θ) = cos(π − β), |σ′(0)| = 1.

Hence, we have that

γ(0) = (1, 0, 0)

γ′(0) = (0, cosα, sinα)

γ′′(0) = (−1, 0, 0)

and that

σ(0) = (cos θ, cos θ, 0)

σ′(0) = (cos β sin θ,− cos β cos θ, sin β)

σ′′(0) = (− cos θ,− sin θ, 0).
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Using the Taylor series expansion,

γ(t) · σ(s) =

cos θ + t cosα sin θ + s cos β sin θ − t2 + s2

2
cos θ

−ts cosα cos β cos θ + ts sinα sin β + 03(t, s).

Let f(t, s) = γ(t) · σ(s). Then again using Taylor series expansion,

dS2(γ(t), σ(s))

= arccos f(0, 0) + t
∂

∂t
(arccos f)|(0,0) + s

∂

∂s
(arccos f)|(0,0)

+
t2

2

∂2

∂t2
(arccos f)|(0,0) +

s2

2

∂2

∂s2
(arccos f)|(0,0)

+ts
∂2

∂t∂s
(arccos f)|(0,0) + 03(t, s)

= θ − t cosα− s cos β

t2

2

cos θ − cos2 α cos θ

sin θ
+
s2

2

cos θ − cos2 β cos θ

sin θ

−tssinα sin β

sin θ
+ 03(t, s).

This shows

dP̃ Q̃ cosα+ dR̃S̃ cos β

= dQ̃R̃ − dP̃ S̃ + 02(dP̃ Q̃, dR̃S̃).

Hence equation 4 follows the above equality. By Cauchy-Schwartz inequality,

ts sinα sin β ≤ t2 sin2 α

2
+
s2 sin2 β

2
,

and thus we obtain

t2

2
(cos θ − cos2 α cos θ) +

s2

2
(cos θ − cos2 β cos θ)

−ts sinα sin β

=
t2

2
(cos θ − cos2 α cos θ) +

s2

2
(cos θ − cos2 β cos θ)

−ts sinα sin β cos θ − ts(1− cos θ) sinα sin β

≥ −ts(1− cos θ) sinα sin β

≥ −ts(1− cos θ).
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Since, 1− cos θ = θ2

2
+ 04(θ) and 1

sin θ
= 1

θ
(1 + 02(θ)), we obtain

dS2(γ(t), σ(s))

≥ θ − t cosα− s cos β − ts(1− cos θ)

sin θ

≥ θ − t cosα− s cos β − tsθ

2
+ ts03(θ).

Hence we obtain,

dP̃ Q̃ cosα+ dR̃S̃ cos β

≥ dQ̃R̃ − dP̃ S̃ −
1

2
dP̃ Q̃dR̃S̃dQ̃R̃

+02(dP̃ Q̃, dR̃S̃)0
3(dQ̃R̃).

Now inequality 5 follows immediately. 2

Proposition 3.5 Let (X, d) be a metric space of curvature bounded from above by κ with
κ = 1 or −1 and {P,Q,R, S} ⊂ X (with dPQ + dQR + dRS + dSP < π if κ = 1). Let
d0 = dQR, d1 = dPS, and lt = dPtQt where, Pt (resp. Qt) is the point on the unique
geodesic between P and S (resp. Q and R) such that dPPt = tdPS (resp. dQQt = tdQR).
Then for κ = 1, we have

l2t + l21−t ≤ l20 + l21 + 2tl0l1d
2
0 + 02(t)02(l0, l1)

04(l0, l1) + t02(l0, l1)0
3(d0, d1) + t03(l0, l1) (7)

and for κ = −1, we have

l2t + l21−t ≤ l20 + l21 − 2tl0l1d
2
0 + 02(t)02(l0, l1)

04(l0, l1) + t02(l0, l1)0
3(d0, d1) + t03(l0, l1).

Proof: Again, we will only prove the case when κ = 1. Inequality 7 follows imme-
diately from Theorem 3.2 if we can prove the same inequality in the sphere. Hence, let
{P̃ , Q̃, R̃, S̃} be four points in the sphere with dP̃ Q̃+dQ̃R̃+dR̃S̃+dS̃P̃ < π and let d0 = dQ̃R̃,

d1 = dP̃ S̃, and lt = dP̃tQ̃t
where, P̃t (resp. Q̃t) is the point on the unique geodesic between

P̃ and S̃ (resp. Q̃ and R̃) such that dP̃ P̃t
= tdP̃ S̃ (resp. dQ̃Q̃t

= tdQ̃R̃). ¿From equation 3,

cos lt + cos l1−t =

(
sin td1

sin d1

cos(1− t)d0 +
sin(1− t)d1

sin d1

cos td0)(cos l0 + cos l1)

+(
sin td1

sin td1

sin(1− t)d0 +
sin(1− t)d1

sin d1

sin td0)(sin l0 cosα+ sin l1 cos β).
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By expanding sin d0 and sin d1 using Taylor series and then using inequality 5, we have

sin l0 cosα+ sin l1 cos β

= l0 cosα+ l1 cos β + 03(l0, l1)

≥ d0 − d1 −
l0l1d

2
0

2
+ 02(l0, l1)0

3(d0) + 03(l0, l1).

