
Regularity of harmonic maps from a flat complex

Chikako Mese∗

Abstract. We show that a harmonic map from an admissible flat simplicial
complex into a metric space of non-positive curvature is Lipschitz continuous away
from the (n− 2)-simplices.

1. Introduction

The study of harmonic maps into singular targets was initiated by the work of
[GS] who considered locally compact polyhedral targets of non-positive curvature.
In particular, these harmonic maps were shown to be Lipschitz continuous in the
interior of the domain. In [KS1], the interior Lipschitz regularity result for har-
monic maps was extended to the case when the target is a (not necessarily locally
compact) metric space of non-positive curvature (which we will refer to as a NPC
space). The interior Lipschitz regularity of harmonic maps from a Riemannian do-
main into metric spaces of curvature bounded from above with a smallness of image
assumption was shown by [Se1].

The papers [Ch], [EF] and [F] studies the regularity of harmonic maps from
singular domains. In particular, [EF] considers domain X which is an admissible
Riemannian simplicial complex and a target Y which is a NPC space and proves
that a harmonic map f : X → Y is pointwise Hölder continuous in the interior of
the domain. The interior pointwise Hölder regularity of harmonic maps from an
admissible Riemannian simplicial complex into a locally compact metric spaces of
curvature bounded from above with a smallness of image assumption was shown in
[F].

A natural question is to ask when a harmonic map from a singular domain is
Lipschitz continuous. In this paper, we consider the interior regularity of harmonic
maps from an admissible flat simplicial complex. We show

Theorem 1. Let X be a n-dimensional admissible flat simplicial complex, Y
a metric space of non-positive curvature and f : X → Y a harmonic map. Then f
is Lipschitz continuous away from ∂X and the (n− 2)-simplices of X.

Theorem 1 shows that the Lipschitz regularity of harmonic maps can be shown
for a domain that is not topologically a manifold. Although we restrict ourselves
to the flat metric on the domain in this paper, the Lipschitz regularity of harmonic
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2 REGULARITY OF HARMONIC MAPS FROM A FLAT COMPLEX

maps should still hold for a general admissible n-dimensional Riemannian simplicial
complex with appropriate assumptions on the metric near the (n − 1) simplices.
We conjecture that Theorem 1 can be generalized to include the case when the
smooth Riemannian metric defined on each n-dimensional simplex F of X extends
smoothly beyond each (n − 1)-dimensional simplex of F . We hope to tackle this
issue in a future paper. On the other hand, the result that f is Lipschitz continuous
away from (n− 2)-simplices optimal since the Lipschitz regularity property can fail
at (n− 2)-simplices. For example, the function f(r, θ) = ra cos θ on a unit disk D
with metric given by g = dr2 + 1

a2 r
2dθ2 in polar coordinates is a harmonic map.

Clearly, when a < 1 (which corresponds to a (D, g) being a two-dimensional metric
cone with negative curvature), f is not Lipschitz at 0.

In [DM], we prove the Lipschitz regularity of harmonic maps from a two di-
mensional admissible flat simplicial complex away from 0-simplices. The Lipschitz
regularity is important in applications of harmonic map theory. For example, in
[DM], the Lipschitz continuity was crucial in the existence and compactness the-
orems needed for the study of hyperbolic manifolds. The method of proof is quite
different when we consider higher dimensional domains. The argument of [DM]
uses the Hopf differential and hence is strictly a two dimensional argument.

2. Definitions

A connected locally finite n-dimensional simplicial complex is called admissible
(cf. [Ch] and [EF]) if the following two conditions hold:

(i) X is dimensionally homogeneous, i.e., every simplex is contained in a n-simplex,
and
(ii) X is (n− 1)-chainable, i.e., every two n-simplices A and B can be joined by a
sequence A = F0, e0, F1, e1, ..., Fk−1, ek−1, Fk = B where Fi is a n-simplex and ei

is a (n− 1)-simplex contained in Fi and Fi+1.

The boundary ∂X of X is the union of all simplices of dimension n− 1 which
is contained in only one n-dimensional simplex. Here and henceforth, we use the
convention that simplices are understood to be closed. A locally finite simplicial
complex is called a Riemannian simplicial complex if a smooth bounded Riemannian
metric is defined on n-simplex. This set of Riemannian metrics induces a distance
function on X which we will denote by dX(·, ·). We say a Riemannian simpicial
complex is flat if:

(i) the Riemannian metric gA on each n-simplex A makes (A, gA) isometric to
a subset of Rn, and
(ii) if A and B are adjacent n-simplex sharing a (n−1)-simplex e, the metrics gA and
gB induce the same metric ge on e which makes (e, ge) isometric to a subset of Rn−1.