Also note that

cos lt + cos l1−t = 2− l2t
2
−
l21−t
2

+ 04(l0, l1).

Hence

2− l2t
2
−
l21−t
2

+ 04(l0, l1)

= (2− l20
2
− l21

2
+ 04(l0, l1))(

sin td1

sin d1

cos(1− t)d0 +
sin(1− t)d1

sin d1

cos td0)

+(d0 − d1 −
l0l1d

2
0

2
+ 02(l0, l1)0

3(d0) + 03(l0, l1))(
sin td1

sin d1

sin(1− t)d0 +
sin(1− t)d1

sin d1

sin td0).

We now use,
sin td1

sin d1

cos(1− t)d0 +
sin(1− t)d1

sin d1

cos td0 = 1 + 02(t)

and
sin td1

sin d1

sin(1− t)d0 +
sin(1− t)d1

sin d1

sin td0 = 2t+ 02(t)

to obtain

−2 +
l2t
2

+
l21−t
2

+ 04(l0, l1)

= −2(
sin td1

sin d1

cos(1− t)d0 +
sin(1− t)d1

sin d1

cos td0)

+
l20
2

+
l21
2

+ 02(t)02(l0, l1) + 04(l0, l1)

−(d0 − d1)(
sin td1

sin d1

sin(1− t)d0 +
sin(1− t)d1

sin d1

sin td0)

+tl0l1d
2
0 + 02(t)02(l0, l1) + t02(l0, l1)0

3(d0, d1) + t03(l0, l1).

Hence,

−4 + l2t + l21−t

=
−2

sin d1

[2(sin td1 cos(1− t)d0 + sin(1− t)d1 cos td0)

+(d0 − d1)(sin td1 sin(1− t)d0 + sin(1− t)d1 sin td0)]

+l20 + l21 + 2tl0l1d
2
00

2(t)02(l0, l1)

+04(l0, l1) + t02(l0, l1)0
3(d0, d1) + t03(l0, l1).

12



If we let

F (x) = 2[sin td1 cos(1− t)(x+ d1) + sin(1− t)d1 cos t(x+ d1)]

+x(sin td1 sin(1− t)(x+ d1) + sin(1− t)d1 sin t(x+ d1)),

then the lemma will follow from the following claim with x = d0 − d1.

Claim: There exists σ > 0 such that for |x| ≤ σ, then F (x) ≥ 2 sin d1.

Proof of claim: It is easy to check that F (0) = 2 sin d1, F
′(0) = 0. Furthermore,

F ′′(0) = −2(1− t)2 sin td1 cos(1− t)d1 − 2t2 sin(1− t)d1 cos td1

+2(1− t) sin td1 cos(1− t)d1 + 2t sin(1− t)d1 cos td1

= 2t(1− t) sin td1 cos(1− t)d1 + sin(1− t)d1 cos td1

= 2t(1− t) sin d1

≥ 0.

Since F is a C∞ function, the claim follows. 2

3.3 The Pull-back Inner Product and the Area

We make sense of the notion of area for maps u ∈ W 1,2(D,X) when X has an upper
curvature bound. We do this by defining an inner product structure on D which general-
izes the pull-back metric for a smooth map between smooth Riemannian manifolds. The
proof of the existence of such an inner product structure is an easy generalization of the
proof in [KS] for maps into NPC space using the following technical lemma.

Lemma 3.6 Let (X, d) be a CAT (1) space. Let P,Q,R, S ∈ X. Then

d2
PR + d2

QS ≤ d2
PQ + d2

QR + d2
RS + d2

PS + o(σ),

where σ = max{d2
PQ, d

2
QR, d

2
RS, d

2
PS}.

We use inequality 3 to obtain

cos dPR + cos dQS ≥ 1

2
(cos dPQ cos dQR + cos dPS cos dRS

+ cos dPQ cos dPS + cos dQR cos dRS)

+ sin dPQ sin dQR cos 6 Q+ sin dPS sin dRS cos 6 S

+ sin dPQ sin dPS cos 6 P + sin dQR sin dRS cos 6 R).

13



Expanding terms, we obtain,

d2
PR + d2

QR ≤ d2
PQ + d2

QR + d2
RS + d2

PS

−dPQdQR cos 6 Q− dPSdRS cos 6 S

−dPQdPS cos 6 P − dQRdRS cos 6 R + o(σ).

Now consider ordered points {P̄ , Q̄, R̄, S̄} ⊂ R2 such that, Q, the quadrilateral associated
with it is convex and dPQ = |P̄ −Q̄|, dQR = |Q̄−R̄|, dRS = |R̄− S̄|, dPS = |P̄ − S̄|. Letting

6 P̄ = 6 S̄P̄ Q̄, 6 Q̄ = 6 P̄ Q̄R̄,

6 R̄ = 6 Q̄R̄S̄, 6 S̄ = 6 R̄S̄P̄

in R2, we have 6 P̄ + 6 Q̄ + 6 R̄ + 6 S̄ = 4π. Furthermore, 6 P̄ ≤ 6 P, 6 Q̄ ≤ 6 Q, 6 R̄ ≤ 6 R,
and 6 S̄ ≤ 6 S. By the Gauss-Bonnet Theorem,

6 P + 6 Q+ 6 R + 6 S − 4π =
∫
Q
dA.

Hence, 6 Q− 6 Q̄ = 02(dPQ, dQR, dRS, dPS). We can rewrite equation 3.6:

d2
PR + d2

QR − o(σ) ≤ d2
PQ + d2

QR + d2
RS + d2

PS

−dPQdQR cos 6 Q̄− dPSdRS cos 6 S̄

−dPQdPS cos 6 P̄ − dQRdRS cos 6 R̄.

Letting A,B,C,D be the oriented vectors pointing to the consecutive vertices of the
Euclidean quadrilateral Q, i.e.

A = Q̄− P̄ , B = R̄− Q̄

C = S̄ − R̄, B = P̄ − S̄,

we have that,

−|P̄ − Q̄| |Q̄− R̄| cos Q̄− |P̄ − S̄| |R̄− S̄| cos S̄

−|P̄ − Q̄| |P̄ − S̄| cos P̄ − |Q̄− R̄| |R̄− S̄| cos R̄

= A ·B +B · C + C ·D +D · A
= (A+ C) · (B + C)

= −|A+ C|2.

Here, we have used the fact that A+B + C +D = 0. Hence,

d2
PR + d2

QR ≤ d2
PQ + d2

QR + d2
RS + d2

PS + o(σ).

2

As a result of the above, the directional energy functions satisfy a parallelogram law:

14



Lemma 3.7 Let Ω ⊂ Rn and let X be a CAT (1) space. If u ∈ W 1,2(Ω, X), then for any
Z,W ∈ Γ(T Ω̄), the parallelogram identity

|u∗(Z +W )|2 + |u∗(Z −W )|2 = 2|u∗(Z)|2 + 2|u∗(W )|2

holds for a.e. x ∈ Ω.

Proof: Use Lemma 3.6 with P = u(x), Q = u(x + εZ), R = u(x + εW ), S =
u(x+ ε(Z +W )). Divide by ε2 and let ε→ 0 to obtain

|u∗(Z +W )|2 + |u∗(Z −W )|2 ≤ 2|u∗(Z)|2 + 2|u∗(W )|2.

for a.e. x ∈ Ω. Repeat using Z +W and Z −W in place of Z and W to get the opposite
inequality. 2

For Z,W ∈ Γ(T Ω̄), we define

π(Z,W ) =
1

4
|u∗(Z +W )|2 − 1

4
|u∗(Z −W )|2.

Proposition 3.8 The operator π defined above,

π : Γ(T Ω̄)× Γ(T Ω̄) → L1(Ω,R)

is continuous, symmetric, bilinear, non-negative and tensorial.

Proof: The proof is the same as the one given in [KS] (Theorem 2.3.2).

Definition 3.9 π as above is the pull back inner product under the map u.

We can now define the area functional A : W 1,2(D,X) → R by

A(u) =
∫
D

√
det πudx

1dx2

=
∫
D

√
(πu)11(πu)22 − (πu)2

12dx
1dx2

where (π)ij = πu(∂i, ∂j).

Thus, we can formulate:

The Plateau Problem Let D be a disk and Γ be a closed Jordan curve in X and let

CΓ = {u ∈ W 1,2(D,X) : u|∂D parametrizes Γ monotonically}.
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There exists u ∈ CΓ so that A(u) = inf{A(v) | v ∈ CΓ}. Moreover, u is weakly conformal,
i.e. π11 = π22 and π12 = 0 = π21, and Lipschitz in the interior of D.

We can solve the Plateau Problem for a locally compact CAT (κ) space. Since the argu-
ments are essentially the same as the classical approach (see for example [M]), we omit
the proof here. Because conformal energy minimizing maps into smooth Riemannian
manifolds are minimal, it is natural to define:

Definition 3.10 Let X be a complete metric space of curvature bounded from above by
κ. We say u : D → X is a minimal surface if u is a weakly conformal energy minimizing
map. λ = π11 = π22 is called the conformal factor of the pull back metric under u.

4 The Energy Density Inequality

Before we can prove our main inequality, we will need to prove another inequality which is
of interest in itself. As mentioned in the introduction, this can be seen as a generalization
of the Bochner’s inequality for harmonic maps between smooth Riemannanian manifolds.

[KS] proves the weak subharmonicity for the energy density of a harmonic map when
the target is an NPC space. We generalize their result by proving the following inequality
when the target is a space of curvature bounded from above.

Theorem 4.1 Let u : D → X be an energy minimizing map into a CAT (κ) space (i.e. a
metric space of curvature bounded from above by κ). Then for any η ∈ C2

c (D) with η ≥ 0,∫
D
|∇u|24η ≥ −2κ

∫
D
η|∇u|4. (8)

If u is minimal (i.e. also weakly conformal) with conformal factor λ, then∫
D
λ4η ≥ −2κ

∫
D
ηλ2.