A complete metric space (Y, d) is said to have curvature bounded from above
by κ if the following conditions are satisfied:

(i) The space (Y, d) is a length space. That is, for any two points P and Q in
Y , there exists a rectifiable curve γPQ so that the length of γPQ is equal to d(P,Q)
(which we will sometimes denote by dPQ for simplicity). We call such distance
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realizing curves geodesics.
(ii) Let a =

√
|κ|. Every point P0 ∈ Y has a neighborhood U ⊂ Y so that given

P,Q,R ∈ U (assume dPQ + dQR + dRP < π√
κ

for κ > 0) with Qt defined to be the
point on the geodesic γQR satisfying dQQt

= tdQR and dQtR = (1− t)dQR, we have

cosh(adPQt
) ≤ sinh((1− t)adQR)

sinh(adQR)
cosh adPQ +

sinh(tadQR)
sinh(adQR)

cosh adPR

for κ < 0,
d2

PQt
≤ (1− t)d2

PQ + td2
PR − t(1− t)d2

QR

for κ = 0, and

cos(adPQt) ≥
sin((1− t)adQR)

sin(adQR)
cos adPQ +

sin(tadQR)
sin(adQR)

cos adPR

for κ > 0.

We will say that (Y, d) is NPC (non-positively curved) if it has curvature bounded
from above by 0. A simply connected space of curvature bounded from above by κ
is commonly referred to as a CAT (κ) space in literature.

A map from X into Y is called harmonic if it is locally energy minimizing.
Recall that, when (Xm, g) and (Y n, h) are Riemannian manifolds, then the energy
of f : X → Y is

Ef :=
∫

X

|∇f |2dµ

where

|∇f |2(x) =
m∑

α,β=1

gαβ(x)hij(f(x))
∂f i

∂xα

∂f j

∂xβ

with (xα) and (f i) the local coordinate systems around x ∈ X and f(x) ∈ Y
respectively.

If (X, g) is a Riemannian manifold but (Y, d) is only assumed to be a complete
metric space, then we use the Korevaar-Schoen definition of energy where Ef is
defined as above with |∇f |2dµ the weak limit of ε-approximate energy density
measures. The ε-approximate energy density measures are measures derived from
the average difference quotients. More speficially, define eε : X → R by

eε(x) =

{ ∫
S(x,ε)

d2(f(x),f(y))
ε2

dσx,ε

εn−1 for x ∈ Xε

0 for x ∈ X −Xε

where σx,ε is the induced measure on the ε-sphere S(x, ε) centered at x and Xε =
{x ∈ X : d(x, ∂X) > ε}. This in turn defines a family of functionals Ef

ε : Cc(X) →
R by setting

Ef
ε (ϕ) =

∫
X

ϕeεdµ.

We say f has finite energy (or that f ∈W 1,2(X,Y )) if

Ef := sup
ϕ∈Cc(X),0≤ϕ≤1

lim sup
ε→0

Ef
ε (ϕ) <∞.

It can be shown that if f has finite energy, the measures eε(x)dx converge weakly
to a measure which is absolutely continuous with respect to the Lebesgue measure.
Therefore, there exists a function e(x), which we call the energy density, so that
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eε(x)dµ ⇀ e(x)dµ. In analogy to the case of real valued functions, we write |∇f |2(x)
in place of e(x). In particular,

Ef =
∫

X

|∇f |2dµ.

For V ∈ ΓX where ΓX is the set of Lipschitz vector fields on X, the directional
energy measure |f∗(V )|2dµ is similarly defined. The real valued L1 function |f∗(V )|2
generalizes the norm squared on the directional derivative of f .

Finally, the Korevaar-Schoen definition of energy can exteded to the case when
X is an admissible Riemannian simplicial complex. Here, the energy Ef is∫

X

|∇f |2dµ :=
∫
∪k

i=1Fi

|∇f |2dµ

where {Fi}k=1,...,k is the set of all top-dimensional simplices of X. The functions
|∇f |2 and |f∗(V )|2 are defined for almost every point in X.

3. Summary of relevant results

The Lipschitz continuity for a harmonic map from a Riemannian domain is due
to Korevaar and Schoen.

Theorem 2 ([KS1]). Let (Ω, g) be a n-dimensional Lipschitz Riemannian do-
main, (Y, d) a NPC space and f : Ω → Y a harmonic map. Then f is locally Lips-
chitz continuous in the interior of Ω, where the local Lipschitz constant is bounded
above by

C

(
Ef

min{1, dist(x, ∂Ω)}

) 1
2

where C is a constant which depends only on n and the regularity of the metric g.

The boundary regularity result is due to Serbinowski.

Theorem 3 ([Se2]). Let (Ω, g) be a n-dimensional Lipschitz Riemannian do-
main, (Y, d) a NPC space, φ ∈ W 1,2(Ω, Y ) and f : Ω → Y a harmonic map such
that f = φ on ∂Ω. If, for a relatively open subset Γ ⊂ ∂Ω, φ is locally Hölder
continuous in a neighborhood of Γ ∪ Ω with Hölder exponent α, then f is locally
Hölder continuous with Hölder exponent β for every 0 ≤ β < α.

The Hölder regularity result is due to Eells and Fuglede.

Theorem 4 ([EF]). Let X be an admissible Riemanian simplicial complex,
(Y, d) a NPC space and f : X → Y a harmonic map. Then f is pointwise Hölder
continuous; i.e. for any point a ∈ X, there exists posibive constants A,α, δ depend-
ing on a so that

d(f(x), f(a)) ≤ AdX(x, a)α

whenever dX(x, a) < δ.

4. Preliminary results

We will henceforth assume that the domain of a harmonic map is a flat 2-
dimensional simplicial complex for simplicity. The proof of the Lipschitz regularity
result for domain dimension equal to 2 given below generalize in a straighforward
manner to the case when the domain is a flat n-dimensional simplicial complex.
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Since this is a local result, we consider a harmonic map f : X1 → (Y, d)
where X1 is isometric to a neighborhood of a point of a (n− 1)-simplex away from
(n − 2)-simplices. We define X1 below. Take n copies of the unit upper half disk
D+ = {(x, y) ∈ R2|x2 + y2 < 1, y ≥ 0}. We would like to distinguish these copies
so we label them D+

1 , ..., D
+
n and use (xi, yi) to denote the point corresponding to

(x, y) ∈ D+ on the ith copy D+
i . Let X1 = ∪n

i=1D
+
i / ∼ where ∼ is defined by

(xi, 0) ∼ (xj , 0) for x ∈ R. (1)

In other words, ∼ identifies the x-axis of D+
i to the x-axis of D+

j for all i and j.
Because of this identification, we can denote (xi, 0) by (x, 0). We will denote (0, 0)
by 0. We let Γr = {(x, 0) ∈ X1 : −r < x < r} and Γr,ε = {(xi, yi) ∈ X1 : −r < xi <
r, 0 ≤ y < ε}. Furthermore, for z1 = (x1

i , y
1
i ), z2 = (x2

i , y
2
i ) ∈ X1, we let |z1− z2| be

the distance between z1 and z2. In particular, |z| = |z − 0| =
√
x2

i + y2
i . Finally,

let Xr = {z = (xi, yi) ∈ X1 : |z| < r} and D+
r,i = D+

i ∩Xr.
We first prove that harmonic maps from X1 is Lipschitz continuous in the

direction parallel to Γ1.

Lemma 5. Let f : X1 → Y be a harmonic map. For any r < 1, there exists a
constant L dependent only on r and the energy Ef of f so that d(f(z1), f(z2)) ≤
L|z1 − z2| for z1 = (x1

i , y
1
i ), z2 = (x2

i , y
2
i ) ∈ Xr provided that y1 = y2.

Proof. For the vector ∂
∂x , we will denote the directional derivative measure

|f∗( ∂
∂x )|2dxdy by

∣∣∣∂f
∂x

∣∣∣2 dxdy for simplicity. By [KS1],∣∣∣∣∂f∂x
∣∣∣∣2 (xi, yi) = lim

ε→0

d2(f(xi + ε, yi), f(xi, yi))
ε2

for a.e. (xi, yi) ∈ X1. It will be sufficient to show an upper bound for
∣∣∣∂f
∂x

∣∣∣2 in Xr

which is dependent only on r and Ef .
Let Dr be a disk of radius r, take n copies of Dr and label them Dr,1, ..., Dr,n.

Let Ωr = ∪n
i=1Dr,i/ ≈ where the equivalence relation ≈ is defined so that (xi, 0) ≈

(xj , 0). For a fixed r0 < 1 and ε > 0 sufficiently small so that r0 + ε < 1, let
g : Xr0 → Y be defined by g(xi, yi) = f(xi + ε, yi). Define Φ : Ωr0 → Xr0 by
setting Φ(xi, yi) = (xi, |yi|) and let F,G : Ωr0 → (Y, d) be defined by F = f ◦ Φ,
and G = g ◦ Φ respectively.