Proof: The case κ = 0 is the result of [KS]. We will first prove the above for the case
when κ = 1. Note that the result for κ > 0 follows immediately from rescaling the target
distance function. The case κ = −1 is proven analogously.

In the proof below, we prove equation 8 for η ∈ C2
c (D) with 0 ≤ η ≤ 1

2
. By rescaling

η, we see that equation 8 holds for any non-negative C2
c function η.

For two given points x, y, define

η− = min{η(x), η(y)}.

Let u0 and u1 be energy minimizing maps such that

sup
x∈supp(η)

d(u0, u1) <
π

2
.
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We let L0, L1 be the Lipschitz constants of u0 and u1 in supp(η) and let L = max{L0, L1}.
If |x− y| ≤ π

2L
, then d(u0(x), u0(y)), d(u1(x), u1(y)) <

π
2
. Let uη ∈ W 1,2(D,X) be defined

by taking the geometric interpolation of u0 and u1. In other words, let uη(x) be the point
on the (unique) geodesic between u0(x) and u1(x) such that

d(u0(x), uη(x))

d(u0(x), u1(x))
= η(x) and

d(uη(x), u1(x))

d(u0(x), u1(x))
= 1− η(x).

If η− = η(y), we consider the ordered sequence

{uη−(y), uη−(x), u1−η−(x), u1−η−(y)}

and let t = η(x)−η(y)
1−2η(y)

and apply Proposition 3.3. If η− = η(x), we interchange the roles of
x and y and apply Proposition 3.3. Using the shorthand notation,

lt = d(ut(x), ut(y))

lη = d(uη(x), uη(y))

l1−η = d(u1−η(x), u1−η(y))

dx = d(u0(x), u1(x))

dy = d(u0(y), u1(y)

η̄ = η(x)− η(y),

we deduce in both cases,

cos lη + cos l1−η ≥ [cos lη− + cos l1−η− ] cos(η̄dx)

+[sin lη− cosα+ sin l1−η− cos β] sin(η̄dx) (9)

where α = 6 P̃ Q̃R̃ and β = 6 S̃R̃Q̃ and {P̃ , Q̃, R̃, S̃} is a spherical subembedding for
{uη−(y), uη−(x), u1−η−(x), u1−η−(y)}. By expanding the above, we obtain,

l2η + l21−η + 04(lη, l1−η) ≤ l2η− + l21−η− − 2(lη− cosα+ l1−η− cos β)η̄dx

+02(η̄dx) + 03(lη− , l1−η−)

Applying Proposition 3.5 to {u0(y), u0(x), u1(x), u1(y)} and t = η−, we obtain,

l2η− + l21−η− ≤ l20 + l21 + 2η−l0l1d
2
x + 02(η−)02(l0, l1)

+04(l0, l1) + η−02(l0, l1)0
3(dx, dy) + η−03(l0, l1)

Applying Proposition 3.4 to {uη−(y), uη−(x), u1−η−(x), u1−η−(y)}, we obtain,
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−(lη− cosα+ l1−η− cos β) ≤ (1− 2η−)(dy − dx) + 02(lη− , l1−η−)02(dx, dy)

Thus, the Cauchy-Schwartz inequality gives,

−(lη− cosα+ l1−η− cos β)η̄dx

≤ 1
2
(1− 2η−)η̄(d2

y − d2
x) + η̄02(lη− , l1−η−)03(dy, dx)

Hence, inequality 9 implies

l2η + l21−η + 04(lη, l1−η)

≤ l20 + l21 + 2η−l0l1d
2
x + (1− 2η−)η̄(d2

y − d2
x)

+02(η−)02(l0, l1) + 04(l0, l1) + (η− + η̄)02(l0, l1)0
3(dx, dy)

+η−03(l0, l1) + 02(η̄dx) + 03(l0, l1)

Let Z ∈ Γ(T Ω̄) be a vector field. By taking y = x+ εZ, dividing by ε2, and letting ε→ 0,
we deduce that for a.e. x ∈ Ω,

|(uη)∗(Z)|2 + |(u1−η)∗(Z)|2

≤ |(u0)∗(Z)|2 + |(u1)∗(Z)|2 + η(|(u0)∗(Z)|2 + |(u1)∗(Z)|2)d2(u0, u1)

−(1− 2η)η∗(Z)d2(u0, u1)∗(Z) + 02(η)02(|(u0)∗(Z)|, |(u1)∗(Z)|)
+(η + η∗(Z))02(|(u0)∗(Z)|, |(u1)∗(Z)|)03(d(u0, u1)) + 02(η∗(Z)dx)

In the above, substitute η by tη, divide by t and let t→ 0 to obtain,

|(uη)∗(Z)|2 + |(u1−η)∗(Z)|2

≤ |(u0)∗(Z)|2 + |(u1)∗(Z)|2 + η(|(u0)∗(Z)|2 + |(u1)∗(Z)|2)d2(u0, u1)

−η∗(Z)d2(u0, u1)∗(Z) + (η + η∗(Z))02(|(u0)∗(Z)|, |(u1)∗(Z)|)03(d(u0, u1)) (10)