For η ∈ C∞c (Dr0), define Fη, F1−η : Ωr0 → (Y, d) by setting

Fη(xi, yi) = (1− η(xi, yi))F (xi, yi) + η(xi, yi)G(xi, yi)

and
F1−η(xi, yi) = η(xi, yi)F (xi, yi) + (1− η(xi, yi))G(xi, yi).

where (1−t)P+tQ denotes the point which is fraction t of the way along the geodesic
from P to Q in Y . These maps are well-defined with respect to the equivalence
relation ≈; for example,

Fη(xi, 0) = (1− η(xi, 0))F (xi, 0) + η(xi, 0)G(xi, 0)
= (1− η(xi, 0))f ◦ Φ(xi, 0) + η(xi, 0)g ◦ Φ(xi, 0)
= (1− η(xi, 0))f(x,0) + η(xi, 0)g(x, 0)
= (1− η(xj , 0))f ◦ Φ(xj , 0) + η(xj , 0)g ◦ Φ(xj , 0)
= (1− η(xj , 0))F (xj , 0) + η(xj , 0)G(xj , 0)
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= Fη(xj , 0).

By Lemma 2.4.1 of [KS1], we see that the restriction of Fη, F1−η to Dr0,i is
in W 1,2 so Fη, F1−η ∈W 1,2(Ωr0 , Y ) and by Lemma 2.4.2 of [KS1] (again applying
the lemma to the restriction of Fη, F1−η to Dr0,i), we obtain the inequality∫

Ωr0

|∇Fη|2 +
∫

Ωr0

|∇F1−η|2

≤
∫

Ωr0

|∇F |2 +
∫

Ωr0

|∇G|2 − 2
∫

Ωr0

∇η · ∇d2(F,G) +
∫

Ωr0

Q(η,∇η).

Let fη, f1−η : Xr0 → Y be defined by fη = Fη◦Φ−1, f1−η = F1−η◦Φ−1 (where we let
Φ−1(xi, yi) = (xi, yi)) respectively. Since Φ is a local isometry almost everywhere,∫

Ωr0

|∇F |2 = 2
∫

Xr0

|∇f |2 ≤ 2
∫

Xr0

|∇fη|2 =
∫

Ωr0

|∇Fη|2

and ∫
Ωr0

|∇G|2 = 2
∫

Xr0

|∇g|2 ≤ 2
∫

Xr0

|∇f1−η|2 =
∫

Ωr0

|∇F1−η|2.

Therefore,

−2
∫

Ωr0

∇η · ∇d2(F,G) +
∫

Ωr0

Q(η,∇η) ≥ 0

and replacing η by tη, dividing by t and letting t→ 0, we get

−
∫

Dr0

∇η · ∇δ ≥ 0

for any η ∈ C∞c (Dr0) and where

δ(x, y) =
n∑

i=1

d2(F (xi, yi), G(xi, yi)).

By the mean value inequality for subharmonic functions,

δ(x, y) ≤ 1
πρ2

∫
Dρ(x,y)

δ

for any ρ ≤ r0−
√
x2 + y2 where Dρ(x, y) is the disk of radius ρ centered at (x, y).

Now suppose r < r0. Let (xi, yi) ∈ Xr and ρ = r0 − r. (As before, Dr0 is the
disk of radius r0 centered at the origin.) Then

d2(f(xi, yi), g(xi, yi)) = d2(F (xi, yi), G(xi, yi))
≤ δ(x, y)

≤ 1
πρ2

∫
Dρ(x,y)

δ

=
1
πρ2

∫
Dr0

δ

=
1
πρ2

∫
Ωr0

d2(F,G)

=
2
πρ2

∫
Xr0

d2(f, g).
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Thus, for (x̄i, ȳi) ∈ Xr and ρ = 1−r
2 and r0 = r + ρ.

∣∣∣∣∂f∂x
∣∣∣∣2 (x̄i, ȳi) = lim

ε→0

d2(f(x̄i, ȳi), f(x̄i + ε, ȳi)
ε2

≤ lim
ε→0

n∑
j=1

d2(f(x̄j , ȳj), f(x̄j + ε, ȳj)
ε2

≤ 2
πρ2

n∑
j=1

lim
ε→0

1
ε2

∫
Xr0

d2(f(x, y), f j(x+ ε, y))dxdy

≤ 2
πρ2

∫
Xr0

∣∣∣∣∂f∂x
∣∣∣∣2 dxdy

≤ 2
πρ2

Ef .

Using Lemma 5, we now show that a harmonic map f : X1 → (Y, d) is β-Hölder
continuous in Xr for any β < 1 and r < 1.