Adding the above equation with Z = ∂x to the above with Z = ∂y, we obtain for a.e.
x ∈ Ω,

|∇uη|2 + |∇u1−η|2 ≤ |∇u0|2 + |∇u1|2 + η(|∇u0|2 + |∇u1|2)d2(u0, u1)

−∇η · ∇d2(u0, u1) + (η +∇η)02(∇u0,∇u1)0
3(d(u0, u1))

If u0 and u1 are energy minimizers, then integrating over D gives,

0 ≤
∫
d2(u0, u1)4η +

∫
η(|∇u0|2 + |∇u1|2)d2(u0, u1)

+|η +∇η|C∞
∫
supp(η)

02(|∇u0|, |∇u1|)03(d(u0, u1))
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Let u be an energy minimizing map and uω(x) = u(x + δW ), with |W | ≤ 1. Then,
dividing by δ2 and letting δ → 0, we obtain,

−2
∫
η(|∇u|2|u∗(W )|2 ≤

∫
|u∗(W )|24η.

Adding the above equation with W = ∂x to the above with W = ∂y, we obtain

−2
∫
η|∇u|4 ≤

∫
|∇u|24η.

Now if u is conformal, then inequality 10 implies

λη + λ1−η ≤ λ0 + λ1 + η(λ0 + λ1)d
2(u0, u1)

−η∗(Z)d2(u0, u1)∗(Z) + (η + η∗(Z))02(λ0, λ1)0
3(d(u0, u1)).

Substituting Z = ∇η
|∇η| if ∇η 6= 0 and following the same procedure as above we obtain

−2κ
∫
D
ηλ2 ≤

∫
D
λ4η.

2

5 The Curvature Inequality

In this section, we prove our main result. As mentioned in the introduction, if X is
a smooth Riemannian manifold of sectional curvature bounded from above by κ, then
the inequality in the following theorem implies that the curvature of the surface is also
bounded from above by κ.

Theorem 5.1 Let u : D → X be a minimal surface (i.e. a weakly conformal energy
minimizing map) with conformal factor λ where (X, d) is a metric space of curvature
bounded from above by κ. Then for all non-negative ϕ ∈ C∞c (D),∫

D
log λ4ϕ ≥ −2κ

∫
D
ϕλ. (11)

Proof: We will prove this for the case of κ = 1. The result κ arbitrary is obtained in
the same manner as below. Before we proceed with the proof of Theorem 5.1, we need
the following preliminary lemmas:

Lemma 5.2 Let λ be a conformal factor of a minimal surface u : D → X where X is a
CAT (1) space. Then λ ∈ H1

loc(D).
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Proof. Let K ⊂⊂ D. Since λ is bounded locally, we let Λ be such that λ ≤ Λ in K.
Choose g ∈ C∞(D), non-negative such that 4g ≥ Λ2. Then, by Theorem 8 we have∫

(λ+ g)4φ =
∫
φ(−λ2 +4g) ≥ 0

for any φ ∈ C∞c (K). Hence, and λ+ g is weakly subharmonic in K and is a non-negative
function. Thus λ+ g ∈ H1(K) and λ ∈ H1

loc(D). 2

Lemma 5.3 Let λ be a conformal factor of a minimal surface u : D → X where X is a
CAT (1) space. Then for any harmonic function h : D → R,∫

D
4ϕ(λeh) ≥ −2

∫
D
ϕλ2eh.

Proof. Let w(z) : D → D be a conformal change of coordinates. Then v = u ◦ w is
harmonic. Let λ̃ = |∇v|2 be the conformal factor for the pull-back metric on D under the
map v. By Theorem 4.1, ∫

D
λ̃4zϕdz = −2

∫
D
ϕλ̃2dz

for all non-negative ϕ ∈ C∞c (D). Note that

4z = |dw
dz
|4w,

dw = |dw
dz
|dz,

λ̃ = |∇(u ◦ w)| = |∇u||dw
dz
| = λ|dw

dz
|.

Hence, ∫
|dw
dz
|(4wϕ)λ|dw

dz
||dw
dz
|−1dw ≥ −2

∫
ϕ|dw
dz
|2λ2|dw

dz
|−1dw,

and we get the desired result by choosing w such that |dw
dz
| = eh. Hence, let w =

∫
eψ

where ψ is an analytic function such that Reψ = h. 2

Lemma 5.4 Let λ be a conformal factor of a minimal surface map u : D → X where X
is a CAT (1) space. Assume λ ≥ λ0 > 0. Then for any harmonic function h : D → R,∫

D
4ϕ log λ ≥ −

∫
D
ϕ(2λ+ |∇(log λ+ h)|2)

Proof. Since λ is bounded away from zero and locally bounded above, we can assume
that log λ ∈ H1

loc(D). Let h be any harmonic function. By Lemma 5.3 and by the fact
that C∞ functions are dense in H1, for any non-negative ψ ∈ H1

loc(D),∫
D
4ψ(λeh) ≥ −2

∫
D
ψλ2eh.
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Let ϕ ∈ C∞c (D) be a non-negative function, then∫
4ϕ log λ =

∫
4ϕ(log λ+ log eh)

=
∫
4ϕ log λeh

= −
∫
∇ϕ · ∇ log λeh

= −
∫ ∇ϕ
λeh

· ∇(λeh)

= −
∫
∇(

ϕ

λeh
) · ∇(λeh)− ϕ

|∇(λeh)|2

(λeh)2

≥ −2
∫ ϕ

λeh
λ2eh −

∫
ϕ|∇(log λ+ h)|2

= −2
∫
ϕλ−

∫
ϕ|∇(log λ+ h)|2.

2

Now we proceed with the proof of Theorem 5.1 in the special case that λ ≥ λ0 > 0.
Let δ > 0 be given. Since ∇ log λ ∈ L2, by the Lebesque Point Lemma,

F = {x ∈ D| lim
σ→0

1

πσ2

∫
y∈Bσ(x)

|∇ log λ(y)−∇ log λ(x)|2dµ(y) = 0}

is of full measure in D. For x ∈ F , let σx be such that

0 < σx <
1

5
dist(x, ∂D)

and ∫
y∈B5σx (x)

|∇ log λ(y)−∇ log λ(x)|2dy ≤ 25δπσ2
x.

Note that {Bσx(x)}x∈F is a collection of closed balls such that
⋃
x∈F Bσx(x) is of full

measure in D. By the Five Times Covering Lemma, we can choose a disjoint subcollection
{Bσxi

(xi)}∞i=1 such that

⋃
x∈F

Bσx(x) ⊂
∞⋃
i=1

Bσ5xi
(xi).

Let ϕ ∈ C∞c be a non-negative function. Since | log λ4ϕ|, |ϕλ| ∈ L1(D), there exists
ε such that ∫

A
| log λ4ϕ| < δ,∫
A
|ϕλ| < δ
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whenever m(A) < ε. On the other hand, since
∑∞
i=1m(Bσxi

(xi)) ≤ π, there exists N such
that

m(
∞⋃

i=N+1

B5σxi
(xi)) < ε.

SetA =
⋃∞
i=N+1B5σxi

(xi). Let {χi}Ni=1 be a partition of unity subordinate to {B5σxi
(xi)}Ni=1.

Then

∫
D
4ϕ log λ =

∫
A

+
∫
D−A

log λ4ϕ

≥ −δ +
∫
D−A

log λ4(
N∑
i=1

ϕχi)

= −δ +
N∑
i=1

∫
D−A

log λ4(ϕχi)

≥ −δ −
N∑
i=1

∫
D−A

(ϕχi)(2λ+ |∇ log λ+∇hi|2)

≥ −δ − 2
∫
D−A

ϕλ− |ϕ|∞
N∑
i=1

∫
B5σxi

|∇ log λ+∇hi|2

≥ −2δ − 2
∫
D
ϕλ− |ϕ|∞

N∑
i=1

∫
B5σxi

|∇ log λ+∇hi|2.

where {hi} is any collection of harmonic functions in D. For each i, we choose hi to be a
linear function, bounded uniformly away from 0, such that ∇hi = −∇ log λ(xi). Thus,

N∑
i=1

∫
B5σxi

|∇ log λ+∇hi|2

=
N∑
i=1

∫
B5σxi

(xi)
|∇ log λ−∇ log λ(xi)|

≤ 25δπ
N∑
i=1

σ2
xi
.

But since {Bσxi
(xi)} is a disjoint set,

∑N
i=1 σ

2
xi
≤ 1 and thus,∫

D
4ϕ log λ ≥ −2δ − 25δ|ϕ|∞π − 2

∫
D
ϕλ

Since the choice of δ was arbitrary,∫
D
4ϕ log λ ≥ −2

∫
D
ϕλ.
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Finally, since the choice of ϕ ∈ C∞c (D) was also arbitrary, we have the desired result. The
general case can be handled using the following lemma.

Lemma 5.5 Let fn : D → R be a decreasing sequence of functions converging to a non-
negative function f such that fn ≤M for all n = 1, 2, ... If∫

D
log fn4ϕ ≥ −2

∫
D
ϕfn,

for all non-negative ϕ ∈ C∞c (D), we also have that∫
D

log f4ϕ ≥ −2
∫
D
ϕf,

for all non-negative ϕ ∈ C∞c (D).

Proof: We will show:

lim
n→∞

∫
ϕfn =

∫
ϕf

lim
n→∞

∫
log fn4ϕ =

∫
log f4ϕ.

The first equality follows immediately from the Lebesgue Convergence Theorem. To prove
the second equality, let g ∈ C∞(D) such that 4g ≥ 2M . Then∫

(log fn + g)4ϕ ≥
∫
ϕ(−2fn +4g) ≥ 0.

Hence log fn + g is subharmonic. By the mean value inequality (and assuming w.l.o.g.
that f(0) 6= 0),

−∞ < log f(0) + g(0)

≤ log fn(0) + g(0)

≤ 1

π

∫
D

log fn + g

≤ logM + g.

In particular,
∫

log fn in uniformly bounded. Let Fn = logM − log fn, and F = logM −
log f . Then Fn is an increasing sequence of non-negative functions. Hence by the Mono-
tone Convergence Theorem,

lim
n→∞

∫
Fn =

∫
D
F.
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In other words, we have that

lim
n→∞

∫
D

log fn =
∫
D

log f.