Lemma 6. Let f : X1 → Y be a harmonic map. For any β < 1 and r < 1,
there exists a constant cβ so that d(f(z1), f(z2)) ≤ cβ |z1 − z2|β for z1, z2 ∈ Xr.

Proof. By Lemma 5, f restricted to Γr is Lipschitz continuous. Thus, for
each i, we can construct a W 1,2 map φ : D+

i → Y so that f = φ on ∂D+
i and φ is

Lipschitz continuous in a neighborhood of Γr as the following shows. Let D be the
unit disk and ψ : D → D+

i a bi-Lipschitz map. With (r, θ) the polar coordinates of
D, define Φ : D → Y by setting Φ(r, θ) to be the point on the geodesic from f(0) to
f ◦ψ(1, θ) that is a distance r from f(0). The NPC condition on Y guarantees that
Φ is Lipschitz continuous near ψ−1(Γr) and hence φ = Φ◦ψ−1 is also Lipschitz near
Γr and by construction φ = f on ∂D+

i . Now Lemma 6 follows from Theorem 3.

5. The monotonicity formula

The following monotonicity property will be crucial in our regularity proof. For
−1 < x < 1 and 0 < r < 1− x, let Br(x, 0) be a ball of radius r at (x, 0) ∈ X1 and
set

Ef
x (r) =

∫
Br(x,0)

|∇f |2dµ

and

If
x (r) =

∫
∂Br(x,0)

d2(f, f(x, 0))ds.

Lemma 7. Let f : X1 → Y be a harmonic map. Then

r 7→ Ord(x, r) =
rEf

x (r)

If
x (r)

is a non-decreasing function for 0 ≤ r ≤ 1− x.

Proof. For simplicity, we assume x = 0 and set E(r) = Ef
0 (r) and I(r) =

If
0 (r). Let η : X → R+ ∪ {0} be a continuous function which is smooth on each
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face of X1. For η with spt(η) ⊂ Xr and t sufficiently small, we define Ft : X → X
as

Ft(xi, yi) = ((1 + tη(xi, yi))xi, (1 + tη(xi, yi))yi).
With that, we can now follow the usual calculation to prove Lemma 7. In other
words, the standard computation (see [GS], Section 2 for example) done on each
face of X1 gives

E′(r) = 2
∫

∂Xr

∣∣∣∣∂f∂r
∣∣∣∣2 ds (2)

for a.e. 0 ≤ r ≤ 1. Again, for a.e. 0 ≤ r ≤ 1, standard computation on each face of
X gives,

I ′(r) =
∫

∂Xr

∂

∂r
d2(f, f(p0))ds+

I(r)
r
.

Using the inequality | ∂
∂rd(f, f(p0))| ≤ |∂f

∂r | and the Schwarz inequality, the above
two equations imply that

d

dr
log
(
rE(r)
I(r)

)
=

1
r

+
E′(r)
E(r)

− I ′(r)
I(r)

≥ 0

for a.e. 0 ≤ r ≤ 1.

Lemma 8. Let f : X1 → (Y, d) be a harmonic map so that

α = lim
σ→0

σEf
0

If
0 (σ)

.

Then
2α+ 1
σ

≤
dIf

0
ds (σ)

If
0 (σ)

(3)

and hence
d

dσ

(
If
0 (σ)
σ2α+1

)
≥ 0.

Proof. The argument of [GS], Section 2 (see also [EF]) implies

2
∫

X1

|∇f |2ηdxdy ≤ −
∫

X1

∇d2(f, f(0)) · ∇ηdxdy (4)

for any W 1,2 function η with compact support in X1. Choosing η to approximate
the characteristic function of Xr,

2Ef
0 (σ) ≤

∫
∂Bσ(p0)

∂

∂r
d2(f, f(v))ds =

d

dσ
If
0 (σ)− 1

σ
If
0 (σ).

The monotonicity property of σ 7→ Ord(0, σ) implies

αI(σ)
σ

≤ E(σ)

and by combining the two inequalities, we get

2αIf
0 (σ) ≤ σ

d

dσ
If
0 (σ)− If

0 (σ)

which lead to the desired inequality.



REGULARITY OF HARMONIC MAPS FROM A FLAT COMPLEX 9

We prove the following regularity result based on the order α of a harmonic
map.

Theorem 9. Let f : X1 → (Y, d) be a harmonic map and

α = lim
σ→0

σEf
0 (σ)

If
0 (σ)

.

then f satisfies

f(z) ≤ C|z|α

for all z = (xi, yi) ∈ X 1
2

where C depends only on α and Ef .

Proof. For simplicity, we let E(σ) = Ef
0 (σ) and I(σ) = If

0 (σ). From Lemma 8,
we have

2α+ 1
σ

≤ I ′(σ)
I(σ)

and integrating this differential inequality from σ ∈ (0, 1) to 1, we obtain

I(σ)
σ

≤ σ2αI (1) .

The monotonicity property of σ 7→ Ord(0, σ) implies

I (1) ≤ E (1)
α

,

and hence
I(σ)
σ

≤ E(1)
α

σ2α.

Define δ : D → R be setting

δ(x, y) =

{ ∑N
i=1 d

2(f(xi, yi), 0) yi ≥ 0∑N
i=1 d

2(f(xi, |yi|), 0) yi < 0.

Using the argument of the proof of Lemma 5 with g(xi, yi) = 0 instead of g(xi, yi) =
f(xi + ε, yi), we can show that δ is a subharmonic function and the mean value
inequality implies

sup
(xi,yi)∈X σ

2

d2(f(xi, yi), f(0)) ≤ sup
z∈D σ

2

δ(x, y)

≤ 4
πσ

∫
∂Dσ

δds

≤ 4I(σ)
πσ

≤ Cσ2α

where C = 4E(1)
απ .

Therefore, the Lipschitz continuity of f : X1 → Y if we show that α ≥ 1.
Hence, we will now assume that α < 1 and show that this leads to a contradiction.
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6. The tangent map

Lemma 10. Let f : X1 → Y be a harmonic map. Fix 0 < β < 1. For any
x ∈ [− 1

2 ,
1
2 ] and σ < 1

4 , there exists a constant c1 so that Ef
x (σ) ≤ c1σ

2β.

Proof. Let

k1 = max
x∈[− 1

2 , 1
2 ]

Ex( 1
4 )

4Ix( 1
4 )
.

By Lemma 6, there exists k2 so that d(f(z1), f(z2)) ≤ k2|z1 − z2|β for z1, z2 in
a neighborhood of Γ 3

4
. Thus, Ix(σ) ≤ k2σ

2β+1 for x ∈ [− 1
2 ,

1
2 ] and σ < 1

4 . The
monotonicity property of Lemma 7 shows that

Ex(σ) ≤
Ex( 1

4 )
4Ix( 1

4 )
Ix(σ)
σ

= c1σ
2β

where c1 = k1k2.

An important consequence of the monotonicity property of Lemma 7 is the
existence of a tangent map.

Lemma 11. Let f : X1 → (Y, d) be a harmonic map,

µf (λ) =

√
λ

If
0 (λ)

and dλ(·, ·) = µf (λ)d(·, ·). Define fλ : X1 → (Y, dλ) by setting

fλ(xi, yi) = f(λxi, λyi).

Assume that

α = lim
σ→0

σEf
0 (σ)

If
0 (σ)

< 1.

There exists λk → 0, an NPC space (Y∗, d∗) and a harmonic map f∗ : X1 → (Y∗, d∗)
so that dλk

(fλk
(·), fλk

(·)) converges uniformly to d∗(f∗(·), f∗(·)) and Efλk (r) →
Ef∗(r) for 0 < r ≤ 1.

Proof. Let λk → 0. Since

E
fλk
0 (1) = (µf (λk))2Ef

0 (λk) =
λkE

f
0 (λk)

I0(λk)
≤ Ef

0 (1)

If
0 (1)

,

the energy of fλk
is uniformly bounded. The local Hölder constant and exponent

of a harmonic map from X1 to Y can be shown to be dependent only on the energy
of the map and the distance to ∂X1. (For example, we can use the proof of [Ch].
We note that although the proof of [Ch] does not apply to a general metric as is
considered in [EF], it works in our case when the domain is flat. In [Ch], we clearly
see the dependence of the Hölder constant and exponent only on the total energy
and the distance to the boundary.) Therefore, fλk

satisfies the uniform modulus of
continuity control needed to apply Proposition 3.7 of [KS2].

For λk → 0 and any τ < 1, we see that there exists a subsequence of fλk

which converges locally uniformly in the pullback sense to a harmonic map by
applying the argument of [KS2] Proposition 3.7. Pick a sequence τn → 1 and by a
diagonalization procedure, we can pick a subsequence fλk

(which we again denote
by {fλk

} by an abuse of notation) which converges locally uniformly in the pull
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back sense to a harmonic map f∗ : X1 → (Y, d∗). In other words, dλk
(fλk

(·), fλk
(·))

converges uniformly to d∗(f∗(·), f∗(·)).
We first show that f∗ is non-constant. Let Ek(r) = E

fλk
0 (r), Ik(r) = I

fλk
0 (r),

E∗(r) = Ef∗
0 (r), I∗(r) = If∗

0 (r) for simplicity. Repeating the computation of [GS],
proof of Proposition 3.3,

Ik(r0)− Ik(θ) ≤ εEk(r0) +
(

1
ε

+
1
θ

)∫ r0

θ

Ik(r)dr

for 0 < θ < r < 1 and any ε > 0. By Lemma 7,

r0E
k(r0)

Ik(r0)
≤ Ek(1)

Ik(1)
= C

and hence

Ik(r0)− Ik(θ) ≤ εCIk(r0)
r0

+
(

1
ε

+
1
θ

)∫ r0

θ

Ik(r)dr.