In particular, log f ∈ L1(D). For non-negative ϕ ∈ C∞c (D), we have that log fn4ϕ →
log f4ϕ a.e. and | log fn4ϕ| ≤ |4ϕ|∞| log fn|. Hence by the Dominated Convergence
Theorem, we have the desired result as we take δ → 0. 2

Now consider the space X ×D endowed with the distance function dδ defined by

d2
δ((P, z), (Q,w)) = d2(P,Q) + δ|z − w|2,

for P,Q ∈ X and z, w ∈ D. It can be easily checked that (X ×D, dδ) is a CAT (1) space
and uδ : D → (X ×D, dδ) defined by

uδ(z) = (u(z), z).

is a uδ is a minimal surface if u is. We let λδ be the conformal factor of the pull back
metric. Note that λδ is a decreasing sequence of functions converging to λ and λδ ≥ δ.
By the special case above, we have that∫

D
4ϕ log λδ ≥ −2

∫
D
ϕλδ,

for all δ. Hence by Lemma 5.5, we get the desired result when we take δ → 0. 2

6 Surfaces with Conformal Factor λ

As mentioned in the introduction, when X is a smooth Riemannian manifold of sectional
curvature bounded from above by κ, the inequality of Theorem 5.1 implies that the
curvature of the minimal surface is also bounded from above by κ. In this section, we will
see that this interpretation of Theorem 5.1 also makes sense in the setting where X is a
metric space of curvature bounded from above by κ; we show that the conformal factor
λ induces a metric space on D which has upper curvature bound of κ.

Theorem 6.1 Let (X, d) be a complete metric space of curvature bounded from above by
κ and let u : D → X be a minimal surface (i.e. a weakly conformal energy minimizing
map) with conformal factor λ. Let γ : [0, 1] → D be a piecewise C1 curve and let l(γ) =∫ 1
0

√
λ(γ(t))|γ′(t)|dt. For x, y ∈ D, we define the distance between x and y as

dλ(x, y) = inf{l(γ) : γ piecewise C1 and γ(0) = x, γ(1) = y}.

Then (D, dλ) is a metric space with curvature bounded from above by κ (locally if k > 0).
The metric topology is equivalent to the surface topology.
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Remark: The fact that
√
λ ∈ H1

loc(D) follows from the inequality of Theorem 5.1. Hence
the definition of l(γ) makes sense. The statement that a space has curvature bounded
from above by κ locally means that each point is contained in a neighborhood which has
an upper curvature bound of κ.

Proof: The fact that dλ defines a length space and the statement about the equivalence
of the topologies follow from the work of Reshetnyak [R3] and the weak inequality of
Theorem 5.1. (Reshetnyak considers a metric λ(dx2 + dy2) where log λ is a difference of
two subharmonic functions.) We need to show the curvature bound. It is sufficient to
consider the cases κ = −1, κ = 0 and κ = 1. The general case then follows by simply
scaling the distance function d of X so that the curvature is either κ = −1, 0 or 1.

We let λσ, (log λ)σ be symmetric mollifications (i.e. mollification by a symmetric
mollifier) of λ, log λ and let λσ = e(log λ)σ . Also let Dσ = {z ∈ D : |z| < 1 − σ}. By
applying Theorem 5.1 with ϕ the mollifier, we have

4 log λσ = 4(log λσ)

≥ −2κλσ

= −2κ

(
λσ
λσ

)
λσ (12)

for every z ∈ Dσ. By Jensen’s inequality, λσ ≥ λσ. Hence, for κ = −1 or κ = 0,

−1

2λσ
4 log λσ ≤ κ.

Thus for κ = −1 and κ = 0, (Dσ, λσ(dx2 + dy2)) is a smooth Riemannian surface with
curvature bounded from above by 1 and 0, respectively. Furthermore, since λ is subhar-
monic, λσ ≥ λ. This implies that dσ ≥ dλ where dσ is the distance function induced by
λσ(dx2 + dy2). Combining this with the fact that λσ → λ in H1, it is easy to check that
dσ → dλ.

¿From the above discussion, the curvature bound for the case κ = −1 and κ = 0
follows easily: Let x, y, z ∈ D and let yt (resp. yσt ) be the point on the geodesic from y
to z with respect to the distance function dλ (resp. dσ) so that dλ(y, yt) = tdλ(y, z) (resp.
dσ(y, yσt ) = tdσ(y, z)).

Claim: For yt and yσt defined above, we have dλ(yt, y
σ
t ) → 0 as σ → 0.

Proof: Assume κ = −1. Consider the geodesic triangle 4(yt, y, z) with respect to dσ.
By using the curvature bound of (Dσ, dσ) we have

cosh dσ(yt, y
σ
t ) ≤

sinh(1− t)dσ(y, z)

sinh dσ(y, z)
cosh dσ(yt, y) +

sinh tdσ(y, z)

sinh dσ(y, z)
cosh dσ(yt, z).
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As σ → 0, dσ(y, z) → dλ(y, z), d
σ(yt, y) → dλ(yt, y) = tdλ(y, z) and dσ(yt, z) → dλ(yt, z) =

(1− t)dλ(y, z). Hence the right hand side of the above inequality converges to 1 and since
dλ(yt, y

σ
t ) ≤ dσ(yt, y

σ
t ), this proves the claim. The case κ = 0 is proved analogously. 2.