For any θ ∈ [ 12 , 1), pick r0 ∈ (θ, 1]. Then r0 ≥ θ ≥ 1
2 and by choosing ε = 1

4C ,

1
2
Ik(r0)− Ik(θ) ≤ (4C +

1
θ
)
∫ r0

θ

Ik(r)dr

≤ (4C + 2)
∫ 1

θ

Ik(r)dr

≤ (4C + 2)(1− θ) sup
r∈[θ,σ]

Ik(r).

Since r0 is an arbitrary point in (θ, 1], we have
1
2

sup
r∈[θ,1]

Ik(r)− Ik(θ) ≤ (4C + 2)(1− θ) sup
r∈[θ,σ]

Ik(r).

Now choose θ sufficiently close to 1 so that (4C + 2)(1− θ) ≤ 1
6 . Then

Ik(θ) ≥ 1
3

sup
r∈[θ,1]

Ik(r) ≥ 1
3
Ik(1) =

1
3
.

By the uniform convergence of dλk
(fλk

(·), fλk
(·)) to d∗(f∗(·), f∗(·)), we then have

I∗(θ) ≥ 1
3

and this shows that f∗ is non-constant.
Finally, we show that Ek(r) → E∗(r) for r < 1. By Theorem 3.11 of [KS2], it

will be enough to show that

Ek
ε−strip :=

∫
Γ1,ε

|∇fk|2dxdy < C1ε
γ

for γ > 0. Choose β so that max{α, 1
2} < β < 1. Let ε > 0 be given. For λ < 1

4 , let

Ef

ελ−strip =
∫

Γλ,λε

|∇f |2dxdy

Note that Γλ,λε can be covered by 10
ε number of balls of radius 2λε centered at

points on Γλ ⊂ Γ 1
2
. Therefore, by Lemma 10

Ef

ελ−strip ≤
10
ε
c1(2λε)2β .
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Since

α = lim
σ→0

σEf
0 (σ)

If
0 (σ)

.

we know
αIf

0 (σ) ≤ σEf
0 (σ)

by Lemma 7.

Now letting C2 = limσ→0
If
0 (σ)

σ2α+1 , we see that C2 ≤ If
0 (λk)

λ2α+1
k

by Lemma 8 or

equivalently

(µf (λk))2 =
λk

If
0 (λk)

≤ C2λ
−2α
k .

By the definition of fλk
: X1 → (Y, dλk

), we have

Ek
ε−strip = (µf (λk))2Ef

ελk−strip ≤ C2λ
−2α
k

10
ε
c1(2λkε)2β = 10C2c1λ

2β−2α
k ε2β−1

We have chosen β so that 2β − 2α > 0 and 2β − 1 > 0, so letting C1 = 10C2c1 and
γ = 2β − 1, we have

Ek
ε−strip = k3ε

γ .

By Theorem 3.11 of [KS1], this shows that the energy of fk on each D+
i ∩ Xr

converges to that of f∗ so Ek(r) → Ef∗(r) for all r < 1 and hence Efλk (1) → Ef∗(1)
also.

We call f∗ of Lemma 11 a tangent map of f . We note the following property
of f∗.

Lemma 12. Let f : X1 → (Y, d) be a harmonic map so that

α = lim
σ→0

σEf
0 (σ)

If
0 (σ)

< 1.

Then its tangent map f∗ : X1 → (Y, d∗) is a homogeneous map of order α; in other
words,

d∗(f∗(z), f∗(0)) = |z|αd∗
(
f∗

(
z

|z|

)
, f∗(0)

)
.

Proof. Since

E
fλk
0 (r) = (µf (λk))2Ef

0 (λkr) =
λk

I0(λk)
Ef

0 (λkr)

and

I
fλk
0 (r) = (µf (λk))2

If
0 (λkr)
λk

=
λk

If
0 (λk)

If
0 (λkr)
λk

=
If
0 (λk)

If
0 (λkr)

,

we have
rEf∗

0 (r)

If∗
0 (r)

= lim
k→∞

rE
fλk
0 (r)

I
fλk
0 (r)

= lim
k→∞

λkrE
f
0 (λkr)

If
0 (λkr)

= α.

Therefore, by proof of Lemma 3.2 of [GS], f∗ is a homogeneous map of order α.
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7. The Lipschitz continuity

We are now ready to prove:

Lemma 13. The harmonic map f : X1 → Y is Lipschitz continuous at 0 with
the Lipschitz constant dependent only on Ef .

Proof. By Theorem 9, it is sufficient to show that α ≥ 1. Suppose α < 1.
Let f∗ : X1 → Y∗ be a tangent map of f . By Lemma 5, f∗ satisfies

d2
∗(f∗(xi, yi), f∗(0, yi)) ≤ L2x2

i .

Let f∗∗ : X1 → Y∗∗ be a tangent map of f∗ so that for λk → 0, f∗,λk
: X1 →

(Y∗, d∗,λk
) converges in the sense of Lemma 11 to f∗∗. By Lemma 12, both f∗ and

f∗∗ are homogeneous maps of order α. Then

d∗∗(f∗∗(xi, yi), f∗∗(0, yi))
= lim

k→∞
d∗,λk

(f∗,λk
(xi, yi), f∗,λk

(0, yi))

= lim
k→∞

µf∗(λk)d∗(f∗(λkxi, λkyi), f∗(0, λkyi))

= lim
k→∞

µf∗(λk)Lλkxi

Furthermore,

If∗(λk) =
∫

∂Xλk

d2(f∗, f∗(0))ds = λ2α+1
k

∫
∂X1

d2
∗(f∗, f∗(0))ds = λ2α+1

k If∗(1)

so we have

µf∗(λk) =

√
λk

If∗(λk)

= λ−α
k (If∗(1))−

1
2 .

Therefore,

d∗∗(f∗∗(xi, yi), f∗∗(0, yi)) = lim
k→∞

Lλ1−α
k xi(If∗(1))−

1
2 = 0.

This, in particular, shows that t 7→ f∗∗(ti, yi) is a geodesic curve. Therefore, α = 1
and this is a contradiction. Therefore, α ≥ 1. It follows from the proof of Theorem 9
that the Lipschitz constant depends only on Ef .

Furthermore, it is now straightforward to show that the Lipschitz constant of
a harmonic map f : X → Y at point (x, 0) for |x| < 1

2 depends only on Ef . We
now show:

Lemma 14. The local Lipschitz constant of f : X1 → Y at a point z0 =
(xi, yi) ∈ X 1

2
with yi 6= 0 depends only on Ef .

Proof. Let r0 = yi and

Ef
(xi,yi)

(r) =
∫

Br(xi,yi)

|∇f |2dµ

and

If
(xi,yi)

(r) =
∫

∂Br(xi,i)

d2(f, f(xi, yi))ds.
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Then

r 7→
rEf

(xi,yi)
(r)

If
(xi,yi)

(r)

is monotone for r < r0 since Br(xi, yi) is contained in a 2-simplex for r < r0. As
in Lemma ??, we can deduce that

If
(xi,yi)

(r)

r
≤
If
(xi,yi)

(r0)

r2α+1
0

r2α ≤
Ef

(xi,yi)
(r0)

αr2α
0

r2α

where α = α(xi, yi) = limσ→0

σEf

(xi,yi)
(σ)

If

(xi,yi)
(σ)

. Therefore,

sup
z∈B r

2 (z0)

d2(f(z), f(z0)) ≤
4If

(xi,yi)
(r)

πr

≤
4Ef

(xi,yi)
(r0)

παr2α
0

r2α

We know that α ≥ 1 since (xi, yi) 7→ α(xi, yi) is upper semicontinuous since it is a
decreasing limit of continuous functions. If α > 1, then

0 ≤ lim
z 7→z0

d2(f(z), f(z0))
|z − z0|2

≤
4Ef

(xi,yi)
(r0)

παr2α
0

lim
r→0

r2α−2 = 0

If α = 1, then

lim
z 7→z0

d2(f(z), f(z0))
|z − z0|2

≤
4Ef

(xi,yi)
(r0)

πr20
≤

16Ef
(xi,0)

(2r0)

π(2r0)2
≤ 16Ef

π

This shows that the energy density function |∇f |2 is uniformly bounded by a con-
stant dependent on energy and proves Lemma 14.

Lemma 13 and Lemma 14 combines to prove Theorem 1 for two dimensional
domain. As mentioned previously, it is straightforward to generalize the arguments
here to a higher dimensional domain.
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