For κ = −1, we want to show that

cosh dλ(x, yt) ≤
sinh(1− t)dλ(x, y)

sinh dλ(x, y)
cosh dλ(x, y) +

sinh(1− t)dλ(x, z)

sinh dλ(x, z)
cosh dλ(x, z)

which is equivalent to showing the triangle comparison property of Definition 3.1. Since
(Dσ, dσ) has curvature bounded from above by −1, we have

cosh dσ(x, yσt ) ≤
sinh(1− t)dσ(x, y)

sinh dσ(x, y)
cosh dσ(x, y) +

sinh(1− t)dσ(x, z)

sinh dσ(x, z)
cosh dσ(x, z)

and the desired inequality follows by taking σ → 0 and using the claim. The proof for
κ = 0 follows analogously.

Now we treat the case κ = 1. First we show (D, dλ) has curvature bounded from
above by 2. Let Dr(z0) = {z : |z − z0| < r} ⊂ D. Since (Dσ, dσ) is a smooth Riemannian
surface, by the isoperimetric inequality of [Hu],

(∫
∂Dr(z0)

√
λσds

)2

≥
(

4π −
∫
Dr(z0)

(4 log λσ)+dxdy

)∫
Dr(z0)

λσdxdy

≥
(

4π − 2
∫
Dr(z0)

λσdxdy

)∫
Dr(z0)

λσdxdy

where (4 log λσ)+ = max{−4 log λσ, 0}. By taking σ → 0, we have(∫
∂Dr(z0)

√
λds

)2

≥ 4π
∫
Dr(z0)

λdxdy − 2

(∫
Dr(z0)

λdxdy

)2

.

[R2] says that if a surface with a metric λ(dx2 + dy2) has an isoperimetric inequality for
disks Dr(z0) of the form

L2 ≥ 4πA− κA2

where L is the length of ∂Dr(z0) and A is area of Dr(z0), then the surface has an upper
curvature bound of κ. This implies (D, dλ) has an upper curvature bound of 2.

Let us call k the best curvature bound of (D, dλ) if for every geodesic triangle T with
diam(T ) < π√

2
and angles α, β, γ,

α+ β + γ ≤ αk + βk + γk

where αk, βk, γk are angles of a comparison triangle in Sk. By the above, we know that
k ≤ 2. We wish to show k ≤ 1. Suppose not, i.e. 1 < k ≤ 2. We need the following claim
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to obtain a contradiction.

Claim: Suppose 1 < k′ < k. There exists a constant Ck,k′ > 1 such that for any
geodesic triangles Tk ⊂ Sk and Tk′ ⊂ Sk′ with same side lengths and the sum of side
lengths less than π√

2
, we have area(Tk) ≤ Ck,k′area(Tk′). Furthermore, Ck,k′ → 1 as

k′ → k.

Proof: Let a, b, c be the side lengths of geodesic triangle T ⊂ Sk. From spherical
geometry, as a→ 0, b→ 0 or c→ 0, area(T ) approaches the area of a Euclidean triangle
with side lengths a, b, c. Thus if Tk,i ⊂ Sk and Tk′,i ⊂ Sk′ are geodesic triangles with side
lengths ai, bi, ci and if they form a maximizing sequence of the ratio

area(Tk,i)

area(Tk′,i)

then we can extract a subsequence so that ai′ → a > 0, bi′ → b > 0, ci′ → c > 0. Thus,

Ck,k′ =
area(T̄k)

area(T̄k′)

where T̄k ⊂ Sk, T̄k′ ⊂ Sk′ are geodesic triangles with side lengths a, b, c. The last assertion
is obvious. 2

Let T be any geodesic triangle and let α, β, γ be the angles of T . By Gauss-Bonnet
(see [R3], Theorem 8.1.7), we have

α+ β + γ ≤ −1

2

∫
T
4 log λdxdy + π

≤
∫
T
λdxdy + π

= area(T ) + π

Let Tk be a the comparison triangle in Sk. Clearly,

area(T ) ≤ area(Tk).

By claim, for 1 < k′ < k and comparison triangle Tk′ in Sk′ ,

area(Tk) ≤ Ck,k′area(Tk′).

We note that Ck,k′ is independently of T chosen. We choose k′ sufficiently close to k so
that Ck,k′ < k′. Applying Gauss-Bonnet on Tk′ ⊂ Sk′ , we obtain,

area(Tk) ≤ k′area(Tk′) ≤ αk′ + βk′ + γk′ − π
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where αk′ , βk′ , γk′ are angles of Tk′ . Thus,

α+ β + γ ≤ αk′ + βk′ + γk′ .

Since T can be chosen arbitrarily, this implies that the best curvature bound for (D, dλ)
is k′. This contradiction implies that the best curvature bound is not greater than 1. 2
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